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2 Ballard,Carson,Demmel,Hoemmen,Knight, Schwartz

The traditional metric for the efficiency of a numerical algorithm has been
the number of arithmetic operations it performs. Technological trends have
long been reducing the time to perform an arithmetic operation, so it is no
longer the bottleneck in many algorithms; rather, communication, or moving
data, is the bottleneck. This motivates us to seek algorithms that move as
little data as possible, either between levels of a memory hierarchy or be-
tween parallel processors over a network. In this paper we summarize recent
progress in three aspects of this problem. First we describe lower bounds on
communication. Some of these generalize known lower bounds for dense clas-
sical (O(n3)) matrix multiplication to all direct methods of linear algebra, to
sequential and parallel algorithms, and to dense and sparse matrices. We also
present lower bounds for Strassen-like algorithms, and for iterative methods,
in particular Krylov subspace methods applied to sparse matrices. Second, we
compare these lower bounds to widely used versions of these algorithms, and
note that these widely used algorithms usually communicate asymptotically
more than is necessary. Third, we identify or invent new algorithms for most
linear algebra problems that do attain these lower bounds, and demonstrate
large speed-ups in theory and practice.
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1. Introduction

1.1. Motivation

Linear algebra problems appear throughout computational science and engi-
neering, as well as the analysis of large data sets (Committee on the Analysis
of Massive Data; Committee on Applied and Theoretical Statistics; Board
on Mathematical Sciences and Their Applications; Division on Engineering
and Physical Sciences; National Research Council 2013), so it is important
to solve them as efficiently as possible. This includes solving systems of
linear equations, least-squares problems, eigenvalue problems, the singular
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Numerical linear algebra: communication costs 3

value decomposition, and their many variations that can depend on the
structure of the input data.
When numerical algorithms were first developed (not just for linear alge-

bra), efficiency was measured by counting arithmetic operations. Over time,
as technological trends such as Moore’s law kept making operations faster,
the bottleneck in many algorithms shifted from arithmetic to communica-

tion, that is, moving data, either between levels of the memory hierarchy
such as DRAM and cache, or between parallel processors connected over a
network. Communication is necessary because arithmetic can only be per-
formed on two operands in the same memory at the same time, and (in the
case of a memory hierarchy) in the smallest, fastest memory at the top of the
hierarchy (e.g., cache). Indeed, a sequence of recent reports (Graham, Snir
and Patterson 2004, Fuller and Millett 2011) has documented this trend.
Today the cost of moving a word of data (measured in time or energy) can
exceed the cost of an arithmetic operation by orders of magnitude, and this
gap is growing exponentially over time.
Motivated by this trend, the numerical linear algebra community has

been revisiting all the standard algorithms, direct and iterative, for dense
and sparse matrices, and asking three questions: Are there lower bounds
on the amount of communication required by these algorithms? Do exist-
ing algorithms attain the lower bounds? If not, are there new algorithms
that do?
The answers, which we will discuss in more detail in this paper, are briefly

as follows. There are in fact communication lower bounds for most direct
and iterative (i.e., Krylov subspace) algorithms. These lower bounds apply
to dense and sparse matrices, and to sequential, parallel and more compli-
cated computer architectures. Existing algorithms in widely used libraries
often do asymptotically more communication than these lower bounds re-
quire, even for heavily studied operations such as dense matrix multiplica-
tion (matmul for short). In many cases there are new algorithms that do
attain the lower bounds, and show large speed-ups in theory and practice
(even for matmul). These new algorithms do not just require ‘loop transfor-
mations’ but sometimes have different numerical properties, different ways
to represent the answers, and different data structures.
Historically, the linear algebra community has been adapting to rising

communication costs for a long time. For example, the level-1 Basic Linear
Algebra Subroutines (BLAS1) (Lawson, Hanson, Kincaid and Krogh 1979)
were replaced by BLAS2 (Dongarra, Croz, Hammarling and Hanson 1988a,
1988b) and then BLAS3 (Dongarra, Croz, Duff and Hammarling 1990a,
1990b), and EISPACK (Smith et al. 1976) and LINPACK (Dongarra, Moler,
Bunch and Stewart 1979) were replaced by LAPACK (Anderson et al. 1992)
and ScaLAPACK (Blackford et al. 1997), to mention a few projects. So it
may be surprising that large speed-ups are still possible.
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1.2. Modelling communication costs

More precisely, we will model the cost of communication as follows. There
are two costs associated with communication. For example, when sending
n words from one processor to another over a network, the words are first
packed into a contiguous block of memory called a message, which is then
sent to the destination processor. There is a fixed overhead time (called
the latency cost or ³) required for the packing and transmission over the
network, and also time proportional to n needed to transmit the words
(called the bandwidth cost or ´n). In other words, we model the time to
send one message of size n by ³ + ´n, and the time to send S messages
containing a total of W words by ³S + ´W .

Letting µ be the time to perform one arithmetic operation, and F the total
number of arithmetic operations, our overall performance model becomes
³S + ´W + µF . The same technological trends cited above tell us that
³ � ´ � µ. This is why it is important to count messages S and words W
separately, because either one may be the bottleneck. Later we will present
lower bounds on both S and W , because it is of interest to have algorithms
that minimize both bandwidth and latency costs.

On a sequential computer with a memory hierarchy, the model ³S+´W+
µF is enough to model two levels of memory, say DRAM and cache. When
there are multiple levels of memory, there is a cost associated with moving
data between each adjacent pair of levels, so there will be an ³S+´W term
associated with each level.

On a parallel computer, ³S+´W + µF will initially refer to the commu-
nication and arithmetic done by one processor only. A lower bound for one
processor is (sometimes) enough for a lower bound on the overall algorithm,
but to upper-bound the time required by an entire algorithm requires us to
sum these terms along the critical path, that is, a sequence of processors that
must execute in a linear order (because of data dependences), and that also
maximizes the sum of the costs. Note that there may be different critical
paths for latency costs, bandwidth costs and arithmetic costs.

We note that this simple model may be naturally extended to other kinds
of architectures. First, when the architecture can overlap communication
and computation (i.e., perform them in parallel), we see that ³S + ´W +
µF may be replaced by max(³S + ´W, µF ) or max(³S, ´W, µF ); this can
lower the cost by at most a factor of 2 or 3, and so does not affect our
asymptotic analysis. Second, on a heterogeneous parallel computer, that is,
with different processors with different values of ³, ´, µ, memory sizes, etc.,
one can still use ³iSi + ´iWi + µiFi as the cost of processor i, and take the
maximum over i or sum over critical paths to get lower and upper bounds.
Third, on a parallel machine with local memory hierarchies (the usual case),
one can include both kinds of costs.
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We call an algorithm communication-optimal if it asymptotically attains
communication lower bounds for a particular architecture (we sometimes
allow an algorithm to exceed the lower bound by factors that are polylog-
arithmic in the problem size or machine parameters). More informally, we
call an algorithm communication-avoiding if it is communication-optimal,
or if it communicates significantly less than a conventional algorithm.
Finally, we note that this timing model may be quite simply converted

to an energy model. First, interpret ³E , ´E and µE as joules per message,
per word and per flop, respectively, instead of seconds per message, per
word and per flop. The same technological trends as before tell us that
³E � ´E � µE and are all improving, but growing apart exponentially
over time. Second, for each memory unit we add a term ¶EM , where M
is the number of words of memory used and ¶E is the joules per word per
second to store data in that memory. Third, we add another term �ET ,
where T is the run time and �E is the number of joules per second spent
in ‘leakage’, cooling and other activities. Thus a (single) processor may
be modelled as using ³ES + ´EW + µEF + ¶EM + �ET joules to solve a
problem. Lower and upper bounds on S,W, and T translate to energy lower
and upper bounds.

1.3. Summary of results for direct linear algebra

We first summarize previous lower bounds for direct linear algebra, and then
the new ones. Hong and Kung (1981) considered any matmul algorithm that
has the following properties.

(1) It requires the usual 2n3 multiplications and additions to multiply two
n × n matrices C = A · B on a sequential machine with a two-level
memory hierarchy.

(2) The large (but slow) memory level initially contains A and B, and also
C at the end of the algorithm.

(3) The small (but fast) memory level contains only M words, where M <
3n2, so it is too small to contain A, B and C simultaneously.

Then Hong and Kung (1981) showed that any such algorithm must move
at least W = Ω(n3/M1/2) words between fast and slow memory. This is
attained by well-known ‘blocking’ algorithms that partition A, B and C into
square sub-blocks of dimension (M/3)1/2 or a little less, so that one sub-
block each of A, B and C fit in fast memory, and that multiply sub-block
by sub-block.
This was generalized to the parallel case by Irony, Toledo and Tiskin

(2004). When each of the P processors stores the minimal M = O(n2/P )
words of data and does an equal fraction 2n3/P of the arithmetic, their lower
bound is W = Ω(#flops/M1/2) = Ω(n3/P/(n2/P )1/2) = Ω(n3/P 1/2), which
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is attained by Cannon’s algorithm (Cannon 1969) and SUMMA (van de
Geijn and Watts 1997). The paper by Irony et al. (2004) also considers
the so-called ‘3D’ case, which does less communication by replicating the
matrices P 1/3 times. This requires M = n2/P 2/3 words of fast memory per
processor. The lower bound becomes W = Ω(n3/P/M1/2) = Ω(n2/P 2/3)
and is a factor P 1/6 smaller than before, and it is attainable (Aggarwal,
Chandra and Snir 1990, Johnsson 1992, Agarwal et al. 1995).
This was eventually generalized by Ballard, Demmel, Holtz and Schwartz

(2011d) to any classical algorithm, that is, one that sufficiently resembles
the three nested loops of matrix multiplication, to W = Ω(#flops/M1/2)
(this will be formalized below). This applies to (1) matmul, all the BLAS,
Cholesky, LU decomposition, LDLT factorization, algorithms that perform
factorizations with orthogonal matrices (under certain technical conditions),
and some graph-theoretic algorithms such as Floyd–Warshall (Floyd 1962,
Warshall 1962), (2) dense or sparse matrices, where #flops may be much
less than n3, (3) some whole programs consisting of sequences of such oper-
ations, such as computing Ak by repeated matrix multiplication, no matter
how the operations are interleaved, and (4) sequential, parallel and other
architectures mentioned above. This lower bound applies for M larger than
needed to store all the data once, up to a limit (Ballard et al. 2012d).
Furthermore, this lower bound on the bandwidth cost W yields a sim-

ple lower bound on the latency cost S. If the largest message allowed
by the architecture is mmax, then clearly S g W/mmax. Since no mes-
sage can be larger than than the memory, that is, mmax f M , we get
S = Ω(#flops/M3/2). Combining these lower bounds on W and W with
the number of arithmetic operations yields a lower bound on the overall run
time, and this in turn yields a lower bound on the energy required to solve
the problem (Demmel, Gearhart, Lipshitz and Schwartz 2013b).
Comparing these bounds to the costs of conventional algorithms, we see

that they are frequently not attained, even for dense linear algebra. Many
new algorithms have been invented that do attain these lower bounds, which
will be summarized in Sections 3 (classical algorithms) and 5 (fast Strassen-
like algorithms).

1.4. Summary of results for iterative linear algebra

Krylov subspace methods are widely used, such as GMRES (Saad and
Schultz 1986) and conjugate gradient (CG) (Hestenes and Stiefel 1952) for
linear systems, or Lanczos (Lanczos 1950) and Arnoldi (Arnoldi 1951) for
eigenvalue problems. In their unpreconditioned variants, each iteration per-
forms 1 (or a few) sparse matrix–vector multiplications (SpMV for short)
with the input matrix A, as well as some dense linear algebra operations
such as dot products. After s iterations, the resulting vectors span an s+1
dimensional Krylov subspace, and the ‘best’ solution (depending on the
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algorithm) is chosen from this space. This means that the communication
costs grow in proportion to s. In the sequential case, when A is too large to
fit in the small fast memory, it is read from the large slow memory s times.
If A has nnz nonzero entries that are stored in an explicit data structure,
this means that W g s · nnz. In the parallel case, with A and the vectors
distributed across processors, communication is required at each iteration.
Unless A has a simple block diagonal structure with separate blocks (and
corresponding subvectors) assigned to separate processors, at least one mes-
sage per processor is required for the SpMV. And if a dot product is needed,
at least logP messages are needed to compute the sum. Altogether, this
means S g s logP .
To avoid communication, we make certain assumptions on the matrix A:

it must be ‘well-partitioned’ in a sense to be made more formal in Sec-
tion 7, but for now think of a matrix resulting from a mesh or other spa-
tial discretization, partitioned into roughly equally large submeshes with as
few edges as possible connecting one submesh to another. In other words,
the partitioning should be load-balanced and have a low ‘surface-to-volume
ratio’.
In this case, it is possible to take s steps of many Krylov subspace methods

for the communication cost of one step. In the sequential case this means
W = O(nnz) instead of s · nnz; clearly reading the matrix once from slow
memory for a cost of W = nnz is a lower bound. In the parallel case this
means S = O(log p) instead of O(s log p); clearly the latency cost of one dot
product is also a lower bound.
The idea behind these new algorithms originally appeared in the litera-

ture as s-step methods (see Section 8 for references). One first computed a
different basis of the same Krylov subspace, for example using the matrix-

powers kernel [b, Ab,A2b, . . . , Asb], and then reformulated the rest of the
algorithm to compute the same ‘best’ solution in this subspace. The origi-
nal motivation was exposing more parallelism, not avoiding communication,
which requires different ways of implementing the matrix-powers kernel. But
this research encountered a numerical stability obstacle: the matrix-powers
kernel is basically running the power method, so that the vectors Aib are be-
coming more nearly parallel to the dominant eigenvector, resulting in a very
ill-conditioned basis and failure to converge. Later research partly allevi-
ated this by using different polynomial bases [b, p1(A)b, p2(A)b, . . . , ps(A)b]
where pi(A) is a degree-i polynomial in A, chosen to make the vectors
more linearly independent (e.g., Philippe and Reichel 2012). But choosing
a good polynomial basis (still a challenge to do automatically in general)
was not enough to guarantee convergence in all cases, because two recur-
rences in the algorithm independently updating the approximate solution
and residual could become ‘decoupled’, with the residual falsely indicat-
ing continued convergence of the approximate solution. This was finally
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overcome by a generalization (Carson and Demmel 2014) of the residual re-
placement technique introduced by Van der Vorst and Ye (1999). Reliable
and communication-avoiding s-step methods have now been developed for
many Krylov methods, which offer large speed-ups in theory and practice,
though many open problems remain. These will be discussed in Section 8.
There are two directions in which this work has been extended. First,

many but not all sparse matrices are stored with explicit nonzero entries
and their explicit indices: the nonzero entries may be implicit (for example,
21 on the offdiagonal of a graph Laplacian matrix), or the indices may be
implicit (common in matrices arising in computer vision applications, where
the locations of nonzeros are determined by the associated pixel locations),
or both may be implicit, in which case the matrix is commonly called a
stencil. In these cases intrinsically less communication is necessary. In
particular, for stencils, only the vectors need to be communicated; we discuss
this further in Section 7.
Second, one often uses preconditioned Krylov methods, e.g., MAx = Mb

instead of Ax = b, where M somehow approximates A−1. It is possible
to derive corresponding s-step methods for many such methods; see, for
instance, Hoemmen (2010). If M has a similar sparsity structure to A (or
is even sparser), then previous communication-avoiding techniques may be
used. But since A−1 is generically dense, M would also often be dense if
written out explicitly, even if it is applied using sparse techniques (e.g., solv-
ing sparse triangular systems arising from an incomplete factorization). This
means that many common preconditioners cannot be used in a straightfor-
ward way. One class that can be used is that of hierarchically semiseparable

matrices, which are represented by low-rank blocks; all of these extensions
are discussed in Section 8.

1.5. Outline of the rest of the paper

The rest of this paper is organized as follows. The first half (Sections 2–5) is
devoted to direct (mostly dense, some sparse) linear algebra, and the second
(Sections 6–8) to iterative linear algebra (mostly for sparse matrices).
We begin in Sections 2 and 3 with communication costs of classical direct

algorithms. We present lower bounds for classical computations in Section 2,
starting with the basic case of classical matrix multiplication (§ 2.1), exten-
sions using reductions (§ 2.2), generalization to three-nested-loops computa-
tions (§§ 2.3, 2.4), orthogonal transformations (§ 2.5), and further extensions
and impact of the lower bounds (§ 2.6).
In Section 3 we discuss communication costs of classical algorithms, both

conventional and communication-optimal. We summarize sequential (§ 3.1)
and parallel ones (§ 3.2), then provide some details (§ 3.3) and point to
remaining gaps and future work (§ 3.4).
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In Sections 4 and 5 we discuss communication costs of fast (Strassen-like)
linear algebra. We present lower bounds for Strassen-like computations
in Section 4, starting with the expansion analysis of computation graphs
(§§ 4.1, 4.2) applied to Strassen’s matrix multiplication (§ 4.3), and Strassen-
like multiplication (§ 4.4), and other algorithms (§ 4.5). In Section 5 we dis-
cuss communication-optimal Strassen-like algorithms that attain the lower
bounds, both sequential (§§ 5.1, 5.2), and parallel (§§ 5.3, 5.4).
In Sections 6, 7 and 8 we discuss communication costs of iterative linear

algebra. We begin with sparse matrix–vector multiplication (SpMV) in
Section 6, starting with sequential lower bounds and optimal algorithms
(§ 6.1), followed by parallel lower bounds and optimal algorithms (§ 6.2).
The main conclusion of Section 6 is that any conventional Krylov subspace
(or similar) method that performs a sequence of SpMVs will most likely be
communication-bound. This motivates Section 7, which presents commu-
nication-avoiding Krylov basis computations, starting with lower bounds
on communication costs (§ 7.1), then Akx algorithms (§ 7.2), and blocking
covers (§ 7.3). We then point to related work and future research (§ 7.4).
Based on the kernels introduced in Section 7, in Section 8 we present

communication-avoiding Krylov subspace methods for eigenvalue problems
(§ 8.2), and for linear systems (§ 8.3). We demonstrate speed-ups (§ 8.4),
and discuss numerical issues with finite precision (§ 8.5), and how to apply
preconditioning in communication-avoiding ways (§ 8.6). We conclude with
remaining gaps and future research (§ 8.7).

2. Lower bounds for classical computations

In this section we consider lower bounds for classical direct linear algebra
computations. These computations can be specified by algorithms that are
basically composed of three nested loops; see further details in Section 2.3.
For some special cases, such as dense matrix multiplication, ‘classical’ means
that the algorithm performs all n3 scalar multiplications in the definition of
n×n matrix multiplication, though the order in which the scalar multiplica-
tions are performed is arbitrary. We thus exclude from the discussion in this
section, for example, Strassen’s fast matrix multiplication (Strassen 1969).
See Sections 4 and 5 for lower bounds and upper bounds of Strassen-like
methods.

2.1. Matrix multiplication

Hong and Kung (1981) proved a lower bound on the bandwidth cost required
to perform dense matrix multiplication in the sequential two-level memory
model using a classical algorithm, where the input matrices are too large
to fit in fast memory. They obtained the following result, using what they
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called a ‘red–blue pebble game’ analysis of the computation graph of the
algorithm.

Theorem 2.1 (Hong and Kung 1981, Corollary 6.2). For classical
matrix multiplication of dense m × k and k × n matrices implemented on
a machine with fast memory of size M , the number of words transferred
between fast and slow memory is

W = Ω

�

mkn

M1/2

�

.

This result was proved using a different technique by Irony et al. (2004)
and generalized to the distributed-memory parallel case. They state the
following parallel bandwidth cost lower bound using an argument based
on the Loomis–Whitney inequality (Loomis and Whitney 1949), given as
Lemma 2.5.

Theorem 2.2 (Irony et al. 2004, Theorem 3.1). For classical matrix
multiplication of dense m× k and k × n matrices implemented on a distri-
buted-memory machine with P processors, each with a local memory of size
M , the number of words communicated by at least one processor is

W = Ω

�

mkn

PM1/2
2M

�

.

In the case where m = k = n and each processor stores the minimal
M = O(n2/P ) words of data, the lower bound on bandwidth cost becomes
Ω(n2/P 1/2). The authors also consider the case where the local memory
size is much larger, M = Θ(n2/P 2/3), in which case O(P 1/3) times as much
memory is used (compared to the minimum possible) and less communi-
cation is necessary. In this case the bandwidth cost lower bound becomes
Ω(n2/P 2/3). See Section 2.6.2 for a discussion of limits on reducing commu-
nication by using extra memory, and Section 3.3.1 for further algorithmic
discussion on utilizing extra memory for matrix multiplication.
For simplicity we will assume real matrices throughout the rest of this

section; all the results generalize to the complex case.

2.2. Extending lower bounds with reductions

It is natural to try to extend the lower bounds for matrix multiplication
to other linear algebra operation by means of reductions. Given a lower
bound for one algorithm, we can make a reduction argument to extend that
bound to another algorithm. In our case, given the matrix multiplication
bounds, if we can show how to perform matrix multiplication using another
algorithm (assuming the transformation requires no extra communication
in an asymptotic sense), then the same bound must apply to the other
algorithm, under the same assumptions.
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