

Statistical Downscaling and Bias Correction for Climate Research

Statistical downscaling and bias correction are becoming standard tools in climate impact studies. This book provides a comprehensive reference to widely used approaches, and additionally covers the relevant user context and technical background, as well as a synthesis and guidelines for practitioners. It presents the main approaches including statistical downscaling, bias correction and weather generators, along with their underlying assumptions, skill and limitations. Relevant background information on user needs and observational and climate model uncertainties is complemented by concise introductions to the most important concepts in statistical and dynamical modelling. A substantial part is dedicated to the evaluation of regional climate projections and their value in different user contexts. Detailed guidelines for the application of downscaling and the use of downscaled information in practice complete the volume. Its modular approach makes the book accessible for developers and practitioners, graduate students and experienced researchers, as well as impact modellers and decision makers.

Douglas Maraun is an associate professor and Head of the Regional Climate Modelling Group at the Wegener Center for Climate and Global Change at the University of Graz. His research interests include the processes governing local extreme events, assessing uncertainties of regional climate projections, and statistical post-processing of climate simulations for adaptation planning. He chaired the VALUE network which carried out the most comprehensive inter-comparison and evaluation of different downscaling approaches, and is involved in steering activities of the international downscaling initiative CORDEX.

Martin Widmann is a senior lecturer and climate scientist in the School of Geography, Earth and Environmental Sciences at the University of Birmingham. His current main research area is regional climate change, in particular the development and validation of statistical downscaling methods. He was one of the first to apply bias correction in a climate change context, and recently co-chaired the VALUE network. His other field of research is past climates, in particular the development of data assimilation methods to combine climate simulations with empirical knowledge from proxy data.

Statistical Downscaling and Bias Correction for Climate Research

DOUGLAS MARAUN

Karl-Franzens-Universität Graz Austria

MARTIN WIDMANN

University of Birmingham

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107066052

DOI: 10.1017/9781107588783

© Douglas Maraun and Martin Widmann 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2018

 $A\ catalogue\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library$

ISBN 978-1-107-06605-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

to our families

Contents

	Preface Acknowledgements	<i>page</i> xii xv
1	Introduction	1
	1.1 Statistical Downscaling and Bias Correction in a Nutshell	2
	1.2 How to Read This Book	5
Part I	Background and Fundamentals	
2	Regional Climate	9
	2.1 Large- and Planetary-Scale Processes	9
	2.2 Regional to Microphysical Processes	12
	2.3 Regional Climate Variability and Change	13
	2.4 Further Reading	15
3	History of Downscaling	16
	3.1 Downscaling in Weather Forecasting	16
	3.2 Concerns about Climate Change	17
	3.3 Early Downscaling in Climate Research	17
	3.4 The 1990s and 2000s	20
	3.5 Recent Developments	21
	3.6 Further Reading	23
4	Rationale of Downscaling	24
	4.1 What Is Downscaling?	24
	4.2 Statistical Aspects of Regional Climate	25
	4.3 Requirements for a Downscaling Model	29
	4.4 Requirements for the Downscaled Model	29
	4.5 Further Issues	30
	4.6 Further Reading	32

viii **Contents**

5	User N	Needs	33
	5.1	Context	33
	5.2	General Requirements	35
	5.3	User Groups	36
	5.4	User-Specific Needs	37
	5.5	Further Reading	40
6	Mathe	41	
	6.1	Random Variables and Probability Distributions	41
	6.2	Parameter Estimation	55
	6.3	Regression Models	61
	6.4	Stochastic Processes	70
	6.5	Pattern Methods	74
	6.6	Further Reading	86
7	Refere	87	
	7.1	Predictand Data	87
	7.2	Predictor Data	93
	7.3	Further Reading	95
8	Climate Modelling		96
	8.1	Model and Simulation Types	96
	8.2	Dynamical Core of General Circulation Models	100
	8.3	Numerical Integration	107
	8.4	Parameterisations	109
	8.5	Performance of Climate Models	117
	8.6	Further Reading	122
9	Uncertainties		123
	9.1	Types of Uncertainties in Climate Projections	123
	9.2	Assessment of Uncertainties	128
	9.3	Further Reading	132
Part II	Statistica	al Downscaling Concepts and Methods	
10	Struct	ture of Statistical Downscaling Methods	135
	10.1	Perfect Prognosis versus Model Output Statistics	135
	10.2	Deterministic and Stochastic Downscaling	137
	10.3	Marginal, Temporal and Multivariate Structure	139
	10.4	Further Reading	140

		Contents	IX
11	Perfec	t Prognosis	141
	11.1	Assumptions	142
	11.2	Methods	142
	11.3	Structural Skill and Limitations of PP Methods	148
	11.4	Predictands	155
	11.5	Predictors	155
	11.6	Model and Predictor Selection	164
	11.7	A Cookbook for Developing a PP Model	166
	11.8	Further Reading	169
12	Model	Output Statistics	170
	12.1	Terminology and Relationship with Numerical Weather Prediction	171
	12.2	Bias Definition	172
	12.3	Assumptions	173
	12.4	Methods	173
	12.5	Structural Skill and Limitations	179
	12.6	Predictors	187
	12.7	Bias Correction and Downscaling	188
	12.8	Bias Correction and Mislocations Madification of the Climate Change Signal	192
	12.9 12.10	Modification of the Climate Change Signal A Cookbook for Bias Correction	195 197
	12.10	Further Reading	200
13	Weath	er Generators	201
13			
	13.1	Assumptions	201
	13.2	Methods	202
	13.3	Structural Skill and Limitations of Weather Generators	212
	13.4	Using Weather Generators for Climate Change Projections	216
	13.5	Further Reading	219
14	Other A	Approaches	220
	14.1	Statistical-Dynamical Downscaling and Emulators	220
	14.2	Separating Bias Correction and Downscaling	222
	14.3	Further Reading	224
Part III	Downsca	ling in Practice and Outlook	
15	Evalua	tion	227
	15.1	The Regional Climate Change Context	228
	15.2	Evaluation Diagnostics	229
	15.3	Standard Evaluation Experiments	231

x Contents

	15.4	Experiments to Evaluate Trends	233
	15.5	Cross-Validation	236
	15.6	Assessing Added Value	237
	15.7	Evaluating Bias Correction Methods	238
	15.8	Further Reading	241
16	Performance of Statistical Downscaling		242
	16.1	Representing Marginal Aspects	243
	16.2	Representing Temporal Aspects	245
	16.3	Representing Spatial Aspects	250
	16.4	Representing Multivariable Aspects	252
	16.5	Representing Extremes	254
	16.6	Representing Climate Change	257
	16.7	Synthesis	258
	16.8	Further Reading	262
17	A Regi	onal Modelling Debate	263
	17.1	Are Climate Models Fit for Purpose?	263
	17.2	Can Bottom-Up Approaches Reduce Uncertainties?	266
	17.3	Further Reading	268
18	Use of	Downscaling in Practice	269
	18.1	Assessing the Relevance of Climate Change	270
	18.2	Assessing the Climate Information Requirements	270
	18.3	Choosing the Driving GCMs	271
	18.4	Choosing the Downscaling and Bias Correction Options	272
	18.5	Interpretation of the Results	274
	18.6	Need for Interdisciplinary Co-Operation	276
	18.7	Preparing Data for Downscaling Portals	278
	18.8	Climate Information Distillation	278
	18.9	Ethical Responsibility	279
	18.10	Further Reading	279
19	Outloo	k	281
	19.1	Research to Complement Ongoing Downscaling Applications	282
	19.2	Progress in Dynamical Modelling	285
	19.3	Progress in Statistical Methods	286
	19.4	Thinking Out of the Box	287
	19.5	Concluding Remarks	288
	Appen	dix A: Methods Used in This Book	290

		Contents	Xi
Appen	ndix B: Useful Resources		293
B.1	Statistical Downscaling Software Packages and Portals		293
B.2	Programmes and Initiatives		294
B.3	Observational Data Sets		296
Refere	ences		303
Index			342

Preface

Statistical downscaling and bias correction are becoming a core element of climate impact studies. They are often intended to and have the potential to inform costly and far-reaching real-world adaptation decisions. The international statistical downscaling community, however, is not organised to meet this challenge, partly because the field is inherently interdisciplinary. Major methodological contributions come from climatologists, impact modellers – in particular hydrologists – and statisticians, all with their different scientific backgrounds, experiences and interests. No consensus exists on the appropriate use and evaluation of different methods; the underlying assumptions are often not explicitly spelled out, rarely are they tested. The downscaling language is, not surprisingly, far from being unified and varies from community to community and region to region.

A number of review articles have been published (e.g. Hewitson and Crane 1996, Zorita and von Storch 1997, Wilby and Wigley 1997, Onof et al. 2000, Fowler et al. 2007, Maraun et al. 2010b, Wilks 2010, Teutschbein and Seibert 2012, Maraun 2016), but some are becoming outdated. They are mostly narrow in scope and in general serve as a literature overview rather than an in-depth introduction to the subject. The IPCC has published a guidelines document on statistical downscaling (Wilby et al. 2004), and one textbook exists on empirical statistical downscaling by Benestad et al. (2008), as well as some book chapters, for example, in Willems et al. (2012). These contributions, however, are limited to some of the approaches in use and provide a mostly technical view of the subject. Other books like the recent contribution by Wilby (2017) cover a broad overview of climate change and society but only briefly lay out the concepts and methods of statistical downscaling. A book that presents the full range of statistical downscaling approaches in some depth and puts these methods into a broader context was missing. Thus, developers and users of downscaling or PhD students starting to work in the field were essentially forced to read review papers, individual papers or book chapters. This book attempts to close this gap.

The first aim of the book is to introduce the main approaches of statistical down-scaling – namely perfect prognosis, model output statistics (which is often simply a bias correction), weather generators and some hybrid approaches. We present the most widely used methods that have been developed within these classes and discuss the underlying assumptions and how their structure affects their skill.

Preface

Xiii

The second aim of the book is to provide readers with the necessary background knowledge. We review subjects such as regional climate and climate change itself, the needs of users of climate information, the necessary basics of statistical and dynamical modelling and the uncertainties of climate projections.

The third aim of the book is to present guidance for practical applications both for downscalers and users of downscaled information. We therefore discuss a framework to evaluate downscaling approaches, review the most comprehensive evaluation studies and synthesise the discussions of the book into a list of guidelines. The main focus of the book is on climate change studies, but of course many of the concepts are applicable to seasonal or decadal climate predictions as well.

Given the scope of the book, we have tried to write it such that it is accessible to different audiences: first, to experienced users and developers who need a reference or who are interested in the broader context of downscaling. Second, to researchers starting to work in the field, such as PhD students or advanced MSc students, who may look for an introduction to the different approaches and their performance but also require a concise overview of the relevant background knowledge in, for example, statistics. And third, to users of downscaling information, such as impact modellers or climate service providers, who require an overview of statistical downscaling and who seek guidance on the limitations and applicability of the different approaches in a decision-making context

The book is divided into three parts: Part I provides the broad context and background, with more generally accessible chapters on, for example, user needs or climate model uncertainties and two more technical chapters on statistical and dynamical modelling. The latter two chapters require some background in undergraduate maths and statistics but are not required to follow the main ideas in the other parts of the book. Part II of the book introduces the different statistical downscaling approaches and their limitations – it is mainly a reference. Part III discusses the performance of statistical downscaling, links to the ongoing debate about the limitations of regional climate modelling and provides practical guidelines. Readers who are mainly interested in practical applications may start reading the introduction and could then jump directly to Chapter 18. They will then be directed to the different chapters for more in-depth discussions.

With the book, we also attempt to unify the statistical downscaling language. Even though the terminology may be scattered and sometimes misleading in climate change research, a more or less well-defined language exists in the numerical weather-prediction community. At first, the terms used in that community might sound unfamiliar for someone from the climate community. But the use of, for example, 'model output statistics' as a broader term for bias correction techniques has been tested for several years in international initiatives and has been proven useful. We therefore use this language, with some climate-specific adjustments, throughout this book. But we refer to widely used terms where they are suitable. The aim is to use familiar language as much as possible whilst being as precise as necessary. For the mathematical parts of the book, we have decided to stay as close as possible to common notation. That is, our notation is local and differs from chapter to chapter. For instance, in the statistical

xiv

Preface

chapters x refers to a predictor, whereas in the dynamical modelling chapter x refers to a space coordinate.

We hope that this book contributes to integrating the community, stimulates discussions within and beyond the community and fosters the improvement and development of statistical downscaling.

Acknowledgements

This book summarises much of what we have learned about downscaling over the last 10 years. We have acquired much of this knowledge through discussions with colleagues. These discussions helped sharpen our arguments, inspired further research or changed our prior beliefs. Without these discussions, this book would not have been possible. The first of these discussions started at the international workshop on statistical downscaling at the University of East Anglia in May 2009. Since then several initiatives have provided platforms for scientific debate: the European VALUE initiative, funded as EU COST Action ES1102, the international CORDEX-ESD activities and related workshops and, unfortunately for a short time only, the US NCPP initiative on developing a downscaling vocabulary. We are greatly thankful for all the discussions at the meetings, the numerous tele-conferences and the joint writing of papers. To name but a few, we would like to thank, in alphabetical order, Joe Barsugli, Rasmus Benestad, Maria Laura Bettoli, Richard Chandler, Jens Christensen, Jonathan Eden, Jesús Fernandez, Andreas Fischer, Tilmann Gneitung, Galia Guentchev, José Gutierrez, Bill Gutowski, Stefan Hagemann, Alex Hall, Elke Hertig, Bruce Hewitson, Heike Hübener, Radan Huth, Chris Jack, Ian Jolliffe, Sven Kotlarski, Linda Mearns, Christel Prudhomme, Ingo Richter, Ole Rössler, Mathias Rotach, Ted Shepherd, Pedro Soares, Thordis Thorarinsdottir, Heimo Truhetz, Claudia Volosciuk, Mathieu Vrac, Daniel Walton, Rob Wilby and Renate Wilcke.

In particular, we would like to thank our colleagues from the University of Cantabria in Santander and their spin-off company Predictia: without the endurance and professionalism of Joaquin Bedia, Daniel San Martín, José Gutierrez and Sixto Herrera, the VALUE portal would not exist, and many of the VALUE results would not be available. Many of the plots in this book are based on portal content.

When writing the book we discussed its content with several colleagues. They gave important input and commented on the manuscript. These are Emanuele Bevacqua, Michela Biasutti, Jan Haerter, Stefan Hagemann, Clara Hohmann, Ed Maurer, Thomas Mendlik, Christian Onof, Christian Pagé, Marie Piazza, Victor Venema, Giuseppe Zappa and Eduardo Zorita. We thank Chris Jack and Bertrand Timbal for providing links to data sets and Ian Phillips for proofreading the document.

We thank Susan Francis, Zoë Pruce and the team from Cambridge University Press for their continual support and advice. Sharelatex provided an excellent online

xvi Acknowledgements

platform to jointly write the book. We acknowledge funding of the Volkswagen Foundation (grants 85423 and 85425).

Finally, D.M. is deeply thankful for the support and patience of Heike Marie and Jesse Alexander. M.W. thanks family and friends for their support.