

Phase Transitions in Materials

Offering a fresh viewpoint on phase changes and the thermodynamics of materials, this textbook covers the thermodynamics and kinetics of the most important phase transitions in materials science, spanning classical metallurgy through to nanoscience and quantum phase transitions.

Clear, concise, and complete explanations rigorously address transitions from the atomic scale up, providing the quantitative concepts, analytical tools, and methods needed to understand modern research in materials science. Topics are grouped according to complexity, ensuring that students have a solid grounding in core topics before they begin to tackle more advanced material, and are accompanied by numerous end-of-chapter problems.

With explanations firmly rooted in the context of modern advances in electronic structure and statistical mechanics, and developed from classroom teaching, this book is the ideal companion for graduate students and researchers in materials science, condensed matter physics, solid state science, and physical chemistry.

Brent Fultz is the Barbara and Stanley R. Rawn, Jr., Professor of Materials Science and Applied Physics at the California Institute of Technology. He has been awarded a Presidential Young Investigator Award, the EMPMD Distinguished Scientist Award (2010), and has led large projects such as the state-of-the-art neutron scattering instrument, ARCS, and data analysis for neutron scattering experiments, DANSE.

Phase Transitions in Materials

BRENT FULTZ

California Institute of Technology

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107067240

© B. Fultz 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Fultz, B. (Brent), author.

Phase transitions in materials / Brent Fultz, California Institute of Technology.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-06724-0

- 1. Phase transformations (Statistical physics)–Textbooks. 2. Thermodynamics–Textbooks.
- 3. Materials–Thermal properties–Textbooks. 4. Statistical mechanics–Textbooks. I. Title.

QC175.16.P5F86 2014 530.4'74–dc23 2013046223

ISBN 978-1-107-06724-0 Hardback

Additional resources for this publication at www.cambridge.org/fultz

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This book is dedicated to Emily, Eric, and Elissa

Contents

Pre	face		page xiii
Ack	nowle	dgments	xvii
Not	tation		xix
		Part I Basic thermodynamics and kinetics of phase transformations	1
1	Intro	duction	3
	1.1	What is a phase transition?	3
	1.2	Atoms and materials	4
	1.3	Pure elements	6
	1.4	Alloys: unmixing and ordering	9
	1.5	Transitions and transformations	11
	1.6	Brief review of thermodynamics and kinetics	14
		Problems	18
2	Essen	tials of $T\!-\!c$ phase diagrams	20
	2.1	Overview of the approach	20
	2.2	Intuition and expectations about alloy thermodynamics	22
	2.3	Free energy curves, solute conservation, and the lever rule	26
	2.4	Common tangent construction	28
	2.5	Continuous solid solubility phase diagram	30
	2.6	Solid solutions	31
	2.7	Unmixing phase diagrams	37
	2.8	Eutectic and peritectic phase diagrams	39
	2.9	Ternary phase diagrams	42
	2.10	Long-range order in the point approximation	44
	2.11	Alloy phase diagrams	48
		Problems	49
3	Diffus	ion	52
	3.1	The diffusion equation	52
	3.2	Gaussian and error function solutions to the 1D diffusion	
		equation	56
	3.3	Fourier series solutions to the diffusion equation	61
	3.4	Bessel functions and other special function solutions to the	
		diffusion equation	66

viii

_		Contents	
	2.5		60
	3.5	Kinetic master equation and equilibrium	69
	3.6	Linear kinetic response	71
		Problems	72
4		ation	74
	4.1	Terminology and issues	75
	4.2	Critical nucleus	76
	4.3	Heterogeneous nucleation	79
	4.4	Free energy curves and elastic energy	81
	4.5	The nucleation rate	85
	4.6	Time-dependent nucleation	92
		Problems	94
5	Effect	ts of diffusion and nucleation on phase transformations	96
	5.1	Nonequilibrium processing of materials	96
	5.2	Alloy solidification with solute partitioning	99
	5.3	Alloy solidification: suppressed diffusion in the solid phase	100
	5.4	Alloy solidification: suppressed diffusion in the solid and liquid	105
	5.5	Practical issues for alloy solidification and evaporation	106
	5.6	Heat flow and kinetics	109
	5.7	Nucleation kinetics	111
	5.8	Glass formation	112
	5.9	Solid-state amorphization and suppressed diffusion in a solid phase	114
		Reactions at surfaces	115
	5.11	The glass transition	120
		Problems	121
		Part II The atomic origins of thermodynamics and kinetics	125
6	Energ	у	127
	6.1	Molecular orbital theory of diatomic molecules	127
	6.2	Electronic energy bands in solids	134
	6.3	Elastic constants and the interatomic potential	145
	6.4	Linear elasticity	149
	6.5	Misfitting particle	153
	6.6	Surface energy	158
		Problems	161
7	Entro	ру	163
	7.1	Static and dynamic sources of entropy	163
	7.2	Short-range order and the pair approximation	165
	7.3	Local atomic structures described by clusters	168
	7.4	Thermodynamics with cluster approximations	170
	7.5	Concept of vibrational entropy	172

IX	Contents

	7.6	Phonon statistics	175
	7.7	Lattice dynamics and vibrational entropy	176
	7.8	Bond proportion model	179
	7.9	Bond-stiffness-versus-bond-length model	187
		Problems	190
8	Press	ure	194
	8.1	Materials under pressure at low temperatures	194
	8.2	Thermal pressure, a step beyond the harmonic model	199
	8.3	Free energies and phase boundaries under pressure	200
	8.4	Chemical bonding and antibonding under pressure	202
	8.5	Two-level system under pressure	205
	8.6	Activation volume	208
		Problems	209
9	Atom	n movements with the vacancy mechanism	211
	9.1	Random walk and correlations	211
	9.2	Phenomena in alloy diffusion	220
	9.3	Diffusion in a potential gradient	227
	9.4	Nonthermodynamic equilibrium in driven systems	232
	9.5	Vineyard's theory of diffusion	235
		Problems	240
		Part III Types of phase transformations	245
10	Melti	ing	247
		Free energy and latent heat	247
		Chemical trends of melting	248
		Free energy of a solid	250
	10.4	Entropy of a liquid	257
	10.5	Thermodynamic condition for T_m	259
	10.6	Glass transition	261
	10.7	Two dimensions	264
		Problems	266
11	Trans	sformations involving precipitates and interfaces	268
	11.1	Guinier-Preston zones	268
	11.2	Surface structure and thermodynamics	270
		Surface structure and kinetics	276
	11.4	Chemical energy of a precipitate interface	278
	11.5	Elastic energy and shape of growing precipitates	280
	11.6	Precipitation at grain boundaries and defects	282
	11.7	The eutectoid reaction and ferrous metallurgy	285
	11.8	The Kolmogorov–Johnson–Mehl–Avrami growth equation	291

Contents

	11.9	Coarsening	293
		Problems	296
12	Spino	dal decomposition	298
	12.1	Concentration fluctuations and the free energy of solution	298
	12.2	Adding a square gradient term to the free energy $F(c)$	300
	12.3	Constrained minimization of the free energy	304
		The diffusion equation	309
	12.5	Effects of elastic energy	311
		Problems	313
13	Phase	e field theory	315
	13.1	Spatial distribution of phases and interfaces	315
	13.2	Solidification	318
	13.3	Ginzburg-Landau equation and order parameter	319
	13.4	Interfaces between domains	322
		Problems	330
14	Meth	od of concentration waves and chemical ordering	332
	14.1	Structure in real space and reciprocal space	332
	14.2	Symmetry and the star	338
	14.3	The free energy in k-space with concentration waves	341
	14.4	Symmetry invariance of free energy and Landau-Lifshitz rule for	
		second-order phase transitions	344
	14.5	Thermodynamics of ordering in the mean field approximation with	
		long-range interactions	349
		Problems	353
15	Diffus	sionless transformations	355
	15.1	Dislocations and mechanisms	356
	15.2	Twinning	360
	15.3	Martensite	362
	15.4	The crystallographic theory of martensite	368
	15.5	Landau theory of displacive phase transitions	370
	15.6	First-order Landau theory	374
	15.7	Crystal instabilities and phonons	377
		Problems	381
16	Therr	nodynamics of nanomaterials	383
	16.1	Grain boundary structure	384
		Grain boundary energy	386
		Gibbs-Thomson effect	387
	16.4	Energies of free electrons confined to nanostructures	390
	16.5	Configurational entropy of nanomaterials	392

xi Contents

	16.6 Vibrational entropy	394
	16.7 Gas adsorption	397
	16.8 Characteristics of magnetic nanoparticles	399
	16.9 Elastic energy of anisotropic microstructures	401
	Problems	402
17	Magnetic and electronic phase transitions	404
	17.1 Overview of magnetic and electronic phase transiti	ons 405
	17.2 Exchange interactions	410
	17.3 Correlated electrons	414
	17.4 Thermodynamics of ferromagnetism	417
	17.5 Spin waves	420
	17.6 Thermodynamics of antiferromagnetism	423
	17.7 Ferroelectric transition	426
	17.8 Domains	428
	Problems	430
18	Phase transitions in quantum materials	432
	18.1 Bose–Einstein condensation	432
	18.2 Superfluidity	435
	18.3 Condensate wavefunction	437
	18.4 Superconductivity	440
	18.5 Quantum critical behavior	448
	Problems	452
	Part IV Advanced topics	453
19	Low-temperature analysis of phase boundaries	455
	19.1 Ground-state analysis for $T = 0$	456
	19.2 Richards, Allen, Cahn ground-state maps	457
	19.3 Low but finite temperatures	458
	19.4 Analysis of equiatomic bcc alloys	463
	19.5 High-temperature expansion of the partition function	on 465
	Problems	466
20	Cooperative behavior near a critical temperature	468
	20.1 Critical exponents	468
	20.2 Critical slowing down	469
	20.3 The Rushbrooke inequality	471
	20.4 Scaling theory	472
	20.5 Scaling and decimation	474
	20.6 Partition function for one-dimensional chain	475
	20.7 Partition function for two-dimensional lattice	479
	Problems	482

xii Contents

21	Elasti	ic energy of solid precipitates	483
	21.1	Transformation strains and elastic energy	483
	21.2	Real space approach	485
	21.3	<i>k</i> -space approach	488
		Problems	491
22	Statis	stical kinetics of ordering transformations	492
	22.1	Ordering transformations with vacancies	493
	22.2	B2 ordering with vacancies in the point approximation	495
	22.3	Vacancy ordering	499
	22.4	Kinetic paths	500
		Problems	506
23	Diffus	sion, dissipation, and inelastic scattering	508
	23.1	Atomic processes and diffusion	508
	23.2	Dissipation and fluctuations	512
	23.3	Inelastic scattering	515
	23.4	Phonons and quantum mechanics	518
		Problems	521
24	Vibra	tional thermodynamics of materials at high temperatures	522
	24.1	Lattice dynamics	522
	24.2	Harmonic thermodynamics	527
	24.3	Quasiharmonic thermodynamics	528
	24.4	Thermal effects beyond quasiharmonic theory	531
	24.5	Anharmonicity and phonon-phonon interactions	532
	24.6	Electron–phonon interactions and temperature	536
		Problems	538
Fur	ther re	eading	540
Ref	erence	S	545
Ind	ov		554

Preface

Content

This book explains the thermodynamics and kinetics of most of the important phase transitions in materials science. It is a textbook, so the emphasis is on explanations of phenomena rather than a scholarly assessment of their origins. The goal is explanations that are concise, clear, and reasonably complete. The level and detail are appropriate for upper division undergraduate students and graduate students in materials science and materials physics. The book should also be useful for researchers who are not specialists in these fields. The book is organized for approximately linear coverage in a graduate-level course. The four parts of the book serve different purposes, however, and should be approached differently.

Part I presents topics that all graduate students in materials science must know. ¹ After a general overview of phase transitions, the statistical mechanics of atom arrangements on a lattice is developed. The approach uses a minimum amount of information about interatomic interactions, avoiding detailed issues at the level of electrons. Statistical mechanics on an Ising lattice is used to understand alloy phase stability for basic behaviors of chemical unmixing and ordering transitions. This approach illustrates key concepts of equilibrium T-c phase diagrams, and is extended to explain some kinetic processes. Essentials of diffusion, nucleation, and their effects on kinetics are covered in Part I.

Part II addresses the origins of materials thermodynamics and kinetics at the level of atoms and electrons. Electronic and elastic energy are covered, and the different types of entropy, especially configurational and vibrational, are presented in the context of phase transitions. Effects of pressure, combined with temperature, are explained with a few concepts of chemical bonding. The kinetics of atom movements are developed for diffusion in solids, and from the statistical kinetics of the atom–vacancy interchange.

Part III is the largest. It describes many of the important phase transformations in materials, with the concepts used to understand them. Topics include melting, phase transformations by nucleation and growth, spinodal decomposition, freezing and phase fields, continuous ordering, martensitic transformations, phenomena in nanomaterials, phase transitions involving electrons or spins, and quantum phase transitions. These different phase transitions in materials are covered at different breadths and depths based on their richness or importance, although this reflects my own bias. Many topics from metallurgy and ceramic engineering are covered, although the connection between processing and

¹ The author asks graduate students to explain some of the key concepts at a blackboard during their Ph.D. candidacy examinations.

xiv Preface

properties is less emphasized, allowing for a more concise presentation than in traditional texts. Part III includes a number of topics from condensed matter physics that were selected in part because they give new insights into materials phenomena.

Part IV presents topics that are more modern, but have proved their importance. Lowand high-temperature treatments of the partition function, the renormalization group, scaling theory, a *k*-space formulation of elastic energy, nonequilibrium states in crystalline alloys, fluctuations and dissipation, and some complexities of high-temperature thermodynamics are presented. The topics in Part IV are explained at a fundamental level, but unlike Parts I through III, for conciseness in Part IV there are some omissions of methods and steps.

The book draws a distinction between phase transformations and phase transitions. Phase transitions are thermodynamic phenomena based on free energy alone, whereas phase transformations include kinetic processes that alter the life cycle of the phase change. Phase transitions originate from discontinuities in free energy functions, so much of the text focuses on formulating free energies for different systems. The free energy is often formulated with models based on statistical mechanics. The Ising model proves a reliable workhorse, offering methods and results that are useful for many different phase transitions in materials. Other topics that recur in the text are Landau theory in various forms, the topic of domains, the square gradient energy, the effect of curvature on nucleation, and dynamics with the kinetic master equation. Sometimes the thermodynamics of phase transitions is developed with the partition function, although the classical equation G = E - TS + PV is used widely, and it is assumed that the reader has some familiarity with the terms in this expression. For the kinetics of phase transformations, there is some traditional presentation of diffusion and nucleation, but the kinetic master equation is also used throughout the text.

Many topics in phase transitions and related phenomena are not covered in this text. These include: other mechanisms of atom movements (and their effects on kinetics), polymer flow and dynamics including reptation, phase transitions in fluid systems including phenomena near the critical temperature, and massive transformations. Also beyond the scope of the book are computational methods that are increasingly important for studies of phase transformations in materials, including: Monte Carlo methods, molecular dynamics methods (classical and quantum), and density functional theory with extensions to phenomena at finite temperatures.

The field of phase transitions is huge, and continues to grow. This text is a snapshot of phase transitions in materials in the year 2013, composed from the angle of the author. Impressively, this field continues to offer a rich source of new ideas and results for both fundamental and applied research, and parts of it will look different in a decade or so. I expect, however, that many core topics will remain the same – the free energy of materials will remain the central concept, surrounded by issues of kinetics.

Teaching

I use this text for a graduate-level course taken by Ph.D. students in both materials science and in applied physics at the California Institute of Technology. The 10-week course, which

xv Preface

includes approximately 30 hours of classroom lectures, is offered in the third academic quarter as part of a one-year sequence. The first two quarters in this sequence cover thermodynamics and statistical mechanics, so the students are familiar with the use of the partition function to obtain thermodynamic quantities, and have seen basic concepts from quantum statistical mechanics such as the Fermi–Dirac distribution. Familiarity with some concepts from solid-state physics and chemistry is certainly helpful, as is prior exposure to diffusion and transport, but the text develops many of the important concepts as needed.

In the one-quarter graduate-level course at Caltech, I cover all topics in Parts I and II, moving in sequence through these chapters. Time limitations force a selection of topics from Parts III and IV, but I typically cover more of Part III than Part IV. For example, this year I covered Chapters 10, 11, 12, parts of 13, 15, 16, 19, and selections from 20, 22, 24. It may be unrealistic to cover all the content in the book in a 15-week semester with 45 hours of lectures. An instructor can certainly exercise discretion in selecting topics for the second half of his or her course.

Most of the problems at the end of each chapter have been used for weekly student assignments, and this experience has helped to improve their wording and content. The majority of these problems make use of concepts explained in the text, fill in the explanations of concepts, or extend analyses. Others develop new concepts not described in the chapter, but these problems usually include longer explanations and hints that may be worth reading even without working the problem. None of the problems is intended to be particularly difficult, and some can be answered quickly once the main idea emerges. I usually assign five or six problems every week during the term. An expanding online solutions manual is available to course instructors whose identity can be verified. Please ask me for further information.

Acknowledgments

I thank J.J. Hoyt for collaborating with me on a book chapter about phase equilibria and phase transformations that prompted me to get started on this book. Jeff has since published a fine book on phase transformations in materials that is available at low cost from McMaster Innovation Press.

The development of the topic of vibrational entropy would not have been possible without the contributions of my junior collaborators at Caltech, especially L. Anthony, L.J. Nagel, H.N. Frase, A.F. Yue, M.E. Manley, P.D. Bogdanoff, J.Y.Y. Lin, T.L. Swan-Wood, A.B. Papandrew, O. Delaire, M.S. Lucas, M.G. Kresch, M.L. Winterrose, J. Purewal, C.W. Li, T. Lan, L. Mauger, and S.J. Tracy. Today several of them are taking this field into new directions.

Important ideas have come from stimulating conversations over the years with A. van de Walle, V. Ozolins, G. Ceder, M. Asta, L.-Q. Chen, D.D. Johnson, D. de Fontaine, A.G. Khachaturyan, A. Zunger, P. Rez, K. Samwer, and W.L. Johnson. This work was supported by the NSF under award DMR-0520547.

Notation

a lattice parameter

A area

 \vec{A} vector potential of magnetic field

A-atom generic chemical element APDB antiphase domain boundary

 α coefficient of linear thermal expansion α critical exponent for heat capacity

 α -phase generic phase

 α -sublattice a lattice of like atoms within an ordered structure

 α_i root of Bessel function

 α^2 electron–phonon coupling factor

 \vec{b} Burgers vector of dislocation

 $b_{\rm A}$ coherent neutron scattering length of isotope A

b(k) Fourier transform of pairwise energy for two concentration waves

 \vec{B} bulk modulus \vec{B} magnetic field

B-atom generic chemical element $B(\vec{R})$ pairwise energy between atoms

 β coefficient of volume thermal expansion

 β critical exponent for density

 β -phase generic phase

 β -sublattice a lattice of like atoms within an ordered structure

c chemical composition (atomic fraction)

c speed of sound or light c_A concentration of A-atoms

c_A weight of atomic wavefunction on atom A in a molecular wave

function

 $C_{\rm el}$ electronic heat capacity

 $C_P(T)$ heat capacity at constant pressure $C_V(T)$ heat capacity at constant volume

 C_{ij} , C_{ijlm} elastic constant

D diffusion coefficientD deformation potential

 D_0 prefactor for exponential form of diffusion coefficient

xx Notation

$ ilde{D}(c)$	interdiffusion coefficient
	dynamical matrix, element of
$\underline{\underline{D}}(\vec{k}), D_{ij}(\vec{k})$	relative change in radius (of misfitting sphere)
$\Delta G_{ m V}$	change in Gibbs free energy per unit volume
ΔG^*	activation barrier for nucleation
$\Delta(\vec{r})$	static wave of chemical concentration
e	charge of electron
e_A	energy of an A-atom on a crystal site
e_{AB}	energy of a pair (bond) between an A- and B-atom
$e_{\mathrm{R}}, e_{\mathrm{W}}$	energy of two atoms, A and B, on their right or wrong sublattices
$ec{e}_{\kappa j}(ec{k})$	polarization for atom of basis index κ in phonon of k in branch j
$\operatorname{erf}(z)$	error function
$egin{array}{c} E \ ec{E} \end{array}$	energy, thermodynamic energy
$ec{E}$	electric field
$E_{ m el}$	elastic energy
ϵ	energy, energy of electron
ϵ	fractional difference in T from T_c
arepsilon	energy, energy of phonon
$\epsilon_{ m F}$	Fermi energy
$\epsilon_j, \epsilon_{ij}$	strain
ſ	
f	correlation factor
f_{α}	(atomic) fraction of α -phase
f_j	interaction free energy
f(c)	free energy per unit volume
F	Helmholtz free energy
\mathcal{F}	force
$F_{\xi}(c,T)$	free energy for phase ξ with composition c at temperature T
$g(\varepsilon)$	phonon density of states
\vec{g}	reciprocal lattice vector
γ	coefficient for linear electronic heat capacity vs. T
γ	Grüneisen parameter
γ_j	Grüneisen parameter for phonon mode <i>j</i>
γ_{xy}	shear strain
$\operatorname{\mathbf{grad}}(c) \text{ or } \overset{\longrightarrow}{\nabla c}$	gradient (of concentration)
G	Gibbs free energy
$G(\vec{r},t)$	Van Hove space-time correlation function
Γ	atomic jump frequency
Γ	point at origin of reciprocal lattice
h	bond integral
\hbar	Planck's constant divided by 2π
H	Hamiltonian

xxi Notation

\vec{j} $J_0(x), J_1(x)$ J_n J_{ss} J_{hs}, J_{hl} \vec{J}_A $J(\vec{r}_1 - \vec{r}_j)$	flux Bessel functions of zero- and first-order number of clusters per unit time that change from n to $n+1$ steady-state flux in number-space of cluster sizes heat flux in solid and liquid (1D) flux of A-atoms magnetic exchange energy
k	partitioning ratio $k = c_s/c_1$
\vec{k}	wavevector
$k_{ m B}$	Boltzmann's constant
$\kappa_{\rm s}, \kappa_{\rm l}$	thermal conductivity of solid and liquid
κ	coefficient for square gradient energy
κ	Ginzburg-Landau parameter
L	latent heat
L	long-range order parameter
LHS	left-hand side
λ	wavelength
λ	electron-phonon coupling parameter
m	mass
M	mobility
\mathcal{M}	Mendeleev number
μ	chemical potential
μ	shear modulus
$ec{\mu}$	magnetic moment
$n(\varepsilon_i, T)$	Planck distribution
N	number (of atoms)
$N_{ m A}^{lpha}$	number of A-atoms on α -sublattice (point variable)
$N_{ m AB}^{lphaeta}$	number of A–B pairs with A on α and B on β (pair variable)
N(k)	number of quantum states with wavevector less than k
$\mathop{N}\limits_{\sim}(t)$	vector of number occupancies of states at time t
ν	frequency
ν	Poisson ratio
ν	critical exponent for correlation length
η	fractional change of lattice parameter with composition
η	order parameter
p_i	probability of a state
$ec{p}$	momentum
p_{A}	partial pressure of vapor of element A

xxii Notation

$p_{ m A}^{lpha}$	probability of A-atom on α -sublattice (point variable)
$p_{ m A}^{lpha} \ p_{ m AB}^{lphaeta}$	probability of A–B pair with A on α and B on β (pair variable)
P	pressure
P_{th}	thermal pressure (from expansion against a bulk modulus)
P	Péclet number
$\Phi(r)$	interatomic, central-force potential
$\Phi_{\rm M}(r), \Phi_{\rm L-J}(r)$	Morse potential, Lennard–Jones potential
Φ_0	quantum of magnetic flux $hc/2e$
$Q_{\vec{\hat{q}}}$	compositional wavevector $2\pi/\lambda$
$egin{array}{c} \mathcal{Q} \ \mathcal{ar{Q}} \ \mathcal{Q} \ heta(ec{r}) \end{array}$	momentum transfer in scattering
Q	quality factor of damped harmonic oscillator
	Heaviside function, 1 in the region, 0 outside
$\theta(\vec{r},t)$	phase of wavefunction in space and time
$\Theta_{ m D}$	Debye temperature
$r_{ m B}$	Bohr radius $r_{\rm B} = \hbar^2/(m_e e^2)$
$r_{ m WS}$	Wigner–Seitz radius
$ec{r}_l$	position of unit cell
\vec{r}_k	basis vector within unit cell
R	number of right atoms on a sublattice of an ordered structure
R(Q)	growth rate for compositional wavevector Q
R^*	critical radius for nucleation
$ec{R}$	position of atom center
$ec{R}_n$	displacement after <i>n</i> jumps
${\cal R}$	number of atoms in unit cell
RHS	right-hand side
ho	density, e.g. [atoms cm^{-3}]
$ ho(\epsilon)$	electronic density of states
$ ho(\epsilon_{ m F})$	electronic density of states at the Fermi energy
\vec{s}_i	electronic spin at site <i>i</i>
S_{i} S	entropy
S	overlap integral
$S_{ m conf}$	configurational entropy
$S_{ m vib}$	vibrational entropy
$S_{ m h}$	harmonic entropy
$S_{ m qh}$	entropy contribution from quasiharmonicity
$S_{ m anh}$	entropy contribution from anharmonicity
$S_{ m el}$	electronic entropy
$S_{ m epi}$	entropy contribution from electron–phonon interaction
$S_{ m mag}$	magnetic entropy
$S_{ ext{mag}}^{ ext{mag}}$	scattering function
$S(\mathcal{Q}, \omega)$	seattering random

σ surface energy per unit area	
σ surface energy per unit area	
σ electrical conductivity	
σ spin number (± 1)	
σ_{gb} energy per unit area of grain boundary	
σ_{ij} stress	
t time	
T temperature	
T _c critical temperature	
$T_{\rm C}$ Curie temperature	
$T_{\rm m}$ melting temperature	
$T_{ m N}$ Néel temperature	
T_1, T_2, \dots sequence of temperatures such that $T_2 > T_1$	
\vec{T} translation vector of real space lattice	
au characteristic time (e.g., for diffusion)	
$\vec{u}(x, y, z)$ displacement vector	
U difference in chemical preferences of A- and B-atoms	
$U = (e_{\rm AA} - e_{\rm BB})/4V$	
U Coulomb energy penalty for placing a second electron on a site i	n
Hubbard model	
Υ_j Grüneisen parameter for energy of electronic state j	
\vec{v} velocity	
V interchange energy $V = (e_{AA} + e_{BB} - 2e_{AB})/4$	
V volume	
$V(\vec{r})$ potential energy	
$V_{\rm Q}$ quantum volume, related to cube of de Broglie wavelength	
W the number of wrong atoms on a sublattice of an ordered structur	e
W_{ij} transition rate from state j to state i	
W^{\uparrow} rate of increase of LRO parameter by jump of A from β to α -sublattice	
$\underset{\approx}{W}(\Delta t)$ transition matrix for time interval Δt	
ω angular frequency	
Ω number of states accessible to the system	
Ω atomic volume	
Ω_j configurations of a system with energy j	
ξ correlation function	
ξ length	
$\{\chi_i\}$ reaction coordinates	
χ susceptibility	

xxiv		Notation
	$Y \ \psi(\vec{r})$	Young's modulus wavefunction
	z	coordination number of lattice
	z	partition function of subsystem
	Z	partition function
	\mathcal{Z}	Zeldovich factor