Principles of Cyber-Physical Systems

This unique introduction to the foundational concepts of cyber-physical systems (CPSs) describes key design principles and emerging research trends in detail. Several interdisciplinary applications are covered, with a focus on the wide-area management of infrastructures, including electric power systems, air transportation networks, and health care systems.

Design, control, and optimization of cyber-physical infrastructures are discussed, addressing security and privacy issues of networked CPSs, presenting graph-theoretic and numerical approaches to CPS evaluation and monitoring, and providing readers with the knowledge needed to operate CPSs in a reliable, efficient, and secure manner. Exercises are included at the end of each part of the book.

This is an ideal resource for researchers and graduate students in electrical engineering and computer science, as well as for practitioners using CPSs in aerospace and automotive engineering, medical technology, and large-scale infrastructure operations.

Sandip Roy is Professor at the School of Electrical Engineering and Computer Science at Washington State University, where he teaches systems and control engineering and directs the Network Controls Group.

Sajal K. Das is Professor of Computer Science and Daniel St. Clair Endowed Chair at the Missouri University of Science and Technology, where he is also the director of CReWMaN lab. He is a recipient of the IEEE Computer Society Technical Achievement Award for pioneering contributions to sensor networks and mobile computing, and is a Fellow of the IEEE.

Cambridge University Press 978-1-107-06661-8 — Principles of Cyber-Physical Systems Edited by Sandip Roy , Sajal Das Frontmatter <u>More Information</u>

Principles of Cyber-Physical Systems

An Interdisciplinary Approach

Edited by

SANDIP ROY Washington State University

SAJAL K. DAS Missouri University of Science and Technology

© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107066618 DOI: 10.1017/9781107588981

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-06661-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

Cambridge University Press 978-1-107-06661-8 — Principles of Cyber-Physical Systems Edited by Sandip Roy , Sajal Das Frontmatter <u>More Information</u>

Contents

	of Conti	ributors	page xiii
Pref	ace		xix
Part	I Over	coming Uncertainty	1
	-	al Processes to Theoretical Foundations of Cyber-Physical Sy	
Desi	gn and (Optimization	3
Paul I	0	nd Radu Marculescu	
1.1	Introdu	action	3
1.2		cteristics of Physical Processes: Self-Similar, Fractal, and	
		ationary Dynamics	5
1.3		oads in Cyber-Physical Systems	9
1.4	New F	ormalism for Modeling Cyber-Physical Workloads	11
1.5		esign under Uncertainty Conditions	16
1.6		matical Implications of the Fractal Formalism on	
		plantable CPS Medical Devices	19
1.7		usion and Future Work	21
1.8	Ackno	wledgments	22
Effe	ctive Un	certainty Evaluation in Large-Scale Systems	25
Junfe	i Xie, Yan	Wan, Yi Zhou, Kevin Mills, James J. Filliben, and Yu Lei	
2.1	Introdu	action	25
2.2	The Ba	ackground of Simulation-Based Uncertainty Evaluation	26
	2.2.1	Problem Formulation	26
	2.2.2	Monte Carlo Methods	27
	2.2.3	Sampling-Based Methods	28
2.3	Single	-Variable PCM	28
	2.3.1	Key Properties	29
	2.3.2	Design Procedures	30
2.4	Multiv	ariate PCM	32
	2.4.1	Independent M-PCM	33
	2.4.2	Correlated M-PCM	35

vi	Contents				
	2.5		25		
		6	37		
		2.5.1 Introduction	37		
		2.5.2 Design Procedures	40		
		2.5.3 Properties of the M-PCM-OFFD	43		
		Application to Air Traffic Flow Management Concluding Remarks and Future Works	44 45		
3		xible Graph Partitioning Algorithm for Cyber-Physical Systems	51		
5	Rahul Dhal and Sandip Roy				
		Introduction	51		
		Influence Model: Review	54		
		3.2.1 Notations	54		
		Influence Model-Based Partitioning Algorithm	55		
		Performance Analysis	55		
		Characterizing Weak Cuts	65		
		-	66		
		3.5.1 Perturbation of Eigenvalues3.5.2 Eigenvector Sensitivity	69		
		Integrative Theorem and Discussion	09 72		
		I Exercises	76		
	Part	II Exploiting Structure for Control	79		
4	A Sur	rvey on Remote Estimation Problems	81		
	Marcos M. Vasconcelos and Nuno Martins				
		Introduction	81		
		4.1.1 Organization	82		
		4.1.2 Notation	82		
		Optimal Estimation with Limited Transmissions	83		
		4.2.1 The Imer–Basar Problem	83		
		4.2.2 Variations and Extensions	85		
		4.2.3 Main Features of the Imer–Basar Problem	86		
		Optimal Communication Logics	86		
		4.3.1 The Xu–Hespanha Problem	86		
		4.3.2 Variations and Extensions	88		
		4.3.3 Main Features of the Xu–Hespanha Problem	89		
		Remote Estimation with Communication Costs	89		
		4.4.1 The Lipsa–Martins Problem4.4.2 Variations and Extensions	89 02		
			92 02		
		4.4.3 Main Features of the Lipsa–Martins Problem	92		
		Remote Estimation in Continuous Time	92		
		4.5.1 The Rabi–Moustakides–Baras Problem	93		
		4.5.2 Variations and Extensions	94		
		4.5.3 Main Features of the Rabi–Moustakides–Baras Problem	94		

		Contents	vii		
	1.6		0.5		
	4.6	6	95 05		
		Separation of Sensor Senedaring and Control	95 96		
		4.6.2 Sensor Scheduling in Continuous Time4.6.3 Sensor Scheduling in Discrete Time	90 96		
		4.6.4 Event-Driven Strategies for Remote Estimation	90 97		
		4.6.5 Estimation over Shared Networks	97		
	4.7	Estimation over the Collision Channel	98		
	4.8		101		
5	Join	t Scheduling and Optimal Adaptive Event-Triggered Control of			
	Dist	ributed Cyber-Physical Systems	104		
	Hao >	Ku, Avimanyu Sahoo, and S. Jagannathan			
	5.1		104		
	5.2	Background and Distributed CPSs	106		
	5.3	Optimal Adaptive Event-Triggered Control	109		
		5.3.1 Zero-Order-Hold-Based Event-Triggered Control System	109		
		5.3.2 Optimal Adaptive ZOH Event-Triggered Control	110		
	5.4	Novel Cross-Layer Distributed Scheduling Design	114		
		5.4.1 Cross-Layer Design	114		
		5.4.2 Novel Distributed Scheduling	115		
	5.5	Conclusions	120		
	5.6	Future Work	120		
	5.7	Appendix: Example Problem	120		
6	Online Adaptive Network Design for Disturbance Rejection				
	Airlie	Chapman, Eric Schoof, and Mehran Mesbahi			
	6.1	Introduction	127		
	6.2	Background	130		
		6.2.1 Notation	130		
		6.2.2 Graphs	130		
		6.2.3 Online Convex Optimization	131		
	6.3	Dynamic Models	132		
		6.3.1 Noisy Consensus Dynamics	133		
		6.3.2 Leader–Follower Consensus Dynamics	134		
	6.4	System Performance and Topology Measures	136		
		6.4.1 Open Loop \mathcal{H}_2 Norm	136		
		6.4.2 Network Entropy	138		
		6.4.3 Topology Measures	139		
	6.5		141		
		6.5.1 Distributed Gradient Updates	142		
		6.5.2 Online Algorithm	148		
	6.6	Conclusion	151		

viii	Conte	ents			
7	Mear	nings and Applications of Structure in Networks of Dynamic Systems	162		
	Vasu Chetty and Sean Warnick				
		Introduction: Dynamics and Structure	162		
		7.1.1 What Is System Structure?	163		
		7.1.2 Why Does System Structure Matter?	164		
	7.2	Mathematical Representations of Systems and Their Structures	166		
		7.2.1 State Space Models and the Complete Computational Structure	166		
		7.2.2 Functional System Descriptions and the Manifest Structure	171		
		7.2.3 Structured Linear Fractional Transformations and the			
		Subsystem Structure	173		
		7.2.4 Dynamical Structure Functions and the Signal Structure	180		
		7.2.5 Relationship to Other System Representations	185		
	7.3	Applications of Dynamical Structure Functions	189		
		7.3.1 Network Reconstruction	189		
		7.3.2 Vulnerability Analysis	192		
		7.3.3 Structured Controller Design	196		
	7.4	Conclusion	198		
	Part	II Exercises	202		
	Part	III Privacy, Security, and Protection	207		
8	Preserving Confidentiality of Critical Energy Infrastructure Information				
	Bernar	rd Lesieutre, Alex Borden, and Parameswaran Ramanathan			
	8.1	Introduction	209		
	8.2	Power System Models	211		
		Confidentiality-Preserving Transformations	213		
		8.3.1 Masking Transformations for the Linear Program	214		
	8.4	Power System-Preserving Transformations	219		
		8.4.1 Example	223		
	8.5	Conclusions	226		
9	A Framework for Cyber-Physical System Security Situation Awareness				
	Wei Yu, Guobin Xu, Khanh Pham, Erik Blasch, Genshe Chen, Dan Shen, and Paul Moulema				
	9.1	Introduction	229		
	9.2	Related Work	230		
		A Modeling Framework	231		
		Cyber-Threat Taxonomy	233		
		9.4.1 Attack Venues	234		
		9.4.2 Attack Objectives	236		
		9.4.3 Attacks in CPS Layers	237		
	9.5	Defensive Taxonomy	238		
		9.5.1 Protective Objectives	238		

			Contents	ix	
		0.5.0		220	
		9.5.2	Defense Deployment Opportunities	239	
	0.6	9.5.3	Counter Mechanisms	240	
	9.6		nts of Trust in CPS Security Design	240	
		9.6.1 9.6.2	Elements of Trust Scope Elements of Trust Objectives	241 242	
	0.7			242 243	
			ection System for CPS Security Situational Awareness	243 244	
	9.8 9.9	Conclu	ated Simulation and Emulation Environment	244	
	9.9	Concit	121011	240	
10	Secu	irity in t	he Cyber-Physical Electric Power Infrastructure	252	
	Bruce	McMillin,	, Ravi Akella, Gerry Howser, Thoshitha Gamage, and Tom Roth		
	10.1	Abstra	ct	252	
	10.2	Need a	and Challenges	253	
	10.3	The Ca	ase for Information Flow Security	254	
	10.4	Charac	cterizing Confidentiality	255	
	10.5	Compe	ensation as a Security Measure	257	
	10.6	Confid	lentiality in Electric Smart Grid Systems	258	
		10.6.1	Formal Models of Composition of Cyber and Physical Processes	262	
		10.6.2		263	
		10.6.3	Information Flow Properties for CPSs	264	
		10.6.4	6	265	
		10.6.5	Verification of Information Flow in FREEDM Using		
			π -calculus	268	
		10.6.6	Mobility Workbench	273	
		10.6.7		274	
	10.7		Existing Methods of Information Flow Analysis to Encompass		
		-	le Security Domains	276	
	10.8		tion Monitoring Enforcement to Preserve Information Flow		
		Securit		281	
	10.9	The W	ay Forward	286	
11	Bio-	inspired	Framework for Allocation of Protection Resources in		
	Cybe	er-Physic	cal Networks	293	
	Victor M. Preciado, Michael Zargham, Chinwendu Enyioha, Cameron Nowzari, Shuo Han, Masaki				
	-		abaie, and George Pappas		
		Introdu		293	
	11.2		matical Framework	295	
		11.2.1		295	
		11.2.2		296	
	11.3		siconvex Framework for Optimal Resource Allocation	298	
		11.3.1	6 6 11	299	
		11.3.2	Controlling Epidemic Outbreaks in a Transportation Network	301	

х	Contents			
	11.4 Toward a General Framework for Network Protection	303		
	11.4.1 Generalized Epidemic Models	303		
	11.4.2 Data-Driven Allocation	305		
	11.4.3 Non-Poissonian Rates	307		
	11.5 Comparisons with Common Heuristics	308		
	11.5.1 Greedy, Centrality-Based Strategies	309		
	11.5.2 Greedy Heuristics and Workstation Protection	310		
	11.6 Conclusions	312		
	Part III Exercises	318		
	Part IV Frameworks and Testbeds	323		
12	Resource Management in Cloud-Assisted Cyber-Physical Systems	325		
	Brijesh Kashyap Chejerla, Sanjay Madria, and Sajal K. Das			
	12.1 Introduction	325		
	12.2 Resource Management in Static and Dynamic CPSs	327		
	12.2.1 Systems on Static Topologies	328		
	12.2.2 Systems on Dynamic Topologies	328		
	12.2.3 Resource Management in Embedded CPSs	329		
	12.2.4 Allocation under Resource Constraints	332		
	12.2.5 Cooperative Resource Management	333		
	12.3 Big Data in CPSs	334		
	12.4 Scope of CPS Cloud Computing Resource Management	336		
	12.4.1 Actors and Cloud Application Provisioning Models	336		
	12.4.2 Management Objectives	337		
	12.4.3 Resource Types	338		
	12.4.4 Resource Management Functions	339		
	12.5 Scheduling of the Cloud Resources to Satisfy the QoS	342		
	12.5.1 Global Scheduling of Virtualized Resources	342		
	12.5.2 Resource Utilization Estimation	345		
	12.5.3 Local Scheduling of Virtualized Resources	346		
	12.5.4 Application Scaling and Provisioning	347		
	12.5.5 Workload Management	349		
	12.6 Case Study of an Automobile CPS	351		
	12.6.1 Functional View of the Automobile CPS12.6.2 Software Architecture and Mapping	351		
	12.6.2 Software Architecture and Mapping 12.7 Conclusions	353 354		
13	Middleware for the Internet of Things	363		
	Rahav Dor and Chenyang Lu			
	13.1 Motivation for an IoT Middleware	364		
	13.2 The Services We May Want from a Middleware	365		

	Contents	хі				
	13.3 AllJoyn Case Study	367				
	13.3.1 System Requirements	367				
	13.3.2 Using AllJoyn: An Overview	368				
	13.3.3 AllJoyn Router	369				
	13.3.4 Connecting to AllJoyn	369				
	13.3.5 App Advertising and Discovery	370				
	13.3.6 Starting to Communicate	370				
	13.3.7 Dynamic Network Conditions	371				
	13.3.8 Apps' Specific Functionality	371				
	13.3.9 AllJoyn Summary	372				
	13.4 CoAP Case Study	373				
	13.4.1 Internet Technologies	373				
	13.4.2 Compatibility with Internet Technologies	373				
	13.4.3 The Application Layer	374				
	13.4.4 URIs	375				
	13.4.5 Discovery	375				
	13.4.6 CoAP Summary	377				
	13.5 BOSS Case Study	378				
	13.5.1 Component Abstraction Layer	379				
	13.5.2 sMAP	379				
	13.5.3 Semantic Modeling and Query	380				
	13.5.4 Time Series Data Processing	381				
	13.5.5 Transaction Management	381				
	13.5.6 BOSS Summary	382				
	13.6 A CPS Middleware for the IoT: Summary and Observations	383				
14	In Silico and In Vitro Modeling Platforms for Stimulation of Emergent					
	Processes in Neuronal Networks	387				
	Sandip Roy, Patrick Corrigan, and James Krueger					
	14.1 Introduction	387				
	14.2 A Linear Model for Network Synchronization under Stimulation	390				
	14.2.1 Model Formulation	390				
	14.2.2 Model Analysis	392				
	14.3 In Silico Synchronization Network Model for Distributed					
	Sleep Regulation	398				
	14.3.1 Model Formulation	400				
	14.3.2 Simulation and Analysis	402				
	14.4 A Cell-Culture Model for Distributed Sleep Regulation	404				
	14.4.1 Multi-location Electrical Measurement from <i>In Vitro</i>	101				
	Networks Grown on MEA Dishes	405				
	14.4.2 Data Analysis for Sleep/Waking Correlates	405				
	14.4.3 Stimulation and Biochemical Modulation	405				
	14.4.4 Using the Models Together: Correlation Analysis	400				
	17.7.7 Using the Wordens Together. Correlation Analysis	+00				

xii	Contents	
	Part IV Exercises	412
	Part V Conclusion	415
15	Wide-Area Management of Cyber-Physical Infrastructures: A Call to Action	417
	Sandip Roy, Sajal K. Das, and Mengran Xue	
	15.1 Introduction	417
	15.2 Ten Factors in the Management of Cyber-Physical Infrastructures	419
	15.2.1 Factor 1: Decision-Making at Multiple Time Scales	419
	15.2.2 Factor 2: Working from Domain-Specific Models for	
	Physical-World Processes	421
	15.2.3 Factor 3: Cyber in the Problem, Cyber in the Solution	422
	15.2.4 Factor 4: Sensing and Especially Actuation Are	
	Sparse, Expensive, and Legacy	423
	15.2.5 Factor 5: Respecting the Human in the Loop	425
	15.2.6 Factor 6: Modeling the Environment	426
	15.2.7 Factor 7: The Growing Challenge of Cyber-Security	427
	15.2.8 Factor 8: Developing Simple Graph-Based Rubrics	428
	15.2.9 Factor 9: Exploiting Incidental Measurements	430
	15.2.10 Factor 10: Economics Matter	431

Index

436

Contributors

Ravi Akella DENSO International America Inc., San Jose, CA, USA

Erik Blasch

Information Directorate, Air Force Research Laboratory, Rome, NY, USA

Paul Bogdan

Electrical and Computer Engineering Department, University of Southern California, Los Angeles, CA, USA

Alex Borden

Electrical and Computer Engineering Department, University of Wisconsin – Madison, Madison, WI, USA

Airlie Chapman Mechanical Engineering Department, University of Melbourne, Australia

Brijesh Kashyap Chejerla

Electrical and Computer Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA

Genshe Chen Intelligent Fusion Technology, Inc., Germantown, MD, USA

Vasu Chetty

Information and Decision Algorithms Laboratories, Department of Computer Science, Brigham Young University, Provo, UT, USA

Patrick Corrigan

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

Sajal K. Das

Computer Science Department, Missouri University of Science and Technology, Rolla, MO, USA

xiv List of Contributors

Rahul Dhal

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

Rahav Dor

Department of Computer Science & Engineering, School of Engineering & Applied Science, Washington University in St. Louis, Saint Louis, MO, USA

Chinwendu Enyioha

Department of Electrical Engineering, Harvard University, USA

James J. Filliben

NIST, Gaithersburg, MD, USA

Thoshitha Gamage

Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, USA

Shuo Han

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Gerry Howser

Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA

Ali Jadbabaie

Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA

S. Jagannathan

Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA

James Krueger

Integrative Physiology & Neuro, Spokane, WA, USA

Yu Lei

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX USA

Bernard Lesieutre

Electrical and Computer Engineering Department, University of Wisconsin – Madison, Madison, WI, USA

List of Contributors

Chenyang Lu

Department of Computer Science & Engineering, School of Engineering & Applied Science, Washington University in St. Louis, Saint Louis, MO, USA

Sanjay Madria

Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA

Radu Marculescu

Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Nuno Martins

Electrical and Computer Engineering, University of Maryland, College Park, MD, USA

Bruce McMillin

Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA

Mehran Mesbahi

Department of Aeronautics and Astronautics, University of Washington, WA, USA

Kevin Mills

NIST, Gaithersburg, MD, USA

Paul Moulema

Department of Computer Science and Information Technology, Western New England University, Springfield, MA, USA

Cameron Nowzari

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Masaki Ogura

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

George Pappas

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Khanh Pham

Space Vehicles Directorate, Air Force Research Laboratory, Kirtland, NM, USA

xvi List of Contributors

Victor M. Preciado

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Parameswaran Ramanathan

Electrical and Computer Engineering Department, University of Wisconsin – Madison, Madison, WI, USA

Tom Roth

NIST, Gaithersburg, MD, USA

Sandip Roy

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

Avimanyu Sahoo

Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA

Eric Schoof

Electrical and Electronic Engineering Department, University of Melbourne, Australia

Dan Shen

Intelligent Fusion Technology, Inc., Germantown, MD, USA

Marcos M. Vasconcelos

Electrical and Computer Engineering Department, University of Southern California, Los Angeles, CA, USA

Yan Wan

Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA

Sean Warnick

Information and Decision Algorithms Laboratories, Department of Computer Science, Brigham Young University, Provo, UT, USA

Junfei Xie

Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, USA

Cambridge University Press 978-1-107-06661-8 — Principles of Cyber-Physical Systems Edited by Sandip Roy , Sajal Das Frontmatter <u>More Information</u>

List of Contributors

xvii

Guobin Xu

Department of Computer Science and Information Technologies, Frostburg State University, Frostburg, MD, USA

Hao Xu

Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA

Mengran Xue

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

Wei Yu

Department of Computer and Information Sciences, Towson University, Towson, MD, USA

Michael Zargham

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Yi Zhou

Computer Science and Engineering, University of North Texas, Denton, TX, USA

Preface

Cyber technologies are becoming pervasive in engineered physical systems ranging in scale from micro-robots that travel in the bloodstream to multi-continent transportation networks. The tight interfacing of cyber and physical components in engineered systems permits profound (and sometimes magical) advancements in their functionalities, but at the same time brings forth unique challenges in system operation, analysis, and design. The potentially transformative benefits that come from melding cyber and physical capabilities, and the attendant challenges, are rapidly driving research and development efforts in wide-ranging fields (e.g., medicine, transportation, power transmission, retail). As these cyber-physical systems (CPSs) become increasingly common in our daily lives, tools and techniques for characterizing and designing their operations are increasingly needed. This is because such tools will (1) permit keen analysis and improvement of the intricate interactions between cyber and physical aspects of a particular complex system; and yet (2) transcend system-specific details to provide general insight into CPSs. In short, a foundational theory for CPSs is spanning important disciplines but yielding concrete advances in deployment and operation of particular systems.

The interfacing of cyber technologies with physical systems is not new: Computers have been used in conjunction with electromechanical systems almost from the inception of the digital age, and such fields as telecommunications and manufacturing have a rich history of exploiting digital technologies to enhance physical-system function. What is new, however, is (1) the increasingly wide penetration of cyber-capabilities into physical devices; (2) the growing diversity of uses of cyber-capabilities in these systems; (3) the increasing sophistication of the computer-machine interface; and (4) the advent of integrated technologies whose functionalities supersede those of physical and cyber systems in isolation. It is this growing pervasiveness and sophistication of CPSs that motivates the development of a new foundational theory, one which provides generic insight into interfaced cyber and physical capabilities across disciplines. At its essence, such a foundation requires understanding of how informationtransmission and processing capabilities (the hallmarks of cyber systems) can be interfaced with physics-based functionalities. A wide array of interesting and difficult questions arise in engineering these dual-purpose systems, including analysis of their dynamics, stability analysis, performance design, robustness and security characterization, equity, implementation of the cyber-physical interface, and deployment, among others.

Preface

XX

The analysis and design of CPSs has drawn wide attention in academia, government, and industry in recent years. In particular, industrial and governmental organizations in several domains – automobile manufacturing, surgical/medical device design, and transportation-system management, to name just a few – are engaged in research and development efforts to build and optimize CPSs. At the same time, university engineering and computer-science programs are beginning to foster scholarship on CPSs, through introduction of new courses, involvement in and support of research projects, faculty-hiring initiatives, etc. As research and development on CPSs continues to expand, there is a growing recognition that knowledge in several fields needs to be integrated and enhanced to develop foundational methods/tools for CPSs and to take these methods to industrial practice. Such foundational integrated work on CPSs crucially requires forums that: (1) provide comprehensive tutorial content on basic CPS principles and concepts; and (2) introduce state-of-the-art research on focused topics that are necessary for advancing the field.

The purpose of this publication is to meet these dual needs for tutorial content and focused research advancement, in a way that is useful for both academic researchers and industrial practitioners. With this goal in mind, we have sought to develop a text that can serve both as a compendium of interesting and important research results, and as a textbook for a graduate or advanced undergraduate course on CPSs. To this end, we have invited leading researchers on CPSs from several disciplines to contribute chapters to the book that contain up-to-date research progress. While these chapters capture new research, we have also asked the authors to include tutorial content to provide a comprehensive introduction to their direction of research; this content includes significant literature review, examples and exercises, illustrations, and homework problems, so that the book is instructional for classroom use. Additionally, we as editors have included sectional overview materials, a scoping chapter for future work on cyber-physical infrastructures, and some discussions and annotations, so as to achieve a cohesive story with smooth transitions and completeness. The two of us hail from different disciplines (controls engineering and computer science) and are collaborating on multidisciplinary research on CPSs; we have sought to draw on our ongoing collaboration to compose an interdisciplinary yet cohesive perspective. In short, it is our intention that the textbook covers the state-of-the-art with regard to influential CPS research, while also meeting the need for a cohesive framework for CPS concepts and principles.

The book is divided into four parts which each address a major conceptual theme in the design and operation of CPSs. Specifically, the chapters in Part I discuss challenges in uncertainty modeling, analysis, and mitigation for CPSs. Part II explores the notion of CPS structure, broadly defined, and explores how structure can be exploited in control and management of CPSs. The chapters in Part III address the growing need for threat assessment and resolution across the cyber and physical components of CPSs, and hence introduce principles related to security, privacy, and vulnerability. Finally, Part IV describes the development of frameworks and testbeds for addressing CPS challenges. Core conceptual and analytical results are presented throughout the book, but are also supported by myriad application case studies that reflect the authors'

Preface

xxi

individual specializations. Besides the four main parts, the editors have included a concluding chapter, which overviews major challenges in management and control of large-scale infrastructure networks. This concluding chapter shows how the major themes of the book can tie together in addressing an engineering grand challenge, namely management of terrestrial-scale infrastructures, and serves as a call-to-action to CPS researchers to focus on wide-area management of infrastructures.

The field of CPSs has grown extremely rapidly over the last 10 years or so: An extraordinary number of conference and journal articles have been published on the topic, new conferences and journals have been initiated, several companies have introduced focused research and development efforts in the area, and – importantly – several other books have been written on the subject. The wealth of recent work on the subject is a strong motivation for this book, but at the same time means that we should distinguish the contributions of this book from other texts. Because of the huge scope and newness of CPS research, intrinsically each text and survey manuscript has a different perspective on the field. We believe that this book encompasses a wide range of core concepts as well as applications of CPSs, and should be of interest widely to academics and practitioners in the field. At the same time, however, we would like to highlight two distinguishing features of our book.

First, this book diverges from the bulk of the literature on CPSs in that there is a central focus on large-scale infrastructures like power-transmission networks and global transportation systems. CPSs as a field grew out of the embedded computing literature, and hence naturally the field's original focus was on physical devices with embedded cyber systems, and in turn on networks of such devices (which constitute the Internet of Things). This book overviews research in these directions, but also recognizes the complementary challenge of operating legacy infrastructures with integrated cyber systems as a keystone CPS problem. We believe that the need for focused research and tutorial content is particularly pronounced in the management of cyber-physical critical infrastructures, like transportation, electric power, and water-distribution systems, among many others. The efficient operation of such infrastructures in a complex and adversarial world constitutes a grand challenge problem for engineers today. Diverse cyber technologies are being integrated into these infrastructures, and are enabling revolutionary changes in their operations. Yet fully harnessing these new technologies requires detailed co-modeling and analysis of the infrastructures' physical-world processes and its cyber systems. For most infrastructures, modeling, analysis, and management are undertaken by domain experts who are well-versed in the physical processes and legacy systems involved in the infrastructure, but typically have limited technical knowledge of computing systems. On the other hand, most computer scientists lack specialized knowledge about the physical processes in infrastructures. Also, the historical development of infrastructure systems often dictates that there is limited interface between computer scientists and domain experts. Given this lack of comprehensive expertise, conceptual and mathematical frameworks are needed that facilitate co-analysis of the cyber and physical systems and allow efficient operation/ management. This book aims to provide the conceptual and mathematical frameworks needed for operation and management of CPSs.

xxii Preface

Second, a special focus of this book is on coalescing research in computer science and systems/controls engineering to address CPS challenges. Several of the chapters introduce techniques that leverage both systems/controls engineering concepts and computer science constructs, or develop new algorithmic capabilities that merge the fields. These efforts show that coalesced methods can support advanced control and design of CPSs, including for performance-shaping and threat assessment and mitigation. The coalesced methods are crucial for the analysis and design of cyberphysical *networks* (whether infrastructures like power and transportation networks, or communicating-agent systems like multi-vehicle teams or networked devices in a smart building/home). This book demonstrates the application of coalesced methods in these diverse network-focused applications.

It is our hope that the material in the book will be useful for researchers and practitioners across many areas of specialization, who encounter analysis and engineering design problems that involve tightly interfaced cyber and physical components. Target audiences include:

- practitioners in industry engaged in building cyber-physical capabilities, who require a comprehensive overview of foundational methods in the field;
- academic and industrial researchers interested in developing interdisciplinary techniques for the analysis and management of CPSs, such as epidemiologists seeking to integrate cyber decision-making capabilities into hospital-management procedures or public-health initiatives;
- graduate and advanced undergraduate students in engineering and computer science, especially those focused on modeling, algorithms, and systems/control. Specifically, we envision that these students would read the text as part of a graduate or advanced undergraduate course on CPSs.

The book has been designed to allow readers to easily port the introduced concepts and principles to their application area of interest.