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Introduction

Scattering experiments are crucial for our understanding of the building blocks of nature.
The standard model of particle physics was developed from scattering experiments, in-
cluding the discovery of the weak force bosons W* and Z°, quarks and gluons, and most
recently the Higgs boson.

The key observable measured in particle scattering experiments is the scattering cross-
section o . It encodes the likelihood of a given process to take place as a function of the
energy and momentum of the particles involved. A more refined version of this quantity is
the differential cross-section do/d<2: it describes the dependence of the cross-section on
the angles of the scattered particles.

Interpretation of data from scattering experiments relies heavily on theoretical predic-
tions of scattering cross-sections. These are calculated in relativistic quantum field theory
(QFT), which is the mathematical language for describing elementary particles and their
interactions. Relativistic QFT combines special relativity with quantum physics and is
a hugely successful and experimentally well-tested framework for describing elementary
particles and the fundamental forces of nature. In quantum mechanics, the probability
distribution ||> = ¥*y for a particle is given by the norm-squared of its complex-
valued wavefunction ¥. Analogously, in quantum field theory, the differential cross-
section is proportional to the norm-squared of the scattering amplitude A, do /d2 o |A|>.
The amplitudes A are well-defined physical observables: they are the subject of this
book.

Scattering amplitudes have physical relevance through their role in the scattering cross-
section. Moreover, it has been realized in recent years that amplitudes themselves have
a very interesting mathematical structure. Understanding this structure guides us towards
more efficient methods to calculate amplitudes. It also makes it exciting to study scattering
amplitudes in their own right and explore (and exploit) their connections to interesting
branches of mathematics, including combinatorics and geometry.

The purpose of this book is two-fold. First, we wish to provide a pedagogical introduction
to the efficient modern methods for calculating scattering amplitudes. Second, we survey
several interesting mathematical properties of amplitudes and recent research advances.
The hope is to bridge the gap between a standard graduate course in quantum field theory
and the modern approach to scattering amplitudes as well as current research. Thus we
assume readers to be familiar with the basics of quantum field theory and particle physics;
however, here in the first chapter we offer an introduction that may also be helpful for a
broader audience with an interest in the subject.
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2 Introduction

What is a scattering amplitude?
Let us consider a few examples of scattering processes involving electrons e, positrons
e*, and photons y:

Compton scattering e~ +y — e + vy,

Mgller scattering e~ +e~ — e +e | (1)

Bhabha scattering e~ +et — e +et,

e~ e’ annihilation e  +e" — y +y.

These processes are described in the quantum field theory that couples Maxwell’s elec-
tromagnetism to electrons and positrons, namely quantum electrodynamics (QED). Each
process is characterized by the types of particles involved in the initial and final states
as well as the relativistic momentum p and energy E of each particle. This input is the
external data for an amplitude: a scattering amplitude A, involving a total of n initial
and final state particles takes the list {E;, p; ; type;}, i = 1,2, ..., n, of external data and
returns a complex number:

n-particle amplitude A,:  {E;, p; ; type;} — An({Ei, Dis typei}) eC. (1.2

“Particle type” involves more than saying which particles scatter: it also includes a speci-
fication of the appropriate quantum numbers of the initial and final states, for example the
polarization of a photon or the spin-state of a fermion.

In special relativity, the energy E and momentum p of a physical particle must satisfy
the relationship E? = |p|*c* + m*c* with m the rest mass of the particle. This is simply
the statement that E> — | p|?c? is a Lorentz-invariant quantity in Minkowski space. Thus,
one of the constraints on the external data for an n-particle amplitude is that the relativistic
on-shell condition,

E} — |pil’c® = mic*, (1.3)

holds for all particles i = 1, ..., n. The initial and final state electrons and positrons in the
QED processes (1.1) must satisfy the on-shell condition (1.3) with m; equal to the electron
mass, m, =511keV/c?, while m; is zero for the photon since it is massless.

It is convenient to work in “natural units” where the speed of light ¢ and Planck’s con-
stant i = h/2m are set to unity: ¢ = 1 = k. Proper units can always be restored by dimen-
sional analysis. We combine the energy and momentum into a 4-momentum p;" = (E;, p;),
with © =0, 1,2, 3, and write pl.2 = _E52 + |ﬁ,~|2 such that the on-shell condition (1.3)
becomes

(1.4)
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1 Introduction

Conservation of relativistic energy and momentum requires the sum of initial momenta p,
to equal the sum of final state momenta p.. .. Itis convenient to flip the signs of all incoming

momenta so that the conservation of 4-momentum simply reads

Xn:p;‘ = 0. (1.5)
i=1

Thus, to summarize, the external data for the amplitude involve a specification of 4-
momentum and particle type for each external particle, {p!', type;}, subject to the on-shell
constraints p? = —m? and momentum conservation (1.5). We often use the phrase on-shell
amplitude to emphasize that the external data satisfy the kinematic constraints (1.4) and
(1.5) and include the appropriate polarization vectors or fermion spin wavefunctions.

Feynman diagrams

Scattering amplitudes are typically calculated as a perturbation series in the expansion of
a small dimensionless parameter that encodes the coupling of interactions between the
particles. For QED processes, this dimensionless coupling is the fine structure constant'
a ~ 1/137. In the late 1940s, Feynman introduced a diagrammatic way to organize the
perturbative calculation of the scattering amplitudes. It expresses the n-particle scattering
amplitude A, as a sum of all possible Feynman diagrams with n external legs:

A, = Z(Feynman diagrams) = >—< + >C< + H +--- (1.6)

——— ——— ———
tree-level 1-loop 2-loop

The sum of diagrams is organized by the number of closed loops. For a given number
of particles n, the loop-diagrams are suppressed by powers of the coupling, e.g. in QED
an L-loop diagram is order a** compared with the tree-level. Hence the loop-expansion
is a diagrammatic representation of the perturbation expansion. The leading contribution
comes from the tree-diagrams; their sum is called the tree-level amplitude, A}fee. The next
order is 1-loop; the sum of the 1-loop diagrams is the I-loop amplitude AP etc. The
full amplitude is then

A, = AT 4 Arll—100p + Ai-IOOP 4. (1.7)

It is rare that the loop-expansion is convergent; typically, the number of diagrams grows so
quickly at higher-loop order that it overcomes the suppression from the higher powers in the
small coupling. Amplitudes can be Borel summable, but this is not a subject we treat here.
Instead, we pursue an understanding of the contributions to the amplitude order-by-order
in perturbation theory.

! In SI units, the fine structure constant is o = ¢ /(dmephic), where € is the vacuum permittivity.
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4 Introduction

The quantum field theories we are concerned with in this book are defined by Lagrangians
that encode the particles and how they interact. The Lagrangian for QED determines a
simple basic 3-particle interaction between electrons/positrons and the photon:

(1.8)

From this, one can build diagrams such as

, , and . (1.9)

Reading the diagrams left to right, the first diagram describes the absorption and subsequent
emission of a photon (wavy line) by an electron (solid line), and as such it contributes at the
leading order in perturbation theory to the Compton scattering processe™ +y — e~ + y.
The second and third diagrams in (1.9) are the two tree-level diagrams that give the leading-
order contribution to the Bhabha scattering process e~ + e™ — e~ + e*. The first of those
two diagrams encodes the annihilation of an electron and a positron to a photon and the
subsequent e*e™ pair-creation. The second diagram is the exchange of a photon in the
scattering of an electron and a positron.

A Feynman diagram is translated to a mathematical expression via Feynman rules. These
rules are specific to the particle types and the theory that describes their interactions. A
Feynman graph has the following essential parts:

o External lines: the Feynman diagram has an external line for each initial and final state
particle. The rule for the external line depends on the particle type. For spin-1 particles,
such as photons and gluons, the external line rule encodes the polarizations. For fermions,
it contains information about the spin state.

o Momentum labels: every line in the Feynman diagram is associated with a momentum. For
the external lines, the momentum is fixed by the external data. Momentum conservation
is enforced at any vertex. For a tree-graph, this fully determines the momenta on all
internal lines. For an L-loop graph, L momenta are undetermined and the Feynman rules
state that one must integrate over all possible values of these L momenta.

e Vertices: the vertices describe the interactions among the particles in the theory. Vertices
can in principle have any number of lines going in or out, but in many theories there
are just cubic and/or quartic vertices. The Feynman rules translate each vertex into a
mathematical rule; in the simplest case, this is just multiplication by a constant, but more
generally the vertex rule can involve the momenta associated with the lines going in or
out of the vertex.

o [nternal lines: the Feynman rules translate every internal line into a “propagator” that
depends on the momentum associated with the internal line. (A propagator is the Fourier
transform of a Green’s function.) The mathematical expression depends on the type of
internal line, i.e. what kind of virtual particle is being exchanged.
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1 Introduction 5

One converts a Feynman diagram to a mathematical expression by tracing through the

diagram and picking up factors, in successive order of appearance, from the rules for
L-loop

external and internal lines and vertices. The Feynman rules then state that i A, is
the sum of all possible L-loop diagrams with n external lines specified by the external
data.

B> Example. Consider the simplest case of a massless spin-0 scalar particle. The Feynman
rules for external scalar lines are simply a factor of 1 while an internal line with
momentum label P contributes —i/P?; this is the massless scalar propagator. Let us
assume that our scalars only interact via cubic vertices for which the Feynman rule is
simply to multiply a factor of ig, where g is the coupling. A process involving four
scalars then has the tree-level contribution

p2 p3
P, P P, /p3
Ae(1,2,3,4) = >—< . >\ N
P, P, P, P, D, b,

s 1 1 1 )
= + + . 1.10
8 <(p1 +p2)? (P +p3)? (P4 pa) (110)

Here (p1 + p2)* = —(p + p))* + |p1 + paf* etc. <

Note that the amplitude (1.10) is symmetric under exchange of identical bosonic external
states. This is a manifestation of Bose symmetry. Similarly, Fermi statistics requires that an
amplitude must be antisymmetric under exchange of any two identical external fermions.

B> Example. A 1-loop diagram in our simple scalar model takes the form

) P3

d*e 1
Q) (¢~ pi) (¢ = pi— pa) (€ + pa)

= g* . (1.11)

Py ¢ Py

We have used momentum conservation p; + p> + p3 + ps = 0 to simplify the fourth
propagator. The 1-loop 4-scalar amplitude in this model is obtained from the sum over
inequivalent box diagrams (1.11). <

Loop-integrals can be divergent both in the large- and small-momentum regimes. Such
“ultraviolet” and “infrared divergences” are well-understood and typically treated using a
scheme such as dimensional regularization in which one replaces the measure d*¢ in the
loop-integral by d” ¢ with D = 4 — 2¢. The divergences can then be cleanly extracted in the
expansion of small €. The treatment of ultraviolet divergences is called “renormalization”;
it is a well-established method and the resulting predictions for scattering processes have
been tested to high precision in particle physics experiments.
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6 Introduction

Example in QED
As an example of a tree-level process in QED, consider the annihilation of an electron—
positron pair to two photons:

e +et > y+y e-

The leading-order contribution to the amplitude is a sum of two tree-level Feynman diagrams
constructed from the basic QED vertex (1.8). It is

l-AZree(ef_’_eJr — )/+7/) — + . (1.13)

Y,

The two diagrams (1.13) are translated via the QED Feynman rules to Lorentz-invariant
contractions of 4-momentum vectors, photon polarizations, and fermion wavefunctions. In
the standard formulation, the expression for the amplitude is not particularly illuminating.
However, squaring it and subjecting it to a significant dose of index massage therapy, one
finds that the scattering cross-section takes a rather simple form. In the high-energy limit,
where the center of mass energy dominates the electron/positron rest mass, Ecy > m,c2,
the result for the differential cross-section is

do 1 Z|A4|2 Eeysmoc? o 1 1+cos?6

= 2
Egy 1 —cos?6

—_— = —— + 0@ah). 1.14
aQ " 6An’EL, @- Y

The sum indicates a spin-sum average. The cross-section (1.14) depends on the center of
mass energy Ecw, the scattering angle 6 indicated in (1.12), and the fine structure constant
. (In natural units, @ = e?/4m.) The result (1.14) serves to illustrate the salient properties
of the differential cross-section: the dependence on particle energies and scattering angles
as well as powers of a small fundamental dimensionless coupling constant «. In particular,
the expression in (1.14) is the leading-order contribution to the scattering process, and
higher orders, starting at 1-loop level, are indicated by O(a*).

Since the focus in this book is on scattering amplitudes, and not the cross-sections,
it is worthwhile to present an expression for the amplitude of the annihilation process
e~ + et — y + y.Itturns out to be particularly simple in the high-energy regime Ecy >
m,c?, where the masses can be neglected and the momentum vectors of the incoming
electron and positron can be chosen to be light-like (i.e. null, pi2 = 0). In that case, the sum
of the two diagrams (1.13) reduces to a single term that can be written compactly as

2
Agee(e_+e+—>y+y)=262%. (1.15)
Here, the angle brackets (ij) are closely related to the particle 4-momenta via |(ij)|> ~
2pi.pj, where the Lorentz-invariant dot-product s p;.p; = p|'pj, = —p; p}) + pi-p;. The
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1 Introduction 7

4-momenta p; and p, are associated with the incoming electron and positron while p; and
P4 are the 4-momenta of the photons. The angle bracket notation (ij) is part of the spinor
helicity formalism which is a powerful technical tool for describing scattering of massless
particles in four spacetime dimensions. We will introduce the spinor helicity formalism in
Chapter 2 and derive the expression (1.15) in full detail from the Feynman rules of QED.
You may be surprised to note that the expression (1.15) is not symmetric in the momenta
of the two photons. This is because the representation (1.15) selects distinct polarizations
for the photons.

Using momentum conservation and the on-shell condition pi2 = 0, one can show that
the norm-squared of the expression (1.15) is proportional to (p;.p3)/(pi1.p4). The sum in
the cross-section (1.14) indicates a sum of the polarizations of the final state photons and
an average over the spins of the initial state electron and positron. This procedure yields a
second term with p3 <> p4. Hence, what goes into the formula (1.14) is

SR et oy )P o2 (DR B g
P1-P4  Pi1-D3

An explicit representation of the 4-momenta is p;" = (E, 0,0, E) and p) = (E, 0,0, —E)
for the initial states and p§ = (E, 0, E sin6, E cosf)and p} = (E,0, —E sinf, —E cos6)
for the final state photons. Momentum conservation is simply p; + p» = p3 + ps4. Using
that the center of mass energy is E2y; = —(p1 + p2)? = 4E?, one finds that the high-energy
result for the differential cross-section in (1.14) follows from (1.16).

It is typical that amplitudes involving only massless particles are remarkably simpler
than those with massive particles. This can be regarded as a high-energy regime, as in our
example above. Because of the simplicity, yet remarkably rich mathematical structure, the
focus of many developments in the field has been on scattering amplitudes of massless
particles.

The S-matrix

We have introduced the scattering amplitude as a function that takes as its input the
constrained external data {p!', type;} and produces a complex number that is traditionally
calculated in terms of Feynman diagrams. The scattering process can also be considered
as an operation that maps an initial state |i) to a final state | f), each being a collection of
single-particle states characterized by momenta and particle types. The scattering matrix S,
also called the S-matrix, is the unitary operator that “maps” the initial states to final states.
In other words, the probability of an initial state |i) changing into a final state | f) is given
by [(f|S]i)|>. Separating out the trivial part of the scattering process where no scattering
occurs, we write

S=1+iT. (1.17)

Then the amplitude is simply A = (f|T|i) and this is the quantity that is calculated by
Feynman diagrams. Solving the S-matrix for a given theory means having a way to generate
all scattering amplitudes at any order in perturbation theory.
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8 Introduction

Beyond Feynman diagrams

Armed with Feynman rules, we can, in principle, compute scattering amplitudes to our
hearts’ content. For instance, starting from the QED Lagrangian one can calculate the tree-
level differential cross-section for the processes (1.1). It is typical for such a calculation
that the starting point — the Lagrangian in its most compact form — is not too terribly
complicated. And the final result for do/d<2 can be rather compact and simple too, as
we have seen in (1.14). But the intermediate stages of the calculation often explode in an
inferno of indices, contracted up-and-down and in all directions — providing little insight
into the physics and hardly any hint of simplicity.

In a QFT course, students are exposed (hopefully!) to a lot of long character-building
calculations, including the 4-particle QED processes in (1.1). But students are rarely asked
to use standard Feynman rules to calculate processes that involve more than four or five
particles, even at tree-level: for example, e™ +et — e~ +et +y ore” +et — e +
et 4+ y + y. Why not? Well, one reason is that the number of Feynman diagrams tends to
grow very quickly with the number of particles involved: for gluon scattering at tree-level
in quantum chromodynamics (QCD) we have

gt+tg—8+¢g 4 diagrams
g§t+g—>g+g+g 25 diagrams (1.18)
g+g— g+g+g+g 220diagrams

and for g + g — 8g one needs more than one million diagrams [1]. Another very important
point is that the mathematical expression for each diagram becomes significantly more
complicated as the number of external particles grows. So the reason students are not asked
to calculate multi-gluon processes from Feynman diagrams is that it would be awful, un-
insightful, and in many cases impossible.? There are tricks for simplifying the calculations;
one is to use the spinor helicity formalism as indicated in our example for the high-energy
limit of the tree-level process e~ +e™ — y + y. However, for a multi-gluon process
even this does not directly provide a way to handle the growing number of increasingly
complicated Feynman diagrams. Other methods are needed and you will learn much more
about them in this book.

Thus, although visually appealing and seemingly intuitive, Feynman diagrams are not
a particularly physical approach to studying amplitudes in gauge theories. The underlying
reason is that the Feynman rules are non-unique: generally, individual Feynman diagrams
are not physical observables. In theories, such as QED or QCD, that have gauge redundancy
in their Lagrangian descriptions, we are required to fix the gauge in order to extract the
Feynman rules from the Lagrangian. So the Feynman rules depend on the choice of gauge
and therefore only gauge-invariant sums of diagrams are physically sensible. The on-
shell amplitude is at each loop-order such a gauge-invariant sum of Feynman diagrams.

2 Using computers to do the calculation can of course be very helpful, but not in all cases. Sometimes numerical
evaluation of Feynman diagrams is simply so slow that it is not realistic to do. Moreover, given that there are
poles that can cancel between diagrams, big numerical errors can arise in such evaluations. Therefore compact
analytic expressions for the amplitudes are very useful in practical applications.
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1 Introduction

Furthermore, field redefinitions in the Lagrangian change the Feynman rules, but not the
physics, hence the amplitudes are invariant. So field redefinitions and gauge choices can
“move” the physical information between the diagrams in the Feynman expression for the
amplitude and this can hugely obscure the appearance of its physical properties.

It turns out that despite the complications of the Feynman diagrams, the on-shell ampli-
tudes for processes such as multi-gluon scattering g + ¢ — g + g + - - - + g can actually
be written as remarkably simple expressions. This raises the questions: “why are the on-
shell amplitudes so simple?”” and “isn’t there a better way to calculate amplitudes?”. These
are questions that have been explored in recent years and a lot of progress has been made
towards improving calculational techniques and gaining insight into the underlying mathe-
matical structure.

What do we mean by “mathematical structure” of amplitudes? At the simplest level, this
means the analytic structure. For example, the amplitude (1.10) has a pole at (p; + p,)*> =
0 — this pole shows that a physical massless scalar particle is being exchanged in the
process. Tree amplitudes are rational functions of the kinematic invariants, and understand-
ing their pole structure is key to the derivation of on-shell recursive methods that provide
a very efficient alternative to Feynman diagrams. These recursive methods allow one to
construct on-shell n-particle tree amplitudes from input of on-shell amplitudes with fewer
particles. The power of this approach is that gauge redundancy is eliminated since all input
is manifestly on-shell and gauge invariant.

Loop amplitudes are integrals of rational functions and therefore have more complicated
analytic structure, involving for example logarithmic branch cuts. The branch cuts can
be exploited to reconstruct the loop amplitude from lower-loop and tree input, providing
another class of efficient calculational techniques. On-shell approaches that exploit the
analytic structure of amplitudes constitute a major theme in this book.

Thus, it is very useful to understand the analytic structure of amplitudes, but it is not
the only mathematical structure of interest. We are also interested in the symmetries that
leave the amplitudes invariant and how they constrain the result for the scattering process.
Some amplitudes are invariant under symmetries that are not apparent in the Lagrangian
and hence are not visible in the Feynman rules. Pursuing these symmetries and seeking
to write the amplitudes in terms of variables that trivialize the constraints on the external
data and simplify the action of the symmetries will often lead to new insights about the
amplitudes; we will see this repeatedly as we develop the subject.

Finally, let us mention one of the highlights of what we mean by mathematical structure.
It turns out that certain amplitudes naturally “live” in more abstract spaces in which they
can be interpreted as volumes of geometric objects known as “polytopes”; these are higher-
dimensional generalizations of polygons. The different compact representations found for
a given amplitude turn out to correspond to different triangulations of the corresponding
polytope. It is remarkable that a physical observable that encodes the probability for a
scattering process as a function of energies and momenta has an alternative mathematical
interpretation as the volume of a geometric object in a higher-dimensional abstract space!
It is such surprising mathematical structures that are pursued in the third part of this
book.
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10 Introduction

Some of the keywords for the topics we explore are:

. spinor helicity formalism;

. on-shell recursion relations (BCFW, CSW, all-line shifts, . . .);
. on-shell superspace, superamplitudes, Ward identities;

. twistors, zone-variables, momentum twistors;

. dual superconformal symmetry and the Yangian;

. generalized unitarity, maximal cuts;

AN AW N

7. Leading Singularities and on-shell blob-diagrams ;

8. the Grassmannian, poly.fbpes, éfnplituhedrons, and mathematicians;
9. gravity =(gauge theory)?, KLT and BCJ relations;

and much more.

The study of on-shell amplitudes may suggest a paradigm that can be phrased loosely
as “avoiding the (full) Lagrangian™ with all its ambiguities of field redefinitions and gauge
choices, and instead focusing on how kinematics, symmetries, unitarity, and locality impact
the physical observables. Or, more strongly, we may ask if the hints from the simplicity
of amplitudes allow us to find another approach to perturbative quantum field theory: one
might hope for a novel formulation that captures the physics of the full perturbative S-
matrix. Such a new formulation could make amplitude calculations much more efficient
and one might hope that it would lead to new insights even beyond amplitudes, for example
for correlation functions of gauge-invariant operators and perhaps even for non-perturbative
physics.

But now we are getting ahead of ourselves. The purpose of this book is to provide a
practical introduction to on-shell methods for scattering amplitudes of massless particles.
The choice of massless particles is because their processes are the simplest and cur-
rently the best understood. The above list of keywords will be explained and discussed in
detail.

This book

Our presentation assumes a basic pre-knowledge of quantum field theory, in particular
of the Dirac equation, simple scalar and QED Feynman rules and tree-level processes.
Chapter 2 introduces the spinor helicity formalism in the context of tree-level Feynman
rules and builds up the notation and conventions via explicit examples. Yang—Mills theory
is introduced as are the needed tools for studying gluon amplitudes. Various fundamental
properties of scattering amplitudes are discussed, including little group scaling and the
analytic structure of tree amplitudes.

In Chapter 3 we take the first step towards modern on-shell methods for calculating
scattering amplitudes, namely recursion relations for tree amplitudes. The material in
Chapters 2 and 3 could be part of any modern course on quantum field theory, but tradi-
tionally it is not. So we hope that our presentation will be useful, either as part of a course
or for self-study.
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