
1 Prologue: how to produce forecasts

This chapter sets out a simplified mathematical framework that allows us to

discuss the concept of forecasting and, more generally, prediction. Two key in-

gredients of prediction are: (i) we have a computational model which we use to

simulate the future evolution of the physical process of interest given its current

state;1 and (ii) we have some measurement procedure providing partially ob-

served data on the current and past states of the system. These two ingredients

include three different types of error which we need to take into account when

making predictions: (i) precision errors in our knowledge of the current state of

the physical system; (ii) differences between the evolution of the computational

model and the physical system, known as model errors ; and (iii) measurement

errors in the data that must occur since all measurement procedures are imper-

fect. Precision and model errors will both lead to a growing divergence between

the predicted state and the system state over time, which we attempt to cor-

rect with data which have been polluted with measurement errors. This leads

to the key question of data assimilation: how can we best combine the data with

the model to minimise the impact of these errors, and obtain predictions (and

quantify errors in our predictions) of the past, present and future state of the

system?

1.1 Physical processes and observations

In this book we shall introduce data assimilation algorithms, and we shall want

to discuss and evaluate their accuracy and performance. We shall illustrate this

by choosing examples where the physical dynamical system can be represented

mathematically. This places us in a somewhat artificial situation where we must

generate data from some mathematical model and then pretend that we have only

observed part of it. However, this will allow us to assess the performance of data

assimilation algorithms by comparing our forecasts with the “true evolution” of

the system. Once we have demonstrated the performance of such algorithms in

this setting, we are ready to apply them to actual data assimilation problems

1 It is often the case, in ocean modelling for example, that only partial observations are
available and it is already challenging to predict the current state of the system
(nowcasting). It is also often useful to reconstruct past events when more data become
available (hindcasting).
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2 Prologue: how to produce forecasts

where the true system state is unknown. This methodology is standard in the

data assimilation community.

We shall use the term surrogate physical process to describe the model that we

use to generate the true physical dynamical system trajectory for the purpose of

these investigations. Since we are building the surrogate physical process purely

to test out data assimilation algorithms, we are completely free to choose a

model for this. To challenge these algorithms, the surrogate physical process

should exhibit some complex dynamical phenomena. On the other hand, it should

allow for numerically reproducible results so that we can make comparisons and

compute errors. For example, we could consider a surrogate physical process

described in terms of a finite-dimensional state variable z ∈ R
Nz of dimension

Nz ≥ 1, that has time dependence governed by an ordinary differential equation

(ODE) of the form

dz

dt
= f(z) + g(t), z(0) = z0, (1.1)

with a chosen vector field f : RNz → RNz and a time-dependent function g(t) ∈
RNz for t ≥ 0 such that solutions of (1.1) exist for all t ≥ 0 and are unique. While

such an ODE model can certainly lead to complex dynamic phenomena, such as

chaos, the results are not easily reproducible since closed form analytic solutions

rarely exist. Instead, we choose to replace (1.1) by a numerical approximation

such as the forward Euler scheme

zn+1 = zn + δt (f(zn) + g(tn)) , tn = n δt, (1.2)

with iteration index n ≥ 0, step-size δt > 0, and initial value z0 = z0.
2 Usually,

(1.2) is used to approximate (1.1). However, here we will choose (1.2) to be

our actual surrogate physical process with some specified value of δt (chosen

sufficiently small for stability). This is then completely reproducible (assuming

exact arithmetic, or a particular choice of rounding mode) since there is an

explicit formula to obtain the sequence z0, z1, z2, etc.

We shall often want to discuss time-continuous systems, and therefore we

choose to use linear interpolation in between discrete time points tn and tn+1,

z(t) = zn + (t− tn)
zn+1 − zn

δt
, t ∈ [tn, tn+1], (1.3)

to obtain a completely reproducible time-continuous representation of a surro-

gate physical process. In other words, once the vector field f , together with the

step-size δt, the initial condition z0, and the forcing {g(tn)}n≥0, have been spec-

ified in (1.2), a unique function z(t) can be obtained for t ≥ 0, which we will

denote by zref(t) for the rest of this chapter. It should be emphasised at this

point that we need to pretend that zref(t) is not directly accessible to us dur-

ing the data assimilation process. Our goal is to estimate zref(t) from partial

2 Throughout this book we use superscript indices to denote a temporal iteration index, for
example zn in (1.2). Such an index should not be confused with the nth power of z. The
interpretation of zn should hopefully be clear from the circumstances of its use.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-06939-8 - Probabilistic Forecasting and Bayesian Data Assimilation
Sebastian Reich and Colin Cotter
Excerpt
More information

http://www.cambridge.org/9781107069398
http://www.cambridge.org
http://www.cambridge.org


1.1 Physical processes and observations 3

measurements of zref(t), using imperfect mathematical models of the dynamical

system. We will return to these issues later in the chapter.

To clarify the setting, we next discuss a specific example for producing surro-

gate physical processes in the form of a reference solution zref(t).

Example 1.1 The Lorenz-63 model (Lorenz 1963) has a three-dimensional

state variable z := (x, y, z)T ∈ RNz , for scalar variables x, y, z, with Nz = 3.

The variable z satisfies an equation that can be written in the form (1.2) with

vector field f given by

f(z) :=

⎛⎝ σ(y − x)

x(ρ− z)− y

xy− βz

⎞⎠ , (1.4)

and parameter values σ = 10, ρ = 28, and β = 8/3. We will use this vector field

in the discrete system (1.2) to build a surrogate physical process with step-size

δt = 0.001 and initial conditions

x0 = −0.587, y0 = −0.563, z0 = 16.870. (1.5)

As we develop this example throughout this chapter, we will discuss model errors,

defined as differences between the surrogate physical process and the imperfect

model that we will use to make predictions. For that reason we include a non-

autonomous forcing term g in (1.2), which will have different definitions in the

two models. We shall define the forcing g(tn) = gn = (gn1 , g
n
2 , g

n
3 )

T ∈ R3 for

the surrogate physical process as follows: set a = 1/
√
δt and, for n ≥ 0, define

recursively

gn+1
i =

{
2gni + a/2 if gni ∈ [−a/2, 0),
−2gni + a/2 otherwise,

(1.6)

for i = 1, 2, 3 with initial values

g01 = a(2−1/2 − 1/2), g02 = a(3−1/2 − 1/2), g03 = a(5−1/2 − 1/2).

It should be noted that gni ∈ [−a/2, a/2] for all n ≥ 0. In order to avoid an

undesired accumulation of round-off errors in floating point arithmetic, we need

to slightly modify the iteration defined by (1.6). A precise description of the

necessary modification can be found in the appendix at the end of this chapter.

A reader familiar with examples from the dynamical systems literature might

have noticed that the iteration (1.6) reduces to the tent map iteration with

a = 1 and the interval [−1/2, 1/2] shifted to [0, 1]. The factor a > 0 controls the

amplitude of the forcing and the interval has been shifted such that the forcing is

centred about zero. We choose this for the surrogate physical process since it is

completely reproducible in exact arithmetic, but has very complicated dynamics

that can appear random.

The numerical solutions obtained from an application of (1.2) for n = 0, . . . ,

N − 1 with N = 2 × 105 lead to a time-continuous reference solution zref(t)
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4 Prologue: how to produce forecasts
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Figure 1.1 Trajectory of the modified Lorenz-63 model as described in Example 1.1.
This trajectory provides us with the desired surrogate physical process. The cloud of
solution points is part of what is called the model attractor.

according to the interpolation formula (1.3) for time t ∈ [0, 200], which is used

for all experiments conducted in this chapter. See Figure 1.1 for a phase portrait

of the time series. Solutions asymptotically fill a subset of phase space R3 called

the model attractor.

Next, we turn our attention to the second ingredient in the prediction problem,

namely the measurement procedure. In this setting, neither zref(t) nor (1.2) will

be explicitly available to us. Instead, we will receive “observations” or “measure-

ments” of zref(t) at various times, in the form of measured data containing partial

information about the underlying physical process, combined with measurement

errors. Hence we need to introduce a mathematical framework for describing

such partial observations of physical processes through measurements.

We first consider the case of an error-free measurement at a time t, which we

describe by a forward map (or operator) h : RNz → RNy

yobs(t) = h(zref(t)), (1.7)

where we typically have Ny < Nz (corresponding to a partial observation of the

system state zref). For simplicity, we shall only consider Ny = 1 in this chapter.

Since h is non-invertible, we cannot deduce zref(t) from simple inversion, even if

the measurements are free from errors.

More realistically, a measurement device will lead to measurement errors,

which may arise as the linear superposition of many individual errors ηi ∈ R,

i = 1, . . . , I. Based on this assumption, we arrive at a mathematical model of
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1.1 Physical processes and observations 5

�

t0 t1 t2 · · · t1 = tNout t2 = t2Nout t3 t4

Figure 1.2 Diagram illustrating model timesteps t0, t1, etc. and observation times
t1 = tNout , t2, etc. Here, Nout = 5.

type

yobs(t) = h(zref(t)) +
I∑
i=1

ηi(t). (1.8)

The quality of a measurement is now determined by the magnitude of the in-

dividual error terms ηi and the number I of contributing error sources. Mea-

surements will only be taken at discrete points in time, separated by intervals of

length Δtout > 0. To distinguish the discrete model time tn = n δt from instances

at which measurements are taken, we use Gothic script to denote measurement

points, i.e.,

tk = kΔtout, k ≥ 1,

and Δtout = δtNout for given integer Nout ≥ 1. This is illustrated in Figure 1.2.

We again consider a specific example to illustrate our “measurement proce-

dure” (1.8).

Example 1.2 We consider the time series generated in Example 1.1 and assume

that we can observe the x-component of

zref(t) = (xref(t), yref(t), zref(t))
T ∈ R

3.

This leads to a linear forward operator of the form

h(zref(t)) = xref(t).

In this example, we shall use a modified tent map of type (1.6) to model

measurement errors. More specifically, we use the iteration

ξk+1 =

{
2ξk + a/2 if ξk ∈ [−a/2, 0),
−2ξk + a/2 otherwise,

(1.9)

with a = 4 and starting value ξ0 = a(2−1/2 − 1/2) for k ≥ 0. From this sequence

we store every tenth iterate in an array {Ξi}i≥1, i.e.,

Ξi = ξk=10i, i = 1, 2, . . . . (1.10)

An observation xobs at time t1 = Δtout = 0.05 is now obtained as follows:

xobs(t1) := xref(t1) +
1

20

20∑
i=1

Ξi.

This procedure fits into the framework of (1.8) with I = 20 and ηi(t1) = Ξi/20,

i = 1, . . . , 20.
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6 Prologue: how to produce forecasts
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Figure 1.3 Observed values for the x-component and their measurement errors over the
time interval [0, 10] with observations taken every Δtout = 0.05 time units.

For the next observation at t2 = 2Δtout = 0.1 we use

xobs(t2) = xref(t2) +
1

20

40∑
i=21

Ξi,

and this process is repeated for all available data points from the reference tra-

jectory generated in Example 1.1. Numerical results are displayed for the first

200 data points in Figure 1.3. Our procedure of defining the measurement errors

might appear unduly complicated, but we will find later in Chapter 2 that it

mimics important aspects of typical measurement errors. In particular, the mea-

surement errors can be treated as random even though a perfectly deterministic

procedure has defined them.

1.2 Data driven forecasting

We now assume that Nobs scalar observations yobs(tk) ∈ R at tk = kΔtout,

k = 1, 2, . . . , Nobs, have been made at time intervals of Δtout. To define what we

understand by a forecast or a prediction, we select a point in time tk∗ that we

denote the present. Relative to tk∗ , we can define the past t < tk∗ and the future

t > tk∗ . A possible forecasting (or prediction) problem would be to produce an

estimate for

yref(t) := h(zref(t))
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1.2 Data driven forecasting 7

with t > tk∗ and only observations from the past and present available. Such

statements can be verified as soon as a future moment becomes the present and

a new measurement becomes available. More generally, we would, of course, like

to make predictions about the complete surrogate process zref(t) for t > tk∗ and

not only about the quantity we can actually observe. We will come back to this

more challenging task later in this chapter.

Returning to the problem of predicting future observations, we first utilise the

concept of polynomial interpolation. Recall that there is a unique polynomial

q(t) = b0 + b1t+ b2t
2 + · · ·+ bpt

p (1.11)

of order p with coefficients bl through any p + 1 data points. We would like

to find a polynomial that interpolates observations at p + 1 present and past

observation times {tk∗ , tk∗−1, . . . , tk∗−p} with the aim of using it to predict future

observations. This leads to the interpolation conditions

q(tk) = yobs(tk), tk ∈ {tk∗ , tk∗−1, . . . , tk∗−p},

which determine the p+1 coefficients bl in (1.11) uniquely. A predicted observa-

tion at t > tk∗ is then simply provided by q(t). Since t is outside the interval of

the observed data points, the prediction is an extrapolation from the data. For

the linear case p = 1 we obtain

q(t) = yobs(tk∗) + (t− tk∗)
yobs(tk∗)− yobs(tk∗−1)

tk∗ − tk∗−1

= yobs(tk∗) + (t− tk∗)
yobs(tk∗)− yobs(tk∗ −Δtout)

Δtout
.

Upon setting t = tk∗+1 we obtain the extrapolation formula

ypredict(tk∗+1) := q(tk∗+1) = 2yobs(tk∗)− yobs(tk∗−1). (1.12)

As soon as yobs(tk∗+1) becomes available, we can compare this prediction with

the observed value. Furthermore, we can use this new observation point (and

discard the oldest one from tk∗−1) and a correspondingly updated linear extrap-

olation formula to obtain ypredict(tk∗+2). This can be iterated over several time

intervals, repeatedly using data to predict the new observation. To assess the

accuracy of this procedure we introduce the following measure.

Definition 1.3 (Root mean square error) For a set of predictions and obser-

vations at times {t1, t2, . . . , tN} the root mean square error (RMSE) is given

by

time averaged RMSE =

√√√√ 1

N

N∑
k=1

|yobs(tk)− ypredict(tk)|2. (1.13)

In the case of linear interpolation, if there are Nobs observations then N =

Nobs− 2 since we cannot make predictions using linear interpolation for the first

two observations.
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8 Prologue: how to produce forecasts

We illustrate the linear interpolation prediction strategy by our next example.

Example 1.4 We utilise the observations generated in Example 1.2 for the first

solution component of the Lorenz-63 system, i.e., yobs(tk) = xobs(tk). Recall that

the observation interval is Δtout = 0.05. We set the first tk∗ equal to tk∗ = 100,

and make a total of 2000 verifiable predictions until we reach t = 200. The linear

extrapolation formula (1.12) is used for making predictions of observations, and

the quality of these predictions is assessed using the time averaged RMSE (1.13)

with N = 2000. A snapshot of the computational results over a short time-

window can be found in Figure 1.4. The time averaged RMSE over the whole

interval is approximately 1.2951.

It is usually desirable to “extend the prediction window” by making predictions

further into the future. In view of this, we modify the procedure so that at each

time tk∗ , we attempt to predict the observation at time tk∗+2 instead of tk∗+1.

The associated linear extrapolation formula becomes

ypredict(tk∗+2) := q(tk∗+2) = 3yobs(tk∗)− 2yobs(tk∗−1).

The results can also be found in Figure 1.4; the quality of the predictions is

clearly worse over this larger window. This is confirmed by the time averaged

RMSE which increases to approximately 3.3654.

The results of Example 1.4 show that linear interpolation does not provide

good predictions over longer times. This suggests the accuracy of forecasts can

be improved by extending the extrapolation formula (1.12) to use a linear com-

bination of the present data point plus several previous data points of the form

ypredict(tk∗+1) =

p∑
l=0

al yobs(tk∗−l). (1.14)

We have already seen that linear extrapolation fits into this framework with

p = 1 and coefficients a0 = 2, a1 = −1. We recall that the linear extrapolation

formula (1.12) was based on first deriving the linear interpolation formula. Hence,

as a first attempt at deriving coefficients al for (1.14) with p > 1, we shall use

higher-order interpolation formulas. Interpolation formulas of order p can be

conveniently based on the Lagrange polynomials (Süli & Mayers 2006) of order p

lj(t) =

∏
i�=j(t− ti)∏
i�=j(tj − ti)

,

where the indices i and j run over the integers

{k∗, k∗ − 1, . . . , k∗ − p}.

These polynomials have the useful property that

lj(ti) =

{
1 if j = i,

0 otherwise,
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Figure 1.4 Observed values for the x-component and its predicted values using linear
extrapolation. The figure at the top shows the results from linear extrapolation over a
single observation interval Δtout = 0.05, while the figure beneath shows results when
doubling the prediction interval to 0.1 time units.

which leads to the interpolation formula

q(t) = lk∗(t) yobs(tk∗) + lk∗−1(t) yobs(tk∗−1) + · · ·+ lk∗−p(t) yobs(tk∗−p). (1.15)

The coefficients al in (1.14) are obtained by setting t = tk∗+1 in (1.15), i.e.

al = lk∗−l(tk∗+1), l = 0, 1, . . . , p.
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10 Prologue: how to produce forecasts
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Figure 1.5 Lagrange polynomials lj(t) of order four corresponding to observations at
ti = 0,−0.05,−0.1,−0.15,−0.2. The coefficients al in (1.14) are equal to the values of
the Lagrangian polynomials at t = 0.05. Crosses mark the points where each polynomial
takes the value one. Note that the other polynomials are zero at those interpolation
points, and note the steep increase in magnitude outside the interpolation interval
t ∈ [−0.2, 0].

Example 1.5 We consider extrapolation based on polynomial interpolation of

order p = 4. The associated extrapolation coefficients in (1.14) are

a0 = 5, a1 = −10, a2 = 10, a3 = −5, a4 = 1,

and the associated Lagrange polynomials are shown in Figure 1.5, taking tk∗ = 0

for simplicity. The values of the extrapolation coefficients can be obtained by

inspecting the intersection of the Lagrange polynomials with the vertical line at

t = 0.05.

The results of applying the fourth-order extrapolation formula to the data

set from Example 1.2 are shown in Figure 1.6; the time averaged RMSE was

4.2707. This error is much larger than that observed for linear extrapolation

(compare Example 1.4). The reason for this discrepancy can be found in the

strong separation of the Lagrange polynomials outside the interpolation interval

(compare Figure 1.5), which results in relatively large coefficients al in (1.14).

Hence even relatively small measurement errors can be severely amplified and do

not necessarily cancel out. This effect becomes even more pronounced when the

prediction interval is doubled to 2Δtout. The associated extrapolation coefficients

are now given by

a0 = 15, a1 = −40, a2 = 45, a3 = −24, a4 = 5.
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