

Ellingson

Radio Systems Engineering

Using a systems framework, this textbook provides a clear and comprehensive introduction to the performance, analysis, and design of radio systems for students and practicing engineers. Presented within a consistent framework, the first part of the book describes the fundamentals of the subject: propagation, noise, antennas, and modulation. The analysis and design of radios including RF circuit design and signal processing is covered in the second half of the book. The former is presented with minimal involvement of Smith charts, enabling students to grasp the fundamentals more readily. Both traditional and software-defined/direct sampling technology are described, with pros and cons of each strategy explained. Numerous examples within the text involve realistic analysis and design activities, and emphasize how practical experiences may differ from theory or taught procedures. End-of-chapter problems are provided, as are a password-protected solutions manual and lecture slides to complete the teaching package for instructors.

Steven W. Ellingson is an Associate Professor at Virginia Tech. He received his PhD in Electrical Engineering from the Ohio State University. He held senior engineering positions at Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech. His research focuses on wireless communications and radio frequency instrumentation, with funding from the National Science Foundation, the National Aeronautics and Space Administration, the Defense Advanced Research Projects Agency, and the commercial communications and aerospace industries. Professor Ellingson serves as a consultant to industry and government on topics pertaining to RF system design and is an avid amateur radio operator (call sign AK4WY).

"Radio Systems Engineering offers a comprehensive introduction to the architecture and components of radio systems. It reviews all the fundamentals that students need to understand today's wireless communication systems, including modern modulation schemes, radio wave propagation, and noise impact. It also covers all the blocks of modern radio transmitter and receiver systems, such as antennas, filters, amplifiers, and signal processing. This textbook gives engineering students a complete overview of radio systems and provides practicing wireless engineers with a convenient comprehensive reference."

Patrick Roblin, Ohio State University

Radio Systems Engineering

STEVEN W. ELLINGSON

Virginia Polytechnic Institute and State University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www. cambridge. org Information on this title: www.cambridge. org/9781107068285

© Cambridge University Press & Assessment 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data
Names: Ellingson, Steven W., 1965– author.
Title: Radio systems engineering / Steven W. Ellingson, Virginia Polytechnic
Institute and State University.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2016.

Identifiers: LCCN 2016024246| ISBN 9781107068285 (Hardback)

Subjects: LCSH: Radio. | Radio—Transmitters and transmission—Design and

construction. | Radio-Receivers and reception-Design and construction. | Radio circuits-Design and construction. | Radio frequency modulation. Classification: LCC TK6550 .E475 2016 | DDC 621.384-dc23 LC record

available at https://lccn.loc.gov/2016024246

ISBN 978-1-107-06828-5 Hardback

Additional resources for this publication at www.cambridge.org/Ellingson

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CONTENTS

	List of illustrations					
		List of tables Preface				
	Preia	ice		xxxix		
1	Intro	ductio	n	1		
	1.1	Radio:	What and Why	1		
	1.2		adio Frequency Spectrum	2		
	1.3	Radio	Link Architecture	4		
	1.4	Eleme	nts of a Radio Link	9		
	1.5	Moder	rn Radio Design: Levels of Integration	11		
	1.6	Specifi	ications in Modern Radio Design	13		
	1.7	Organi	ization of This Book	14		
	Prob	lems		15		
2	Ante	enna Fu	ındamentals	16		
	2.1	Introdu	uction	16		
	2.2	Creation of Radio Waves		16		
		2.2.1	Physical Origins of Radiation	16		
		2.2.2	Radiation from Linear Antennas; Far-Field Approximations	17		
		2.2.3	Equivalent Circuit Model for Transmission	21		
		2.2.4	The Impedance of Other Types of Antennas	25		
	2.3	Recept	tion of Radio Waves	25		
		2.3.1	Equivalent Circuit Model for Reception; Effective Length	26		
		2.3.2	Effective Aperture	28		
	2.4	Pattern	and Reciprocity	28		
		2.4.1	Transmit Case	29		
		2.4.2	Receive Case	31		
	2.5	Polariz	zation	32		
	2.6	Anteni	na Integration	33		
		2.6.1	Impedance Matching	33		
		2.6.2	Current Mode Matching; Baluns	35		
	2.7	Dipole	es	35		
		2.7.1	General Characteristics	35		
		2.7.2	The Electrically-Thin Half-Wave Dipole	37		

٧i

		2.7.3	Electrically-Thin Dipoles with $\lambda/2 < L \le \lambda$;			
			Off-Center-Fed Dipoles	38		
		2.7.4	The Electrically-Thin 5/4-λ Dipole	39		
		2.7.5	Equivalent Circuits and Numerical Methods for			
			Straight Dipoles of Arbitrary Length and Radius	40		
		2.7.6	Planar Dipoles; Dipoles on Printed Circuit Boards	41		
		2.7.7	Other Dipole-Type Antennas	41		
	2.8	Monop	oles	43		
		2.8.1	General Characteristics	43		
		2.8.2	The Ideal Electrically-Thin Electrically-Short Monopole	44		
		2.8.3	The Ideal Electrically-Thin Quarter-Wave Monopole	44		
		2.8.4	The 5/8-λ Monopole	45		
		2.8.5	Practical Monopoles	45		
	2.9	Patch A	Antennas	46		
	2.10	High-C	Gain Antennas	48		
		2.10.1	Beam Antennas; The Yagi	49		
		2.10.2	Reflectors	51		
	2.11	Arrays		54		
	2.12	Other C	Commonly-Encountered Antennas	56		
	Probl	ems		58		
3	Propagation					
	3.1	Introdu	action	60		
	3.2	Propag	ation in Free Space; Path Loss	60		
	3.3	Reflect	ion and Transmission	63		
		3.3.1	Reflection from a Planar Interface	63		
		3.3.2	Reflection from the Surface of the Earth	65		
		3.3.3	Scattering from Terrain and Structures	66		
	3.4	Propag	ation Over Flat Earth	68		
		3.4.1	A General Expression for the Wave Arriving			
			at the Receiving Antenna	68		
		3.4.2	Flat Earth Path Loss; Breakpoint Analysis	71		
	2 5		ath and Fading	72		
	3.5	Multipa	aur una r uomg	73		
	3.5	Multipa 3.5.1	Discrete Multipath Model for Terrestrial Propagation	73		
	3.5	•				
	3.5	3.5.1	Discrete Multipath Model for Terrestrial Propagation	73		
	3.5	3.5.1 3.5.2	Discrete Multipath Model for Terrestrial Propagation The Static Channel: Channel Impulse Response	73 75		
	3.5	3.5.1 3.5.2 3.5.3	Discrete Multipath Model for Terrestrial Propagation The Static Channel: Channel Impulse Response The Dynamic Channel: Doppler Spread and Fading	73 75 80		
	3.5	3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	Discrete Multipath Model for Terrestrial Propagation The Static Channel: Channel Impulse Response The Dynamic Channel: Doppler Spread and Fading Spatial Autocorrelation and Diversity	73 75 80 84		
		3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	Discrete Multipath Model for Terrestrial Propagation The Static Channel: Channel Impulse Response The Dynamic Channel: Doppler Spread and Fading Spatial Autocorrelation and Diversity Summary	73 75 80 84 86		
		3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 Terrest	Discrete Multipath Model for Terrestrial Propagation The Static Channel: Channel Impulse Response The Dynamic Channel: Doppler Spread and Fading Spatial Autocorrelation and Diversity Summary rial Propagation Between 30 MHz and 6 GHz	73 75 80 84 86 87		

				Contents	vii
		3.6.3	Fading Statistics and Coherence Time		89
		3.6.4	Average Path Loss		90
	3.7	Propag	gation Above 6 GHz		91
		3.7.1	Increased Path Loss Due to Diminished Effective Aperture		92
		3.7.2	Increased Path Loss Due to Media Losses; Attenuation Rate		93
		3.7.3	Atmospheric Absorption		93
		3.7.4	Rain Fade		94
	3.8	Terres	trial Propagation Below 30 MHz		94
	3.9		Mechanisms for Radio Propagation		96
	Prob		. 0		97
4	Nois	se			99
	4.1	Introdu	uction		99
	4.2	Therm	al Noise		99
	4.3		nermal Noise		101
	4.4		Characterization of Two-Port Devices; Noise Figure		103
		4.4.1	Single Two-Port Devices		103
		4.4.2	Cascades of Two-Port Devices		106
	4.5	Extern	al Noise		108
		4.5.1	Antenna Temperature		108
		4.5.2	Natural Sources of Noise		109
		4.5.3	Anthropogenic Sources of Noise		111
	Prob	lems			113
5	Ana	log Mo	dulation		114
	5.1	Introdu		114	
	5.2	Sinusc	oidal Carrier Modulation		114
	5.3		lex Baseband Representation		115
	5.4	_	lex Baseband Representation of Noise		117
	5.5	_	tude Modulation (AM)		118
		5.5.1	Modulation and Spectrum		118
		5.5.2	Effect of Propagation		121
		5.5.3	Incoherent Demodulation		121
		5.5.4	Coherent Demodulation		122
		5.5.5	Sensitivity of Coherent and Incoherent Demodulation		125
	5.6	Single	Sideband (SSB)		127
		5.6.1	Generation of SSB		127
		5.6.2	SSB as a Quadrature Modulation		130
		5.6.3	Demodulation and Performance of SSB		130
		5.6.4	Vestigial Sideband (VSB) Modulation		131
		5.6.5	Pilot-Assisted SSB and VSB		131

viii

	5.7	Freque	ncy Modulation (FM)	132		
		5.7.1	Characterization of FM	132		
		5.7.2	Generation of FM	135		
		5.7.3	Demodulation	135		
		5.7.4	Preemphasis	136		
		5.7.5	Performance in Varying SNR; Threshold Effect	136		
	5.8	Technic	ques for Improving Audio	137		
	Probl	ems		138		
6	Digital Modulation					
	6.1	Introdu	ction	139		
		6.1.1	Overview of a Digital Communications Link and			
			Organization of this Chapter	139		
		6.1.2	Motivation for Digital Modulation	140		
	6.2	Source	Coding	141		
	6.3	Sinusoi	dal Carrier Modulation, Redux	143		
	6.4	Pulse S	hapes and Bandwidth	145		
		6.4.1	Representation of Symbols as Pulses	146		
		6.4.2	Sinc Pulses and Intersymbol Interference	147		
		6.4.3	Raised Cosine Pulses	148		
		6.4.4	Spectral Efficiency	151		
	6.5	Represe	entations of Signal Power, Noise Power, and			
		SNR in	Digital Modulations	152		
		6.5.1	Symbol Energy and Energy per Bit	152		
		6.5.2	The E_b/N_0 Concept	153		
	6.6	Cohere	nt Demodulation	154		
		6.6.1	Optimal Demodulation	154		
		6.6.2	Matched Filtering	155		
		6.6.3	Square Root Raised Cosine (SRRC) Matched Filtering	155		
		6.6.4	The Correlation Receiver	156		
	6.7	Demod	ulation of BPSK and OOK	157		
		6.7.1	Optimal Demodulation of BPSK	157		
		6.7.2	Optimal Demodulation of OOK	160		
		6.7.3	Incoherent Demodulation of OOK	162		
	6.8	Demod	ulation of QPSK	163		
	6.9	Demod	ulation of Higher-Order Phase-Amplitude Modulations	164		
		6.9.1	M-ASK	164		
		6.9.2	M-QAM	165		
		6.9.3	M-PSK	166		
	6.10	Differen	ntial Detection	167		
		6.10.1	Concept	168		
		6.10.2	Performance	169		

		Contents	i
6.11	Frequency-Shift Keying (FSK)		170
0.11	6.11.1 Concept		170
	6.11.2 Minimum-Shift Keying (MSK)		171
	6.11.3 Demodulation and Performance		172
6.12	Tradeoff Between Spectral Efficiency and Energy Efficiency		174
6.13	Channel Coding		177
6.14	Communication in Channels with Flat Fading		179
	6.14.1 Probability of Error in Flat Fading		179
	6.14.2 Interleaving		180
	6.14.3 Space Diversity		181
	6.14.4 Multiple-Input Multiple-Output (MIMO)		184
6.15	Communication in Channels with Intersymbol Interference		185
	6.15.1 Zero-Forcing Equalization		185
	6.15.2 Maximum Likelihood Sequence Estimation		185
	6.15.3 Minimum Mean Square Error (MMSE) Equalization		186
6.16	Carrier Frequency, Phase, and Symbol Timing		187
	6.16.1 Carrier Frequency Estimation		188
	6.16.2 Carrier Phase Estimation		189
	6.16.3 Symbol Timing		189
6.17	ATSC: The North American Digital Television Standard		191
	6.17.1 Transmitter		191
	6.17.2 Receiver		194
6.18	Direct Sequence Spread Spectrum (DSSS) and		
	Code Division Multiple Access (CDMA)		195
	6.18.1 Fundamentals		196
	6.18.2 Cellular CDMA		197
6.19	Orthogonal Frequency Division Multiplexing		199
	6.19.1 Concept		199
	6.19.2 Implementation		200
Probl	ems		201
Radi	o Link Analysis		203
7.1	Introduction		203
7.2	Friis Transmission Equation Revisited		203
7.3	Effective Radiated Power (EIRP and ERP)		205
7.4	Signal-to-Noise Ratio at the Input of a Detector		207
7.5	Sensitivity and G/T		210
7.6	Link Budget		211
7.7	Analysis of a 6 GHz Wireless Backhaul; Link Margin		214
7.8	Analysis of a PCS-Band Cellular Downlink		216
7.9	Analysis of an HF-Band NVIS Data Link; Fade Margin		220

7

,		,	
	Х		
•		•	

·					
	7.10	Analys	sis of a Ku-Band Direct Broadcast Satellite System	224	
	7.11	Specifi	ication of Radios and the Path Forward	226	
	Probl	ems		228	
8	Two-Port Concepts				
	8.1	Introdu	uction	229	
	8.2	s-Para	meters	230	
		8.2.1	Derivation of s-Parameters	230	
		8.2.2	s-Parameters for Series and Shunt Impedances	232	
		8.2.3	s-Parameters for Transmission Lines	234	
		8.2.4	s-Parameters for Other Two-Ports	235	
	8.3	Intrins	ic Properties of Two-Ports	235	
	8.4	Proper	ties of Embedded Two-Ports	238	
		8.4.1	Reflection Coefficient for Embedded Two-Ports	238	
		8.4.2	Transducer Power Gain (TPG)	239	
	8.5	Stabili	ty and Gain	242	
		8.5.1	Instability and Oscillation	242	
		8.5.2	Determination of Stability	243	
		8.5.3	Simultaneous Conjugate Matching	247	
		8.5.4	Maximum Stable Gain	248	
	8.6	Cascac	ded Two-Ports	250	
	8.7	Differe	ential Circuits	253	
		8.7.1	Applications of Differential Circuits	254	
		8.7.2	Interfaces between Differential and Single-Ended Circuits	256	
		8.7.3	Analysis of Differential Circuits	257	
	Probl	ems		257	
9	Impe	edance	Matching	259	
	9.1	Introdu	uction	259	
	9.2	Some	Preliminary Ideas	260	
	9.3	Discre	te Two-Component ("L") Matching	261	
	9.4	Bandw	width and Q	266	
	9.5	Modif	ying Bandwidth Using Higher-Order Circuits	268	
		9.5.1	Increasing Bandwidth using Cascades of		
			Two-Reactance Matching Circuits	268	
		9.5.2	Decreasing Bandwidth Using "Pi" and "T" Circuits	271	
		9.5.3	Other Considerations and Variants	273	
	9.6	Imped	ance Matching for Differential Circuits	274	
	9.7	Distrib	outed Matching Structures	274	
		9.7.1	Properties of Practical Transmission Lines	276	
		9.7.2	Impedance of Single-Port Transmission Line Stubs	278	

			Co	ontents	xi
		9.7.3	Single-Stub Matching		278
		9.7.4	Quarter-Wave Matching		282
	9.8	Impeda	ance Inversion		283
	Probl	ems			283
10	Amp	lifiers			285
	10.1	Introdu	iction		285
	10.2	Transis	stors as Amplifiers		285
		10.2.1	Bipolar Transistors		285
		10.2.2	Field Effect Transistors		288
		10.2.3	Designing with Transistors		289
	10.3	Biasing	g of Transistor Amplifiers		289
		10.3.1	Bipolar Transistors		289
		10.3.2	FETs		298
		10.3.3	Beyond Common Emitter and Common Source		301
	10.4	Design	ing for Gain		301
		10.4.1	Bilateral Design to Meet a Gain Requirement		302
		10.4.2	Unilateral Design to Meet a Gain Requirement		310
		10.4.3	Taming Unruly Transistors: Unilateralization and Stabilization		313
	10.5	Design	ing for Noise Figure		314
	10.6	Design	ing for VSWR		319
	10.7	Design	Example: A UHF-Band LNA		320
		10.7.1	Inductive Degeneration		321
		10.7.2	Selecting an Operating Point and Establishing		
			RF Design Parameters		322
		10.7.3	Transistor Characterization		323
		10.7.4	Transistor Output Conditioning		324
		10.7.5	IMN Design		325
		10.7.6	OMN Design		327
		10.7.7	Bias Scheme		327
		10.7.8	Bias Circuit Integration		329
		10.7.9	Measured Results		330
	10.8	Beyond	d the Single-Transistor Narrowband Amplifier		332
	10.9	IC Imp	lementation		333
	Probl	ems			334
11	Line	arity, M	lultistage Analysis, and Dynamic Range		338
	11.1	Introdu	action		338
	11.2	Charac	terization of Linearity		338
		11.2.1	Linearity as Independence of Response		339
		11.2.2			340

xii

		11.2.3	Gain Compression	342	
		11.2.4	Intermodulation; Third-Order Intermodulation	343	
		11.2.5	Second-Order Intermodulation	347	
		11.2.6	AM–PM Conversion	348	
	11.3	Lineari	ty of Differential Devices	349	
	11.4	Lineari	ty of Cascaded Devices	350	
	11.5	Stage/C	Cascade Analysis; Significance of Stage Order	352	
	11.6	Other C	Common Characterizations of Sensitivity	355	
		11.6.1	Minimum Discernible Signal (MDS): Concept and		
			Zero-Input-Noise Expressions	355	
		11.6.2	Minimum Discernible Signal (MDS):		
			Non-Zero-Input-Noise Expressions	356	
		11.6.3	Noise Floor	358	
	11.7	Dynam	ic Range	359	
	Probl	ems		362	
12	Ante	enna Int	regration	363	
	12.1	_			
	12.2	Receive	e Performance	363	
		12.2.1	Antenna Receive Model, Revisited	364	
		12.2.2	Signal Power Delivered by an Antenna to a Receiver	369	
		12.2.3	SNR Delivered to the Digitizer or Detector Assuming Conjugate		
			Matching	371	
		12.2.4	SNR Delivered to the Digitizer or Detector when Two-Port Noise		
			Parameters are Available	373	
	12.3	Transm	nit Performance	375	
		12.3.1	VSWR	375	
		12.3.2	Transmit Efficiency	377	
	12.4	Antenn	na-Transceiver Impedance Matching	380	
		12.4.1	Fractional Bandwidth Concept	380	
		12.4.2	Resonant Antennas	381	
		12.4.3	Non-Resonant Broadband Antennas	381	
		12.4.4	Electrically-Small Antennas	382	
	12.5	How S1	mall Can an Antenna Be?	386	
	12.6	Antenn	na Tuners	389	
	12.7	Baluns		390	
		12.7.1	Consequences of Not Using a Balun	391	
		12.7.2	Balun Contraindications	391	
		12.7.3	Compact Baluns	392	
		12.7.4	Coaxial Choke Baluns	392	
		12.7.5	Other Commonly-Used Balun Types	394	
	Probl	ems		396	

				Contents	xii
13	Δnal	oa Filte	rs and Multiplexers		397
13	13.1	•	•		397
	13.1		terization of Filter Response		397
	13.3		Reactance Lowpass and Highpass Filters		399
	13.4	•	Resonator Bandpass and Notch Filters		400
	13.5	_	e (LC) Filters – Specified Response		402
		13.5.1	Butterworth Lowpass Filter Design		404
		13.5.2	Butterworth Highpass Filter Design		405
		13.5.3	Butterworth Bandpass Filter Design		407
		13.5.4	Butterworth Bandstop Filter Design		409
		13.5.5	Chebyshev Filter Design		410
		13.5.6	Phase and Delay Response; Group Delay Variation		412
		13.5.7	Other Specified-Response Designs and Topological Variants	3	414
	13.6	Diplexe	ers and Multiplexers		415
	13.7	Distribu	uted Filter Structures		418
		13.7.1	Transmission Line Stubs as Single-Reactance Two-Ports		418
		13.7.2	Quarter-Wave Stubs as Single-Resonance Two-Ports		420
		13.7.3	Filters Composed of Quarter-Wave Sections		420
		13.7.4	Specified-Response Filters Using Transmission Line Stubs		424
	13.8	Other F	ilter Device Technologies		424
		13.8.1	Coupled Resonator and Stepped Impedance Filters		424
		13.8.2	Helical Filters		425
		13.8.3	Coaxial Filters		425
		13.8.4	Crystal Filters		426
		13.8.5	Surface Acoustic Wave Devices and Dielectric Resonators		427
		13.8.6	Mechanical and Ceramic Filters		427
		13.8.7	Electronically-Tunable Filters		427
	Probl	ems			427
14	Freq		429		
	14.1	Introdu	ction		429
	14.2	Frequer	ncy Conversion		429
		14.2.1	Downconversion; Low- and High-Side Injection		430
		14.2.2	Upconversion		431
		14.2.3	Image Frequency		432
	14.3	Mixers			433
		14.3.1	Square-Law Processing		433
		14.3.2	Phase-Switching		435
		14.3.3	Double-Balanced Diode Ring Mixers		436
		14.3.4	IC Implementation		438
	14.4	Quadra	ture Conversion		440

xiv

	14.5	Image R	Rejection Mixers	442
		14.5.1	Hartley Architecture	442
		14.5.2	Weaver Architecture	444
	Probl	ems		444
15	Rece	ivers		446
	15.1	Introduc	ction	446
	15.2		-to-Digital Conversion	446
		C	Method of Operation	447
			Sample Rate and Bandwidth	448
			Quantization Noise	451
			Characteristics of Practical ADCs	457
	15.3	Require	ments on Gain and Sensitivity	459
	15.4	Preselec	ction	462
	15.5	Selectiv	rity	465
	15.6	Receive	r Architectures	465
		15.6.1	Lowpass Direct Sampling	465
		15.6.2	Undersampling	466
		15.6.3	Tuned RF	468
		15.6.4	Single-Conversion Superheterodyne Architecture	468
		15.6.5	The Half-IF Problem	470
		15.6.6	Multiple-Conversion Superheterodyne Architecture	471
		15.6.7	Other Superheterodyne Architectures	473
		15.6.8	Direct Conversion	475
		15.6.9	Near-Zero IF	476
		15.6.10	Superheterodyne Architecture with Quadrature-Conversion	
			Final Stage	476
	15.7	Frequen	ncy Planning	477
	15.8	Gain Co	ontrol	478
		15.8.1	AGC Strategy for a Single-Channel-Output Receivers	478
		15.8.2	AGC Strategy for Multiple-Channel-Output Receivers	479
		15.8.3	AGC Strategy for Cellular CDMA Receivers	479
		15.8.4	Power Measurement for AGC	480
		15.8.5	Schemes for Varying Gain	480
	15.9	Case Stu	udies	481
		15.9.1	AM/FM Broadcast Receivers	482
		15.9.2	Television Tuners	482
		15.9.3	HF Receivers	483
		15.9.4	Cellular, WLAN, and Global Navigation Satellite	
			Systems (GNSS) Receivers	483
		15.9.5	Quadrature Conversion RF/IF Receivers	484
	Probl	ems		484

				Contents	xv	
16	Frequ	uency S	Synthesis		486	
	16.1	Introdu	ction		486	
	16.2	LC Fee	dback Oscillators		486	
		16.2.1	The LC Resonator		486	
		16.2.2	Sustaining Resonance Using Feedback		488	
	16.3	Design	of LC Feedback Oscillators		490	
		16.3.1	Colpitts Topology		491	
		16.3.2	Analysis and Design of the Grounded Base Colpitts Oscillator		492	
		16.3.3	Alternative Implementations and Enhancements		499	
	16.4	Phase N	Noise, Spurious, and Reciprocal Mixing		500	
	16.5	Oscilla	tors Using Crystals and Other High-Q Resonators		503	
		16.5.1	Crystal Oscillators		504	
		16.5.2	Temperature-Stabilized Crystal Oscillators		505	
		16.5.3	Resonator Technologies for Higher Frequencies		506	
	16.6	Variabl	e-Frequency Oscillators and VCOs		506	
	16.7	Negativ	ve Resistance Oscillators		507	
	16.8	Phase-I	Locked Loop (PLL) Synthesizers		507	
		16.8.1	Integer-N Synthesizers		508	
		16.8.2	Fractional-N Synthesizers		509	
		16.8.3	Dividers, Phase Comparators, Loop Filters, and Prescalers		509	
		16.8.4	PLL Design Considerations		511	
	16.9	Direct l	Digital Synthesis		511	
	16.10	IC Imp	lementation of Oscillators and Synthesizers		513	
	Proble	ems			515	
17	Transmitters					
	17.1	Introdu	ction		516	
	17.2	Archite	ectures		516	
	17.3	Digital-	-to-Analog Conversion		518	
		17.3.1	1		518	
		17.3.2	Sample Rate, Bandwidth, and sinc Distortion		520	
		17.3.3	Quantization Noise and Dynamic Range		523	
	17.4	Power A	Amplifiers		523	
		17.4.1	Efficiency vs. Linearity		523	
		17.4.2	Class A; Linear vs. Quasi-Linear Operation		526	
		17.4.3	Harmonic Filtering		529	
		17.4.4			530	
		17.4.5	Class AB and Conduction Angle		533	
		17.4.6	Class C		534	
		17.4.7	1 0 7		535	
		17.4.8	Repurposing Non-Linear PAs as Quasi-Linear PAs		537	

xvi

	17.5		erations in PA Design	538	
		17.5.1	Supply Voltage	538	
			Load Impedance Matching	538	
		17.5.3		539	
		17.5.4		540	
			Power Control	540	
	17.6		earization	541	
		17.6.1	Consequences of PA Non-Linearity	541	
		17.6.2	Predistortion	542	
		17.6.3	Feedforward Linearization	543	
		17.6.4	Feedback Linearization	544	
	17.7	Quadra	ature-Coupled and Parallelized Amplifiers	546	
		17.7.1	Quadrature Hybrids	546	
		17.7.2	Combining Using Transformers	548	
	Probl	lems		549	
18	Digital Implementation of Radio Functions				
	18.1	Introdu	action	550	
	18.2	Single-	Rate Filters	550	
		18.2.1		551	
		18.2.2	FIR Filter Design Using Windows; The Kaiser Method	555	
		18.2.3		558	
		18.2.4			
			Responses	559	
		18.2.5	Reducing Computational Burden	559	
	18.3	Multira	ate Filters	560	
		18.3.1	Integer-Rate Decimating FIR Filters	561	
		18.3.2		562	
		18.3.3	Non-Integer and Large-R Techniques	563	
	18.4	Quadra	564		
		18.4.1	$F_S/4$ Quadrature Downconversion	564	
		18.4.2		568	
		18.4.3	Multirate Quadrature Downconversion From Other IFs	568	
	18.5		ations in Digital Modulation	572	
		18.5.1	Pulse Shaping	572	
		18.5.2	Symbol Timing Recovery	572	
		18.5.3	•	574	
		18.5.4	Carrier Frequency Tracking	574	
	18.6		ardware Technologies	574	
		18.6.1	CPUs, Their Limitations, and Alternatives	574	
		18.6.2	Special-Function ICs	575	
		· · · -	r	2,72	

			Contents	xvi
	18.6.3	FPGAs		575
	18.6.4	ASICs		576
Prob			576	
۸nn	andiv A	Empirical Modeling of Mean Path Loss		570
		Empirical Modeling of Mean Path Loss		578
A.1	_	near Model for Mean Path Loss		578
A.2	Hata M			580
A.3		231-Hata Model		582
A.4	Other N	viodeis		582
App	endix B	Characteristics of Some Common Radio Systems		583
B.1	Broadc	asting		583
B.2	Land M	Iobile Radio		585
B.3	Mobile	Telecommunications		586
	B.3.1	General Characteristics		586
	B.3.2	First-, Second-, and Third-Generation Cellular Systems		587
	B.3.3	Fourth-Generation Cellular Systems ("4G") and LTE		588
	B.3.4	Fifth-Generation Cellular Systems ("5G")		588
B.4	Wireless Data Networks			589
	B.4.1	IEEE 802.11 and 802.11b		589
	B.4.2	IEEE 802.11a, -g, and -n		590
	B.4.3	IEEE 802.11ac and -ad		590
	B.4.4	Longer-Range Systems: IEEE 802.16 (WiMAX)		
		and 802.11af (TVWS)		591
	B.4.5	Future Trends		591
B.5	Short-Range Data Communications			591
	B.5.1	Bluetooth		592
	B.5.2	ZigBee		592
	B.5.3	Automotive Applications: RKE and TPMS		592
B.6	Radio I	Radio Frequency Identification (RFID)		593
B.7	Global Navigation Satellite Systems (GNSS)			594
B.8	Radar,	Remote Sensing, and Radio Astronomy		595
Refe	rences			596
References Index				600