

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

Quantum Phase Transitions in Transverse Field Spin Models

From Statistical Physics to Quantum Information

Amit Dutta Gabriel Aeppli Bikas K. Chakrabarti Uma Divakaran Thomas F. Rosenbaum Diptiman Sen

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

CAMBRIDGEUNIVERSITY PRESS

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107068797

eAmit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data

Dutta, Amit, 1968-

Quantum phase transitions in transverse field spin models : From Statistical Physics to Quantum Information / Amit Dutta [and 5 others]. pages cm $\,$

 $Includes\ bibliographical\ references\ and\ index.$

Summary: "Discusses the fundamental connections between the physics of quantum phase transitions and the technological promise of quantum information, non-equilibrium quantum dynamics and adiabatic quantum computations"—Provided by publisher.

ISBN 978-1-107-06879-7 (hardback)

1. Phase transformations (Statistical physics) 2. Phase rule and equilibrium. I. Title. QC175.16.P5D88 2015

530.4'74-dc23

2014027793

ISBN 978-1-107-06879-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

To our parents

Doll Dutta and Sukomal Dutta
Dorothee Aeppli and Alfred Aeppli
Pratima Chakrabarti and Bimal K. Chakrabarti
Savithry E. S. and A. P. Divakaran
Hanna L. Rosenbaum and Martin M. Rosenbaum
Geeti Sen and Amiya Kumar Sen

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

Contents

	List of Fi	gures and Tables	ix
	Preface		xv
	Acknowl	edgements	xvii
Ι		troduction to Quantum Phase Transitions, nation and Dynamics	1
	1. Qua	ntum Phase Transitions	3
	1.1	Aim and Scope of this Book	3
	1.2	A Brief Introduction to Classical Phase Transitions: Notion of Uni	versality 12
	1.3	Quantum Phase Transitions	14
	1.4	Transverse Ising and XY Models	17
	1.5	Quantum-Classical Correspondence and Scaling	22
	1.6	Quantum Rotor Models	28
	1.7	Josephson Junction Arrays	29
	1.8	Matrix Product States	30
	1.9	Chapter Summary	31
	2. Info	rmation Theoretic Measures Close to a Quantum Critical Point	32
	2.1	Entanglement Entropy	32
	2.2	Concurrence	34
	2.3	Quantum Fidelity	36
	2.4	Chapter Summary	42
	3. Nor	-Equilibrium Dynamics across Quantum Critical Points	44
	3.1	Defect Generation: Kibble–Zurek (KZ) Scaling	45
	3.2	Adiabatic Perturbation Theory: Slow and Sudden Quenches	49
	3.3	Thermalization	53
	3.4	Chapter Summary	54
II	Trans	verse Field Models: Statics	57
	4. Trar	sverse Ising Models in Higher Dimensions	59
	4.1	Mean Field Theories	59

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

vi Contents

		(A) Equivalent Single Spin Model(B) Infinite Range Interactions	59 60
		(C) Large Spin Limits: Transverse XY Spin Chain	62
	4.2	Chapter Summary	64
5.	Tran	sverse Field Models in One Dimension	65
	5.1	Exact Solution in One Dimension: Jordan—Wigner Transformation	65
	5.2	Connection to Conformal Field Theory	68
	5.3	Quantum Spin Chains Coupled to a Bath	72
	5.4	Chapter Summary	74
6.	Qua	ntum Phase Transitions in Related Models	75
	6.1	Some Exactly Solvable Models Related to Transverse Ising and	
	<i>(</i>)	XY Models	7 5
	6.2	The Dicke Model Top alogical Overture Phase Transitions	78
	6.3 6.4	Topological Quantum Phase Transitions Exact Solution of the Kitaev Model	80
	0.4	(A) One-Dimensional Model	80 81
		(B) Two-Dimensional Kitaev Model	84
	6.5	One-Dimensional <i>p</i> -Wave Superconducting Chain: Majorana Fermions	89
	6.6	Quantum Phase Transition in Dirac Hamiltonians: Graphene and	
		Topological Insulators	93
	6.7	Chapter Summary	98
7.	Role	of Quenched Disorder	100
	7.1	A Modified Harris Criterion	100
	7.2	Quantum Ising Spin Glass (QISG)	101
	7.3	Griffiths Singularities and Activated Dynamics	104
	7.4	A Generalized Random Transverse Field Ising Spin Chain	107
	7.5	Higher Dimensional Realization of Infinite Randomness Fixed Point	100
	7.6	(IRFP) Quantum Ising Model in a Random Longitudinal Field	108 110
	7.7	Chapter Summary	111
8.	Rela	ted Models with Frustration	112
	8.1	Quantum ANNNI Model	112
	8.2	Quantum Lifshitz Point	119
	8.3	Models with Long-Range Antiferromagnetic Interactions	120
	8.4	Chapter Summary	121
9.		ntum Information Theoretic Measures: Transverse Field and	
	Rela	ated Models	122

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

		Contents	vii
	9.1	Concurrence	122
	9.2	Entanglement Entropy	124
	9.3	Quantum Discord	127
	9.4	Quantum Fidelity	129
	9.5	Scaling of the Geometric Phase Close to a QCP	133
	9.6	Quantum Critical Environment: Decoherence and Loschmidt Echo	135
	9.7	Role of Marginality in the Scaling of Fidelity: 2D Dirac Point	139
	9.8	Fidelity Susceptibility for a Model with $\nu d > 2$	144
	9.9	Chapter Summary	147
III	Transv Dyna:	verse Field and Related Models: Non-Equilibrium mics	149
	10. No	n-Equilibrium Dynamics Across Quantum Critical Points:	
		w Quenching	151
	10.1	Linear and Non-Linear Slow Evolution through Critical Points	151
	10.2	~	156
	10.3		158
	10.4	Quenching through Gapless Phases	161
		Quenching through an Anisotropic Quantum Critical Point	164
	10.6	-	164
	10.7	Quenching of a Disordered Chain	166
		Quenching with Coupling to a Bath	167
	10.9	• •	168
	10.1	0 KZ Mechanism in Space	170
	10.1	1 Chapter Summary	171
	11. Fur	ther Studies on Non-Equilibrium Dynamics	174
	11.1	Sudden Quenches: Defect and Heat Density	174
	11.2	2 Sudden Quenches: Semiclassical Theory	176
	11.3	3 Local Quench	180
	11.4	Dynamics Following a Rapid Quenching through a QCP	182
	11.5	Effect of Topology on Quantum Quenching	186
	11.6	Studies of Tomonaga–Luttinger Liquids	191
	11.7	7 Chapter Summary	192
	12. Qu	enching and Quantum Information	194
	12.1	Slow Quenches	194
	12.2	~	200
	12.3	Dynamics of Decoherence	202

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

viii Contents

	12.4	Chapter Summary	205
	13. Som	e Recent Developments in Information and Dynamics	207
	13.1	Transitionless Dynamics	207
	13.2	•	210
	13.3	•	213
	13.4		216
	13.5	Dynamics of a Chain of Hard Core Bosons: Dynamical Localization	220
	13.6	Chapter Summary	225
IV	Experi	mental Realizations of Transverse Field Models	229
	14. Exp	erimental Realizations of Transverse Field Ising Systems	231
	14.1	Singlet Ground State Magnets	231
	14.2	Order/Disorder Transitions in Hydrogen-Bonded and Other	
	140	Ferro/Antiferroelectric Systems	233
	14.3	Low-Dimensional Magnetic Realizations of the Transverse Field Ising Model	235
	14.4		237
	14.5	· ·	239
	14.6	Chapter Summary	244
V	Quant	um Annealing and Adiabatic Quantum Computations	
	Using	Transverse Field Models	24 5
	15. Adi	abatic Quantum Computations and Transverse Field Models	247
	15.1	Theoretical Studies	249
	15.2	1	254
	15.3		261
	15.4	Chapter Summary	263
	16. Con	cluding Comments	265
Арұ	oendix A	Derivation of a Matrix Product Hamiltonian	267
Арţ			200
App	endix B	From Jordan—Wigner to Bosonization: Tomonaga—Luttinger Liquids	269
	vendix C	Calculation of the Entanglement Entropy for a Transverse Ising Chain	278
	vendix C vendix D	Calculation of the Entanglement Entropy for a Transverse Ising Chain The Loschmidt Echo for the One-Dimensional XY Model	
	vendix C	Calculation of the Entanglement Entropy for a Transverse Ising Chain The Loschmidt Echo for the One-Dimensional XY Model Landau—Zener Tunneling: Calculation of Non-Adiabatic Transition	278 281
Арұ	oendix C oendix D oendix E	Calculation of the Entanglement Entropy for a Transverse Ising Chain The Loschmidt Echo for the One-Dimensional XY Model Landau—Zener Tunneling: Calculation of Non-Adiabatic Transition Probability	278 281 283
 Арр Арр	oendix C oendix D oendix E oendix F	Calculation of the Entanglement Entropy for a Transverse Ising Chain The Loschmidt Echo for the One-Dimensional XY Model Landau—Zener Tunneling: Calculation of Non-Adiabatic Transition	278 281 283 292
App App Bibl	pendix C pendix D pendix E pendix F liography	Calculation of the Entanglement Entropy for a Transverse Ising Chain The Loschmidt Echo for the One-Dimensional XY Model Landau—Zener Tunneling: Calculation of Non-Adiabatic Transition Probability	278 281 283 292 295
App App Bibl	pendix C pendix D pendix E pendix F liography	Calculation of the Entanglement Entropy for a Transverse Ising Chain The Loschmidt Echo for the One-Dimensional XY Model Landau—Zener Tunneling: Calculation of Non-Adiabatic Transition Probability	278 281 283 292

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

List of Figures

1.1	Schematic phase diagram in the vicinity of a quantum critical point.	18
1.2	The phase diagram of a spin- $1/2$ transverse XY chain.	21
1.3	The equivalent classical model: (a) for a pure transverse Ising chain, and (b) for a chain with random interactions but uniform transverse field. This represents a version of the McCoy-Wu model [509].	24
2.1	The fidelity between two ground states of a transverse Ising chain with transverse fields h and $h + \delta$, with $\delta = 0.1$, is plotted as a function of h for small system sizes.	37
3.1	The schematic representation of the Kibble–Zurek argument.	47
3.2	Ferromagnetic domains shown at different times after a quench (time in ms). (After [663]). (see color plate at the back)	49
4.1	Mean field phase diagram of TIM in the $h-T$ plane.	60
6.1	Phase diagram of the <i>XY</i> chain in an alternating transverse field for $\gamma = J_x - J_y = 0.5$ (Fig. (a)) and $\gamma = 0$ (Fig. (b)) with $J_x + J_y = 1$.	77
6.2	The schematic diagram showing a conventional phase transition in the left panel and a topological transition in the right panel.	80
6.3	Schematic representation of a Kitaev model on a honeycomb lattice showing the interactions J_1 , J_2 and J_3 between x , y and z components of the spins respectively. (After [376]).	82
6.4	The second derivative of ground state energy E_0 diverges at the critical point $J_1 = J_2$ as discussed in the text. (After [285]).	83
6.5	Phase diagram of the Kitaev model showing one gapless and three gapped phases inside the equilateral triangle in which $J_1 + J_2 + J_3$ is a constant.	85
6.6	Phase diagram of the 1D p-wave superconducting system. (After [622]).	90
6.7	Two isolated Majorana states are localized at two edges of a 100-site open Majorana chain in phase I ($\xi=0.1$ and $\eta=0.0$). (After [622]).	91
6.8	Energy spectrum of the open Majorana chain with the relative parameters $\eta = 0$ and $\xi = \Delta /w \in [-1,1]$. (After [622]).	92
6.9	The energy spectrum of a graphene like system where we have shown only the two inequivalent Dirac points in the left panel ($m < 0$). (After [140]).	96
5.10	Spectrum of the BHZ Hamiltonian in a ribbon geometry with ribbon width $L=200\mathrm{nm}$. (After [583]).	97

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

x List of Figures and Tables

7.1	The phase diagram of a dilute TIM for $d \ge 2$. (After [367]).	109
8.1	The phase diagram of a two-dimensional classical ANNNI model ($\tilde{J}_0 = \tilde{J}_1$) in Eq. (8.1) and one-dimensional transverse ANNNI model in Eq. (8.2) with x -axis as $\kappa = \tilde{J}_2/ \tilde{J}_1$ or $\kappa = J_2 /J_1$, respectively.	114
8.2	RG flow diagram in the (a, h) plane of a XYZ model where a is the anisotropy and h is the longitudinal field. (After [256]).	116
8.3	Schematic phase diagram for the quantum system given in Eq. (8.10). (After [159]).	121
9.1	The variation of concurrence for a thermodynamically large system. This divergence becomes sharper with increasing L as shown in [567].	123
9.2	The block entropy at the Ising critical point of the transverse Ising chain (see Fig. (1.2)) for different values of γ .	125
9.3	The Venn diagram showing Shannon entropies $H(A)$, $H(B)$, $H(A,B)$, $H(A B)$ and $H(B A)$ for two correlated random variables A and B as defined in the text.	128
9.4	The variation of χ_F with J_x , as obtained numerically, for a system size of $L = 100$. (After [537]).	130
9.5	A schematic representation of the central spin model where the central spin is globally coupled to an environmental spin chain.	135
9.6	Left panel: The LE, as a function of h and t for a system with $N=200$. The critical point $h_c=1$ indicates that the decay of the LE is enhanced by the QPT. Right panel: The variation of the LE as a function of t for various system size when one of the Hamiltonian is critical (with $h=0.9$ and $\delta=0.1$).	136
9.7	The variation of the LE as a function of interaction J_3 for a $2D$ Kitaev model. (After [708].)	140
9.8	(Top panel) The ground state fidelity calculated for $\delta=0.001$ and $k_{\rm max}=2\pi$, with (a) $L=100$ (fidelity susceptibility limit, magnified in inset), (b) $L=2,000$ (an intermediate case), (c) $L=10,000$ (thermodynamic limit). In all these cases, there is no sharp dip at the QCP, and the fidelity starts to drop from unity when $ m \sim k_{\rm max}$. (Bottom panel) The fidelity susceptibility density, as obtained from (9.44), for the case (a) above, in which it is meaningful. This shows a peak at the QCP ($m=0$). (After [582]).	143
9.9	Picture of intermediate states for the case $q = 2$. (After [754]).	145
9.10	Left: Plot of χ_F versus h for $q=1$, $\phi=0$ (solid), $q=2$, $\phi=\pi/4$ (dashed), $q=3$, $\phi=0$ (dotted), and $q=4$, $\phi=\pi/8$ (plus), with $N=240$ and $\theta=\pi/N$ in each case. Right: Plot of χ_F versus h for $q=120$ (dashed), $q=240$ (dotted), and $q=480$ (solid), with $N=2q$, $\tau=\pi/N$ and $\phi=\pi/N$ in each case. (After [754]).	146
10.1	Variation of probability of excitations p_k with k for different τ as given in (10.6).	154
10.2	The phase diagram of the one-dimensional <i>XY</i> model in a transverse field. (After [533]).	157

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

List of Figures and Tables xi

11.1	The top panel shows that the heat density as a function of $\lambda = m$ following a quench of magnitude λ of the mass term in a semi-Dirac Hamiltonian starting from $\lambda = 0$; indeed, one finds $Q \sim \lambda^2$. The bottom panel shows that the heat susceptibility shows a cusp singularity at the AQCP of the Kitaev model at $J_3 = J_{3c}$, i.e, $\lambda = 0$. (After [534] and [581]).	175
11.2	(a) Trajectory of a quasiparticle of momentum p created at a site j . (b) A cartoon of three pairs of quasiparticles with different velocities (shown with different slopes) contributing to the correlations between spins at r_1 at time t_1 and the spin at r_2 at time t_2 .	178
11.3	Evolution of magnetization after a sudden quench from $h_i = 0$ to $h_f = 0.2$.	179
11.4	Time evolution of entanglement entropy for a subsystem of L=40 sites with a central defect. A sudden jump is followed by a slow relaxation towards the homogeneous value S_h (After [272]). Inset shows the time evolution of the correlation function after a local quench comparing the numerical and field theory results (After [237]).	181
11.5	Plot of the long-time average O as a function of h_f/J for different S . (After [205]).	183
11.6	The exponential decay of correlators for different values of initial transverse field with final transverse field set equal to 0.5. (After [651]). (see color plate at the back)	185
11.7	Left Panel: Loschmidt Echo for various edge states and quenches. Right Panel (a) The probability density $\rho = \psi^{\dagger} \psi$ of an edge state ($k_x = 0.001$ meV/nm) following a sudden quench from $m = -10$ meV to $m = 0$ shown at $t = 0$ (solid) and $t = \tau/2$ (dashed). (b) The probability current density of the state in the x direction (J_x) at $t = 0$ (solid) and $t = \tau/2$ (dashed). (After [583]).	190
12.1	Variation of von Neumann entropy density s , staggered magnetization m_{sx} and magnetization m_x as a function of τ/τ_0 , for $J_y=1$ and $h=0.2$. (For the anisotropic quenching, as given in [535]).	195
12.2	Plots of C^n as a function of τ for $n=2$ (solid line), $n=4$ (dashed line) and $n=6$ (dotted line). (After [700]).	198
12.3	Entanglement entropy as a function of time for a sweep of the Hamiltonian in (10.9) with $\phi = 0$ from $g_i = 0.4$ to $g_f = -0.4$. (After [609]).	200
12.4	Block entropy as a function of time following a sudden quench to the Ising critical point of a transverse Ising chain starting from $h \gg 1$, for different l .	201
12.5	This figure shows the variation of the LE (denoted by $\mathcal{L}_q(t)$) with time for $L=100$, $\delta=0.025$ and various values of g , h_i and h_f . (After [798]).	205
13.1	Suppression of the total number of excitations $n_{\rm ex}$ as a function of the quench rate v of the transverse field in a $1D$ Ising chain following a quench through the QCP ($h=1$). (After [215]).	209
13.2	R is the real-time axis and it is the imaginary time axis.	211
13.3	The logarithm of the Loschmidt echo (or the "return probability") reflecting non-analyticities at instants of time t_n^* .	212

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

xii List of Figures and Tables

	, ,	
13.4	Top panel (a) shows the defect density plotted as a function of ω_0 following $(2n+1)$ crossings through the QCP; Bottom panel shows the residual energy in the asymptotic limit versus ω_0 which also saturates to a steady state value that can be obtained using the diagonal terms of the Floquet expansion (or $\rho_{\rm dec}$). (After [655]). (see color plate at the back)	215
13.5	$g_n = [\log \mathcal{F}(n\tau)]/L$, the logarithm of the fidelity per-site, as a function of the frequency ω_0 of the driving field $h(t) = 1 + \cos(\omega_0 t)$ for $n = 1, 2, 12, 100$. (see color plate at the back)	217
13.6	(a) Comparison of the number of Majorana modes at each end of a 200-site system (solid, <i>y</i> -axis on left) and the winding number (dashed, <i>y</i> -axis on right) as a function of ω from 1 to 18, for $\gamma=1$, $\Delta=-1$, $c_0=2.5$ and a periodic δ -function kick with $c_1=0.2$. (b) Plot of b_0 and b_π as a function of ω for a system with $\gamma=1$, $\Delta=-1$, $c_0=2.5$ and a periodic δ -function kick with $c_1=0.2$. (After [757]).	218
13.7	The upper curve shows the Rosen-Zener quenching form of the staggered potential $V(t)$. The lower curve (a) shows the numerically evaluated supercurrent for the entire range of twist ν and (b) confirms the ν^3 law for small ν . (After [446])	222
13.8	Plots of (a) current J and (b) work done W_d as functions of the driving frequency ω_0 for various values of α , with $L=100$ and $\nu=0.2$. (After [545]).	225
13.9	Pictures showing the density of particles in a 200-site system as a function of the stroboscopic time $t = nT$ (on the <i>x</i> -axis) and the location <i>l</i> (on the <i>y</i> -axis) for various values of the time period T and α . (After [545]).	226
14.1	Crystal structure for LiHoF ₄ , one of the series of rare earth tetrafluorides that illustrates the physics of three dimensional Ising model in a transverse field.	232
14.2	Phase diagram for the dipolar-coupled Ising ferromagnet LiTbF $_4$ as a function of substitution of magnetic Tb with non-magnetic Y (denoted by p). (After [848]).	232
14.3	Magnetic excitons in $\text{LiTb}_p Y_{1-p} F_4$ at $p=0.38$ in the ferromagnetic phase. (After [848]).	234
14.4	Structure of CoNb ₂ O ₆ . (After [180]).	235
14.5	Magnetic spectra in CoNb ₂ O ₆ for transverse fields above and below QCP. (After [180]). (see color plate at the back)	236
14.6	Scaling regime for QCP in CoNb ₂ O ₆ . (After [180]).	237
14.7	Phase diagram of LiHoF $_4$ shown in (A). In (B), we show the field dependence of the lowest excitation energy. (After [647]).	238
14.8	Divergence of magnetic susceptibility on approaching QCP in $LiHoF_4$. (After [83]).	239
14.9	Incomplete mode softening on passing through QPT in LiHoF ₄ . (After [647]) (see color plate at the back).	240
14.10	Dilution of the dipolar-coupled, Ising ferromagnet LiHo _x Y _{1-x} F ₄ . (After [29]).	240

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

	List of Figures and Tables	xiii
14.11	The presence of a sharp minimum is indicative of spectral hole burning in $LiRE_xY_{1-x}F_4$ with RE=Ho and $x=0.046$. (After [324]).	241
15.1	Residual energy per site as a function of the Monte Carlo steps τ for quantum annealing and classical annealing where T is the temperature and P is the number of Trotter replicas. (After [670]).	251
15.2	Top: The schematic picture of quantum annealing. Bottom: The phase diagram of the disordered Ising magnet $\text{LiHo}_{0.44}Y_{0.56}F_4$ in a transverse field. (After [112]).	255
15.3	Spectroscopy of the material at points A to D after quantum and classical computations. (After [112]). (see color plate at the back)	256
15.4	The Josephson junction device and schematic of superconducting flux qubit depicting the up and down spin states and its relation with fluxes Φ_1 and Φ_2 . (After [412]).	258
15.5	(a) The difference between the process of thermal activation over the barrier in SA and tunneling process in QA. (b) The time dependence of the transverse field $\Gamma(t)$ and the coefficient of the system Hamiltonian $\Lambda(t)$, see Eq. 15.5 (c) Pictorial representation of changing the longitudinal field at an instant during two different annealing schedules which is then used to probe the freeze out times. (d) In the annealing schedule where the longitudinal field $h(t)$ is switched on at an early stage, the system is able to relax to the ground state of the final Hamiltonian with higher probability. (After [412]).	259
15.6	(a) Variation of the probability P to be in the ground state of the final Hamiltonian as a function of the delay time for different temperatures T . (b) The extracted $t_{\rm freeze}(\mu s)$ as a function of Temperature (mK). (After [412]). (see color plate at the back)	261
E.1	Two approaching energy levels described by the Hamiltonian (E) are shown above along with the diabatic basis states $ 1\rangle$ and $ 2\rangle$.	283

List of Tables

1.1	Definition of critical exponents associated with a quantum critical point occurring in magnetic systems (see text and also [799]).	16
1.2	Systems described by Ising model in a transverse field; for a more exhaustive list we refer to [731].	20

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

Preface

In recent years, there has been an upsurge of studies interconnecting the phenomena of quantum phase transitions, non-equilibrium dynamics, and quantum information and computation. These studies are important from the viewpoint of fundamental physics as well as for developing new quantum technologies. This book is the first attempt to connect these different fields, mentioning both the promises and the problems and incorporating discussions of the most recent technological developments. While there are several books on quantum phase transitions, for example, those by S. Sachdev (Cambridge University Press, 2011) and S. Suzuki et al., (Springer, 2013), the present book emphasizes several different aspects not discussed in earlier books or reviews. We build up from preliminary discussions of the basic phenomenology in the introductory chapter to full exegeses of important models, with further details presented in the appendices. We hope that this structure will enable the beginner to navigate smoothly through the more involved discussions. Concise summaries at the end of each chapter should permit the reader to easily get a sense of the scope of the book.

The book describes generic theories of the scaling of quantum information theoretic measures close to a quantum critical point (QCP) and of the residual energy in the final state reached following a passage through a QCP. This non-adiabatic passage in turn generates non-trivial quantum correlations in the final state which, in some cases, are found to satisfy some intriguing scaling relations. All these theories are illustrated employing the transverse Ising and other transverse field models and their variants. The advantage of using the transverse field Ising model is two-fold: (i) the one-dimensional version with a nearest-neighbor interaction is exactly soluble (and the QCP is conformally invariant), and (ii) the model can be mapped to a classical Ising model with one added dimension using the Suzuki-Trotter or the path integral formalism. remarkable properties of the these models have been exploited thoroughly over the last fifty years, but especially in the last two decades to understand quantum phase transitions and their connection to information processing, non-equilibrium dynamics, While these models have turned out to be useful in and quantum annealing. understanding the scaling of the defect density and related quantum information theoretic measures following a quantum quench, the success of the quantum annealing method in some multivariable optimization problems has raised the expectation of achieving a quantum annealer and hence an efficient quantum computer in the near

We also briefly discuss Tomonaga—Luttinger liquids, topological phase transitions, and related systems. The purpose here is to expose the reader to recent research on the dynamics of information processing that involve these classes of models and quantum phase transitions. Finally, we would like to emphasize that this book presents full discussions of the experimental realizations of quantum transverse field models, including the dynamics of quantum annealing and their connection to attempts to realize a quantum computer.

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

xvi Preface

Our efforts will be successful if readers, especially readers in the earlier stages of their careers, find this book useful. We hope that this book will lead to further research on the interface of quantum statistical physics, non-equilibrium dynamics, and quantum information processing and computation, leading to further development in quantum technologies.

Amit Dutta Gabriel Aeppli Bikas K. Chakrabarti Uma Divakaran Thomas F. Rosenbaum Diptiman Sen

978-1-107-06879-7 - Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information

Amit Dutta, Gabriel Aeppli, Bikas K. Chakrabarti, Uma Divakaran, Thomas F. Rosenbaum and Diptiman Sen Frontmatter

More information

Acknowledgements

We thank Muktish Acharyya, Carlos Ancona-Torres, Amit Agarwal, J. Axe, Ganapathy Baskaran, D. P. Belanger, Jayanta K. Bhattacharjee, Utso Bhattacharya, David Bitko, Indrani Bose, C. Broholm, Justin Brooke, Brett Bucher, Arunava Chakrabarti, Anjan Chandra, Y. Chen, R. Chitra, Debanjan Chowdhury, Radu Coldea, Piers Coleman, Arnab Das, Sayak Dasgupta, Wade DeGottardi, J. F. DiTusa, B. Ellman, C. D. Frost, Asim Ghosh, Sayantani Ghosh, J. Griffin, H. J. Guggenheim, Ferenc Iglói, Jun-ichi Inoue, T. Ito, J. Jensen, M. Kenzelmann, C. Kraemer, H. R. Krishnamurthy, Siddhartha Lal, R. Loganayagam, D. F. McMorrow, Shreyoshi Mondal, Sudip Mukherjee, K. Oka, Raghuveer Parthasarathy, Aavishkar A. Patel, Śwapan Pati, Ayoti Patra, Anatoli Polkovnikov, S. Ramasesha, R. Ramazasvilli, Sumathi Rao, Purushottam Ray, V. Ravi Chandra, D. H. Reich, Heiko Rieger, Henrik Ronnow, Angelo Russomanno, Debashish Samanta, Giuseppe Santoro, Rashi Sachdeva, A. Schröder, Parongama Sen, Krishnendu Sengupta, R. Shankar, B. Sriram Shastry, Daniel Silevitch, Rajiv R. P. Singh, Y.-A. Soh, Abhiram Soori, Robin B. Stinchcombe, Sthitadhi Roy, Sei Suzuki, H. Takagi, Manisha Thakurathi, Smitha Vishveshwara, Wenhao Wu, G. Xu, and R. W. Youngblood for collaborations and discussions on the many works presented in this review. We specially thank Victor Mukherjee, Shraddha Sharma, Tanay Nag and Atanu Rajak for collaboration and also for immense help in preparing the manuscript and critically going through it at different levels. They have also contributed to the materials presented in text and helped in generating some of the figures used in the book. We also acknowledge Mark W. Johnson, Amit K. Pal, Marek M. Rams and Angelo Russomanno for providing some figures used here.

Amit Dutta acknowledges CSIR, India, for financial support, and Uma Divakaran acknowledges AV Humboldt foundation for financial support and CSIR, India, for research associateship. Uma Divakaran also acknowledges DST for Inspire faculty fellowship. Amit Dutta acknowledges department of Physics for infrastructural and CDTE, IIT Kanpur for financial support. Bikas K Chakrabarti and Diptiman Sen acknowledge DST, India for Projects under J. C. Bose Fellowship. Thomas Rosenbaum acknowledges DOE BES Grant No. DE-FG02-99ER45789, and Gabriel Aeppli thanks the Wolfson Foundation and the UK ESPRC for support. We are grateful to all the colleagues who have generously given permission to use original figures from their papers and American Physical Society, Institute of Physics, Nature publishing house and Science for necessary copyright permission. We are also thankful to Rajesh Dey and Debjani Mazumder of the Cambridge University Press for their constant encouragement and support.