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Introduction

In the past two decades, high-throughput experimental techniques such as
mass spectrometry, microarrays, and next-generation sequencing have revolu-
tionized biomedical research with abundant genome-scale data. The fruits of
this research are paving the way toward precision medicine. “Ultra-big” data
sets are routinely generated now that the cost of these experiments has greatly
decreased. As a result, more and more of these data sets are made available in
the public domain. This abundance of data permits us to study biological pro-
cesses and disease mechanisms in a multifaceted manner, drawing insights from
DNA variations (e.g., genotyping and mutation), RNA transcription (e.g., gene
or isoform expression and fusion transcripts), gene regulation by epigenetic
changes (e.g., methylation, protein—DNA interaction, and miRNA expression),
and protein expression/modification.

The enormous scope of high-throughput results creates many statistical and
computational obstacles to storing, analyzing, integrating, and interpreting the
data. Generally speaking, the research community is pursuing two kinds of
integrative studies: horizontal meta-analysis (data from different cohorts, often
from different labs) and vertical multi-omics analysis (multiple experiments
performed on the same cohort). Either of these may also integrate results from
the growing pathway and pharmacogenetics databases. The vast range of avail-
able data and new biomedical questions that can be answered calls for research
teams with multidisciplinary quantitative expertise, including in computer sci-
ence, statistics, applied math, and machine learning. This edited book collects
state-of-the-art computational and statistical methods recently developed in
the booming field of omics data integration. Its purpose is to showcase a wide
range of cutting-edge methods and tools for our readers, in hopes of inspiring
new biological and methodological research techniques to advance the
field.
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Figure 1.1 (A) Horizontal omics meta-analysis. (B) Vertical multi-omics integrative
analysis.

The microarray boom of the late 1990s introduced a now common convention
for raw omics data: samples are arranged on the columns of the matrix, while
gene features are on the rows (the main reason being that Microsoft Excel could
only manage 256 columns at the time). This is in contrast to the traditional
statistical convention to place samples on the rows, but in this book we keep
the popular bioinformatic convention. Therefore, when multiple omics data
sets from different labs are combined, the studies are integrated horizontally
(Figure 1.1A). In this context, many of the data integration problems now
being published are analogous to traditional meta-analysis. This is why we
name cross-cohort data integration “horizontal omics meta-analysis” in the
preceding paragraphs and in Chapters 1-5. Alternatively, when multiple types
of omics experiments are performed on the same cohort, the data sets are
vertically aligned (Figure I.1B). The next set of chapters describes various types
of “vertical multi-omics integrative analysis.” Chapters 6-11 cover methods
applicable to any type of omics data (e.g., clustering or dimension reduction
methods not specific to the biological property or structure of the omics data).
Chapters 12—-19 cover methods that are specific to certain omics data types.

In the following we give an overview of the book’s contents, based on the
different biological purposes and quantitative techniques described herein.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107069114
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-06911-4 - Integrating Omics Data

Edited by George Tseng, Debashis Ghosh and Xianghong Jasmine Zhou
Excerpt

More information

Introduction 3

Dimension reduction. Multi-omics data sets have naturally drawn attention
to many dimension reduction methods. Chapter 2 introduces a variant of prin-
cipal component analysis (MetaPCA), whereas Chapter 11 describes a method
called joint and individual variation explained (JIVE). The first is designed
for horizontal analysis, and the second is for vertical analysis. Chapter 6 pro-
poses variations of the partial least squares (PLS) and nonnegative matrix
factorization (NMF) methods, named sparse multi-block partial least squares
(sMBPLYS) regression and joint NMF. These methods reduce dimensionality
and identify coherent modules in vertical multi-omics cancer data.

In addition, many published methods that have applied latent variable models
and/or matrix factorization can also be considered dimension reduction tech-
niques. The iCluster method in Chapter 7 and the iFad and iPad methods in
Chapter 19 are examples of these.

Unsupervised analysis. An incrasingly popular type of analysis in omics
data is to identify novel disease subtypes of clinical importance in a complex
disease via unsupervised machine learning (also known as cluster analysis).
Chapter 2 introduces the MetaSparseKmeans method for horizontal meta-
clustering analysis. Chapter 7 proposes an iCluster method developed for multi-
omics analysis. Chapter 11 develops a Bayesian consensus clustering (BCC)
method that tracks both consensus and source-specific clustering in multi-omics
data.

Integration with biological pathway information. Integration of omics data
with public pathway databases sheds light on the key functional pathways
associated with an underlying disease mechanism or other experimental per-
turbations. The methods described in Chapters 2, 15, and 19 include such
pathway-based analyses. Chapter 2 uses the MetaPath algorithm to combine
multiple transcriptomic studies for pathway analysis. Chapter 15 surveys differ-
ent approaches to identifying significantly mutated pathways in cancer patients.
Chapter 19 integrates transcriptome profiles, drug response profiles, and a path-
way database to form drug-pathway associations.

Meta-analysis methods and the homogeneity/heterogeneity issue. Many hor-
izontal omics meta-analysis problems have settings similar to traditional meta-
analysis, but the new data structures and biological questions are inspiring
novel developments. Chapters 1-5 cover this area. Chapter 1 describes new
methods and practical guidelines for meta-analysis of genome-wide associ-
ation studies (GWAS). An increasingly relevant problem in data integration
is managing homogeneity and heterogeneity in the analysis (see Chapters 2,
5, 8, and 11). The adaptively weighted meta-analysis approach in Chapter 2
directly searches a feature-dependent subset of studies with concordant signals
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4 Introduction

for horizontal meta-analysis. Chapter 5 applies the concept of motifs to handle
exponentially increasing homogeneity/heterogeneity patterns in ChIP-chip and
ChIP-seq meta-analysis. Chapter 8 provides homogeneity and heterogeneity
regularization models for outcome association analysis. Chapter 11 develops
a joint principal component analysis (PCA) framework that can separate the
homogeneous and heterogeneous signals during dimension reduction and a
Bayesian consensus clustering (BCC) method that tracks consensus and source-
specific information in clustering formation.

Graphical model and network analysis. Graphical and network methods
are powerful tools to model and elucidate associations, message flows, and
gene regulation in biological systems. Many methods in this book make
use of graphical and network models (e.g., Chapters 2, 3, 4, 9, 12, 13, 14,
and 15). Chapter 2 describes the MetaDiffNetwork method for identifying
recurrent network modules that are highly connected in one condition but
altered in another condition across multiple transcriptomic studies. Chapter 3
reviews several novel graph mining algorithms to identify frequent and heavy
subgraphs across a series of large weighted graphs and discover frequent
coupled subgraphs in a series of two-layered graphs. Chapter 4 describes
computational methods for modeling genetic information flow in networks
and studying differential connectivity in co-expression networks. Chapter 9
proposes a graphical model using a Bayesian approach to study regulatory
relationships of multi-omics data. Chapter 12 extends the expression quan-
titative trait loci (eQTL) analysis to directed graphical models. Chapter 13
discusses integrative methods for inferring miRNA regulatory networks. Chap-
ter 14 presents a probabilistic graphical model that integrates diverse omics
data to infer cancer patient-specific pathway activities, as well as a mathe-
matical model to isolate important subnetworks. Chapter 15 contains network-
based approaches to identify recurrent combinations of mutated genes in cancer
genomes.

Bayesian modeling and inference. Hierarchical Bayesian models provide a
natural solution to interpreting many multi-omics data structures and answering
biological questions. The potential downsides of Bayesian analysis include
arguable prior distribution specifications and the high computing cost of Monte
Carlo simulations. Chapters 5, 9, 10, 11, and 19 contain examples of Bayesian
approaches to data integration. Chapter 6 applies an EM algorithm to derive the
posterior probabilities in the outcome association analysis. Chapter 9 adopts a
Bayesian inference for a Markov random field model that can investigate multi-
omics regulatory relationships. Chapter 10 proposes a multilayer Bayesian
hierarchical model to integrate miRNA, copy number variation, methylation,
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Introduction 5

mRNA expression, and clinical phenotype. Chapter 11 develops a Bayesian
consensus clustering model using conjugate priors and Gibbs sampling for
inference. Chapter 19 applies an advanced collapsed Gibbs sampling technique
to speed up the posterior probability approximation.

Regularization and penalization methods. The techniques of feature regular-
ization and penalization have gradually gained popularity in genomic research.
This trend arises naturally because the high dimensionality of the models often
diminishes their stability and obscures interpretation. Regularization methods
“shrink” the effect sizes of the majority of features so that they provide zero
contribution to the model, thereby achieving a model with limited dimen-
sionality and good theoretical properties. The penalization and regularization
methods are seen in Chapters 2, 6, 7, 8, 10, and 19. Chapter 2 applies regu-
larization in the meta-analysis framework of sparse K-means when combin-
ing multiple transcriptomic studies to identify disease subtypes (the MetaS-
parseKmeans method). Chapter 6 applies network regularization in the joint
NMF method. The iCluster method in Chapter 7 uses regularization in the
latent variable model before it performs clustering analysis. Chapter 8 per-
forms penalization and feature selection in the high-dimensional association
models. The Bayesian hierarchical model in Chapter 10 incorporates ideas
from the statistical regularization literature for combining multiple levels of
omics data. Chapter 19 adopts regularization in the drug-pathway association
analysis.

Data integration to study gene regulation. Gene regulation is a complex
process, subject to multilevel controls. Much of the data integration effort has
been devoted to deciphering the mechanisms and implications of gene reg-
ulation. Chapters 3, 4, 5, 9, 12, 13, 16, 17, and 18 contain computational
and statistical methods to study various aspects of gene regulation. Chapter 3
presents methods that integrate many microarray or RNA-seq data sets to recon-
struct transcriptional regulatory networks and splicing regulatory networks and
explore how transcription and splicing simultaneously take place. Chapter 4
reviews several computational approaches that model the flow of genetic infor-
mation to gene expression in biological networks. Chapter 5 develops a novel
statistical framework for integrative analyses of ChIP-X data to improve peak
calling and study allele-specific binding. Chapter 9 proposes a Bayesian graph-
ical model to study regulatory relationships involving copy number variation,
DNA methylation, and mRNA expression. Chapter 12 reviews methods to
estimate directed graphical models with eQTL data. Chapter 13 focuses on
predicting microRNA targets and microRNA regulatory networks. Chapter 16
discusses a model-based approach to quantitatively dissect the contributions
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6 Introduction

of RNA-level and protein-level regulation in the variation in gene expression.
Chapter 17 discusses statistical models to quantify the relationship between TF
binding, histone modification, and gene expression. Chapter 18 presents some
integrative analysis approaches to identify IncRNAs that are specific to cancer
subtypes and predict those that are potential drivers of cancer progression.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107069114
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-06911-4 - Integrating Omics Data

Edited by George Tseng, Debashis Ghosh and Xianghong Jasmine Zhou
Excerpt

More information

PART A

HORIZONTAL META-ANALYSIS
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Meta-Analysis of Genome-Wide Association
Studies: A Practical Guide

WEI CHEN

Abstract

Meta-analysis is an effective approach to combining summary statistics across multiple
studies. This approach has been widely used in recent genome-wide association studies
(GWAS) and next-generation sequencing (NGS) studies. As a result, numerous disease-
susceptibility loci, which cannot be found in a singe GWAS, have been identified
through the meta-analysis of multiple studies. In this chapter, we give an overview how
meta-analysis techniques can be used in consortium projects and provide guidance for
future studies. Sections 1.1.1 and 1.1.2 cover background information on GWAS and
imputation techniques, which play a key role in the meta-analysis of multiple studies.
Section 1.2.1 discusses the methods of meta-analysis for single variant tests and provides
a basic workflow of meta-analysis in a typical consortium project. Section 1.2.2 presents
an application of Section 1.2.1 from a meta-analysis of age-related macular degeneration
(AMD). Next, Section 1.2.3 discusses a method for meta-analysis for a gene-level
test. Section 1.2.4 presents an application of Section 1.2.3 from a meta-analysis of
plasma lipid levels. Section 1.2.5 provides a discussion of popular software for meta-
analysis of genetic studies. Finally, Section 1.3 closes the chapter and discusses future
directions.

1.1 Introduction
1.1.1 Meta-Analysis of Genome-Wide Association Studies

In the past decade, new technologies have enabled researchers to examine
genetic and genomic data on a whole-genome scale. A genome-wide associ-
ation study (GWAS) is known as a popular design for assessing thousands to
millions of common and rare genetic variants associated with a disease or a
trait. Thousands of disease-susceptible variants have been discovered through
the GWAS of hundreds or thousands of individuals [1, 2]. To summarize the
findings of these studies, the National Human Genome Research Institute has
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10 Wei Chen

Trend of Meta-analyses of GWAS
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Figure 1.1 Number of publications by year from 2005 to 2013.

organized a catalog of published genome-wide association studies with fre-
quent updates (http://www.genome.gov/gwastudies/). However, single-center
GWAS typically has a limited number of samples, thus the power to detect
those variants is small, especially for variants with small to modest effect sizes,
as observed in many complex diseases. Although it is ideal to combine genetic
data for as many individuals as possible, local institutional review board pol-
icy makes sharing of individual-level data from each study site difficult or
impossible. In such situations, meta-analysis becomes a popular and powerful
approach for combining summary statistics from multiple GWAS by increasing
the sample size without sharing individual-level data. Multiple consortia have
been founded to exchange and merge genetic data sets from multiple sites, with
the central goal of identifying more disease-susceptibility loci [3]. Figure 1.1
illustrates the rapidly increase in the number of publications in PubMed using
search terms “meta analysis” and “GWAS” from 2005 to 2013. If we focus on
one disease or trait, we see a greatly increased number of participating studies
and total sample sizes.

1.1.2 Imputation

One technical difficulty in combining different studies comprises the vari-
ous genotyping platforms, which differ in density, position, and genotyping
accuracy. Consequently, complete summary statistics of only a small set of
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