Contents

Preface

PART I BASIC THEORY AND OBSERVATIONS

1 **Introduction**
1.1 What is dynamo theory?
1.2 Historical background
1.2.1 The geodynamo
1.2.2 The solar dynamo
1.3 The homopolar disc dynamo
1.4 Axisymmetric and non-axisymmetric systems

2 **Magnetokinematic Preliminaries**
2.1 Structural properties of the \mathbf{B}-field
2.1.1 Solenoidality
2.1.2 The Biot–Savart integral
2.1.3 Lines of force (‘\mathbf{B}-lines’)
2.1.4 Helicity and flux tube linkage
2.2 Chirality
2.2.1 The rattleback: a prototype of dynamic chirality
2.2.2 Mean response provoked by chiral excitation
2.3 Magnetic field representations
2.3.1 Spherical polar coordinates
2.3.2 Toroidal/poloidal decomposition
2.3.3 Axisymmetric fields
2.3.4 Two-dimensional fields
2.4 Relations between electric current and magnetic field
2.4.1 Ampère’s law

Preface

PART I BASIC THEORY AND OBSERVATIONS

1 **Introduction**
1.1 What is dynamo theory?
1.2 Historical background
1.2.1 The geodynamo
1.2.2 The solar dynamo
1.3 The homopolar disc dynamo
1.4 Axisymmetric and non-axisymmetric systems

2 **Magnetokinematic Preliminaries**
2.1 Structural properties of the \mathbf{B}-field
2.1.1 Solenoidality
2.1.2 The Biot–Savart integral
2.1.3 Lines of force (‘\mathbf{B}-lines’)
2.1.4 Helicity and flux tube linkage
2.2 Chirality
2.2.1 The rattleback: a prototype of dynamic chirality
2.2.2 Mean response provoked by chiral excitation
2.3 Magnetic field representations
2.3.1 Spherical polar coordinates
2.3.2 Toroidal/poloidal decomposition
2.3.3 Axisymmetric fields
2.3.4 Two-dimensional fields
2.4 Relations between electric current and magnetic field
2.4.1 Ampère’s law

© in this web service Cambridge University Press
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2</td>
<td>Multipole expansion of the magnetic field</td>
<td>37</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Axisymmetric fields</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Force-free fields</td>
<td>39</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Force-free fields in spherical geometry</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Lagrangian variables and magnetic field evolution</td>
<td>43</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Change of flux through a moving circuit</td>
<td>44</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Faraday’s law of induction</td>
<td>45</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Galilean invariance of the pre-Maxwell equations</td>
<td>45</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Ohm’s law in a moving conductor</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>Kinematically possible velocity fields</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Free decay modes</td>
<td>48</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Toroidal decay modes</td>
<td>49</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Poloidal decay modes</td>
<td>50</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Behaviour of the dipole moment</td>
<td>51</td>
</tr>
<tr>
<td>2.9</td>
<td>Fields exhibiting Lagrangian chaos</td>
<td>53</td>
</tr>
<tr>
<td>2.10</td>
<td>Knotted flux tubes</td>
<td>54</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Twist surgery</td>
<td>54</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Helicity of a knotted flux tube</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Advection, Distortion and Diffusion</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>Alfvén’s theorem and related results</td>
<td>59</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Conservation of magnetic helicity</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>The analogy with vorticity</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>The analogy with scalar transport</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Maintenance of a flux rope by uniform irrotational strain</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>A stretched flux tube with helicity</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>An example of accelerated ohmic diffusion</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>Equation for vector potential and flux-function under particular symmetries</td>
<td>68</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Two-dimensional case</td>
<td>69</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Axisymmetric case</td>
<td>69</td>
</tr>
<tr>
<td>3.8</td>
<td>Shearing of a space-periodic magnetic field</td>
<td>70</td>
</tr>
<tr>
<td>3.9</td>
<td>Oscillating shear flow</td>
<td>73</td>
</tr>
<tr>
<td>3.9.1</td>
<td>The case of steady rotation of the shearing direction</td>
<td>75</td>
</tr>
<tr>
<td>3.10</td>
<td>Field distortion by differential rotation</td>
<td>76</td>
</tr>
<tr>
<td>3.11</td>
<td>Effect of plane differential rotation on an initially uniform field: flux expulsion</td>
<td>77</td>
</tr>
<tr>
<td>3.11.1</td>
<td>The initial phase</td>
<td>78</td>
</tr>
<tr>
<td>3.11.2</td>
<td>The ultimate steady state</td>
<td>79</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Flow distortion by the flow due to a line vortex</td>
<td>81</td>
</tr>
</tbody>
</table>
3.11.4 The intermediate phase 82
3.11.5 Flux expulsion with dynamic back-reaction 84
3.11.6 Flux expulsion by Gaussian angular velocity distribution 84
3.12 Flux expulsion for general flows with closed streamlines 86
3.13 Expulsion of poloidal field by meridional circulation 88
3.14 Generation of toroidal field by differential rotation 89
 3.14.1 The initial phase 90
 3.14.2 The ultimate steady state 90
3.15 Topological pumping of magnetic flux 93

4 The Magnetic Field of the Earth and Planets 99
 4.1 Planetary magnetic fields in general 99
 4.2 Satellite magnetic fields 104
 4.3 Spherical harmonic analysis of the Earth’s field 106
 4.4 Variation of the dipole field over long time-scales 113
 4.5 Parameters and physical state of the lower mantle and core 116
 4.6 The need for a dynamo theory for the Earth 117
 4.7 The core–mantle boundary and interactions 118
 4.8 Precession of the Earth’s angular velocity 119

5 Astrophysical Magnetic Fields 121
 5.1 The solar magnetic field 121
 5.2 Velocity field in the Sun 122
 5.2.1 Surface observations 122
 5.2.2 Helioseismology 124
 5.3 Sunspots and the solar cycle 126
 5.4 The general poloidal magnetic field of the Sun 131
 5.5 Magnetic stars 132
 5.6 Magnetic interaction between stars and planets 134
 5.7 Galactic magnetic fields 136
 5.8 Neutron stars 140

PART II FOUNDATIONS OF DYNAMO THEORY 143

6 Laminar Dynamo Theory 145
 6.1 Formal statement of the kinematic dynamo problem 145
 6.2 Rate-of-strain criterion 146
 6.3 Rate of change of dipole moment 148
 6.4 The impossibility of axisymmetric dynamo action 149
 6.4.1 Ultimate decay of the toroidal field 150
Table of Contents

6.5 Cowling’s neutral point argument 151
6.6 Some comments on the situation $\mathbf{B} \cdot (\nabla \wedge \mathbf{B}) \equiv 0$ 153
6.7 The impossibility of dynamo action with purely toroidal motion 153
6.8 The impossibility of dynamo action with plane two-dimensional motion 156
6.9 Rotor dynamos 156
 6.9.1 The 3-sphere dynamo 158
 6.9.2 The 2-sphere dynamo 161
 6.9.3 Numerical treatment of the Herzenberg configuration 163
 6.9.4 The rotor dynamo of Lowes and Wilkinson 164
6.10 Dynamo action associated with a pair of ring vortices 165
6.11 Dynamo action with purely meridional circulation 169
6.12 The Ponomarenko dynamo 171
6.13 The Riga dynamo experiment 176
6.14 The Bullard–Gellman formalism 176
6.15 The stasis dynamo 183

7 Mean-Field Electrodynamics 185
 7.1 Turbulence and random waves 185
 7.2 The linear relation between \mathcal{E} and \mathbf{B}_0 188
 7.3 The α-effect 189
 7.4 Effects associated with the coefficient β_{ijk} 193
 7.5 First-order smoothing 195
 7.6 Spectrum tensor of a stationary random vector field 196
 7.7 Determination of α_{ij} for a helical wave motion 200
 7.8 Determination of α_{ij} for a random \mathbf{u}-field under first-order smoothing 202
 7.9 Determination of β_{ijk} under first-order smoothing 205
 7.10 Lagrangian approach to the weak diffusion limit 206
 7.10.1 Evaluation of α_{ij} 206
 7.10.2 Evaluation of β_{ijk} 208
 7.10.3 The isotropic situation 209
 7.11 Effect of helicity fluctuations on effective turbulent diffusivity 209
 7.12 Renormalisation approach to the zero-diffusivity limit 212

8 Nearly Axisymmetric Dynamos 216
 8.1 Introduction 216
 8.2 Lagrangian transformation of the induction equation when $\eta = 0$ 219
 8.3 Effective variables in a Cartesian geometry 221
Contents

8.4 Lagrangian transformation including weak diffusion effects 222
8.5 Dynamo equations for nearly rectilinear flow 223
8.6 Corresponding results for nearly axisymmetric flows 225
8.7 A limitation of the pseudo-Lagrangian approach 227
8.8 Matching conditions and the external field 228
8.9 Related developments 230

9 Solution of the Mean-Field Equations 231
9.1 Dynamo models of α^2- and α_ω-type 231
 9.1.1 Axisymmetric systems 232
9.2 Free modes of the α^2-dynamo 233
 9.2.1 Weakly helical situation 235
 9.2.2 Influence of higher-order contributions to \mathbf{E} 235
9.3 Free modes when α_{ij} is anisotropic 236
 9.3.1 Space-periodic velocity fields 237
 9.3.2 The α^2-dynamo in a spherical geometry 238
 9.3.3 The α^2-dynamo with antisymmetric α 241
9.4 Free modes of the α_ω-dynamo 244
9.5 Concentrated generation and shear 247
 9.5.1 Symmetric $U(z)$ and antisymmetric $\alpha(z)$ 249
9.6 A model of the galactic dynamo 251
 9.6.1 Dipole modes 254
 9.6.2 Quadrupole modes 255
 9.6.3 Oscillatory dipole and quadrupole modes 257
 9.6.4 Oblate-spheroidal galactic model 258
9.7 Generation of poloidal fields by the α-effect 258
9.8 The α_ω-dynamo with periods of stasis 260
9.9 Numerical investigations of the α_ω-dynamo 261
9.10 More realistic modelling of the solar dynamo 269
9.11 The Karlsruhe experiment as an α^2-dynamo 272
9.12 The VKS experiment as an α_ω-dynamo 273
 9.12.1 Field reversals in the VKS experiment 275
9.13 Dynamo action associated with the Taylor–Green vortex 276

10 The Fast Dynamo 279
10.1 The stretch-twist-fold mechanism 279
 10.1.1 Writhe and twist generated by the STF cycle 279
 10.1.2 Existence of a velocity field in \mathbb{R}^3 that generates the STF cycle 281
 10.1.3 Tube reconnection and helicity cascade 282
10.2 Fast and slow dynamos 283
Contents

10.3 Non-existence of smooth fast dynamos 284
10.4 The homopolar disc dynamo revisited 285
10.5 The Ponomarenko dynamo in the limit $\eta \to 0$ 287
10.6 Fast dynamo with smooth space-periodic flows 288
 10.6.1 The symmetric case $A = B = C = 1.$ 289
 10.6.2 The Galloway–Proctor fast dynamo 291
10.7 Large-scale or small-scale fast dynamo? 293
10.8 Non-filamentary fast dynamo 294

PART III DYNAMIC ASPECTS OF DYNAMO ACTION 297

11 Low-Dimensional Models of the Geodynamo 299
 11.1 Dynamic characteristics of the segmented disc dynamo 299
 11.2 Disc dynamo driven by thermal convection 302
 11.2.1 The Welander loop 303
 11.2.2 Coupling of Welander loop and Bullard disc 305
 11.3 The Rikitake dynamo 306
 11.4 Symmetry-mode coupling 308
 11.5 Reversals induced by turbulent fluctuations 310
 11.5.1 Dipole-quadrupole model 311

12 Dynamic Equilibration 315
 12.1 The momentum equation and some elementary consequences 315
 12.1.1 Alfvén waves 316
 12.1.2 Alfvén wave invariants and cross-helicity 317
 12.2 Lehnrert waves 319
 12.2.1 Dispersion relation and up-down symmetry breaking 320
 12.2.2 Inertial and magnetostrophic wave limits 322
 12.3 Generation of a fossil field by decaying Lehnrert waves 323
 12.4 Quenching of the α-effect by the Lorentz force 324
 12.4.1 A simple model based on weak forcing 324
 12.4.2 Quenching of the β-effect 327
 12.5 Magnetic equilibration due to α-quenching 327
 12.5.1 The case of steady forcing 328
 12.5.2 The case of unsteady forcing with $\omega^2 \gg \eta v k^4$ 329
 12.5.3 Cattaneo–Hughes saturation 331
 12.6 Quenching of the α-effect in a field of forced Lehnrert waves 333
 12.7 Equilibration due to α-quenching in the Lehnrert wave field 336
 12.7.1 Energies at resonance 338
 12.8 Forcing from the boundary 339
Contents

12.9 Helicity generation due to interaction of buoyancy and Coriolis forces 342
12.10 Excitation of magnetostrophic waves by unstable stratification 343
12.11 Instability due to magnetic buoyancy 348
12.11.1 The Gilman model 350
12.12 Helicity generation due to flow over a bumpy surface 353

13 The Geodynamo: Instabilities and Bifurcations 356
13.1 Models for convection in the core of the Earth 356
13.2 Onset of thermal convection in a rotating spherical shell 357
 13.2.1 The Roberts–Busse localised asymptotic theory for small \mathcal{E} 360
 13.2.2 The Soward–Jones global theory for the onset of spherical convection 361
 13.2.3 Localised mode of instability in a spherical shell 363
 13.2.4 Dynamic equilibration 365
13.3 Onset of dynamo action: bifurcation diagrams and numerical models 366
 13.3.1 Numerical models 369
 13.3.2 Model equations for super- and subcritical bifurcations 371
 13.3.3 Three regimes, WD, FM and SD; numerical detection 372
 13.3.4 The SD regime 373
 13.3.5 The WD/SD dichotomy 375
13.4 The Childress–Soward convection-driven dynamo 376
 13.4.1 Mixed asymptotic and numerical models 380
13.5 Busse’s model of the geodynamo 381
13.6 The Taylor constraint and torsional oscillations 384
 13.6.1 Necessary condition for a steady solution $\mathbf{U}(x)$ 384
 13.6.2 Sufficiency of the Taylor constraint for the existence of a steady $\mathbf{U}(x)$ 385
 13.6.3 The arbitrary geostrophic flow $v(s)$ 387
 13.6.4 Deviations from the Taylor constraint 388
 13.6.5 Torsional oscillations when the Taylor constraint is violated 388
 13.6.6 Effect of mantle conductivity 389
13.7 Scaling laws 390

14 Astrophysical dynamic models 396
14.1 A range of numerical approaches 396
 14.1.1 Low-order models 396
 14.1.2 Mean-field models 398
Table of Contents

14.1.3 Direct numerical simulations 400
14.2 From planets to stars 402
14.3 Extracting dynamo mechanisms 403
14.4 Dipole breakdown and bistability 405
14.5 Kinematically unstable saturated dynamos 406
14.6 The galactic dynamo 408
14.7 Accretion discs and the magnetorotational instability (MRI) 409
 14.7.1 Rayleigh stability criterion 410
 14.7.2 Magnetorotational instability 411
 14.7.3 Shearing-box analysis 412
 14.7.4 Dynamo action associated with the magnetorotational instability 414
 14.7.5 Experimental realisation of the magnetorotational instability 415

15 Helical Turbulence 417
 15.1 Effects of helicity on homogeneous turbulence 417
 15.1.1 Energy cascade in non-helical turbulence 418
 15.1.2 Intermittency 419
 15.1.3 Effect of helicity on energy cascade 422
 15.2 Influence of magnetic helicity conservation in energy transfer processes 426
 15.3 Modification of inertial range due to large-scale magnetic field 432
 15.4 Non-helical turbulent dynamo action 433
 15.5 Dynamo action incorporating mean flow effects 435
 15.6 Chiral and magnetostrophic turbulence 438

16 Magnetic Relaxation under Topological Constraints 441
 16.1 Lower bound on magnetic energy 441
 16.2 Topological accessibility 443
 16.3 Relaxation to a minimum energy state 443
 16.3.1 Alternative ‘Darcy’ relaxation procedure 445
 16.4 Two-dimensional relaxation 446
 16.5 The relaxation of knotted flux tubes 448
 16.6 Properties of relaxed state 451
 16.7 Tight knots 453
 16.8 Structure of magnetostatic fields 453
 16.9 Stability of magnetostatic equilibria 454
 16.9.1 The two-dimensional situation 456
 16.10 Analogous Euler flows 457
 16.11 Cross-helicity and relaxation to steady MHD flows 458
Contents

16.11.1 Structure of steady states 459
16.11.2 The isomagnetovortical foliation 460
16.11.3 Relaxation to steady MHD states 461

17 Magnetic Relaxation in a Low-β Plasma 463
17.1 Relaxation in a pressureless plasma 463
17.2 Numerical relaxation 465
17.3 The pinch effect 467
17.4 Current collapse in an unbounded fluid 468
17.4.1 Similarity solution when $\eta = 0$ 470
17.5 The Taylor conjecture 471
17.6 Relaxation of a helical field 475
17.7 Effect of plasma turbulence 477
17.8 Erupting flux in the solar corona 479
17.9 Conclusion 481

Appendix Orthogonal Curvilinear Coordinates 482

References 485
Author index 511
Subject index 515