Self-Exciting Fluid Dynamos

Exploring the origins and evolution of magnetic fields in planets, stars and galaxies, this book gives a basic introduction to magnetohydrodynamics, and surveys the observational data with particular focus on geomagnetism and solar magnetism. Pioneering laboratory experiments that seek to replicate particular aspects of fluid dynamo action are also described. The authors provide a complete treatment of laminar dynamo theory and of the mean-field electrodynamics that incorporates the effects of random waves and turbulence. Both dynamo theory and its counterpart, the theory of magnetic relaxation, are covered. Topological constraints associated with conservation of magnetic helicity are thoroughly explored, and major challenges are addressed in areas such as fast-dynamo theory, accretion-disc dynamo theory and the theory of magnetostrophic turbulence. The book is aimed at graduate-level students in mathematics, physics, earth sciences and astrophysics, and will be a valuable resource for researchers at all levels.

KEITH MOFFATT FRS is Emeritus Professor of Mathematical Physics at the University of Cambridge. He has served as Head of the Department of Applied Mathematics and Theoretical Physics and as Director of the Isaac Newton Institute for Mathematical Sciences in Cambridge. A former editor of the Journal of Fluid Mechanics, he has published papers in fluid dynamics and magnetohydrodynamics and was a pioneer in the development of topological fluid dynamics. He is a Fellow of the Royal Society, a member of Academia Europæa, and a Foreign Member of the Academies of France, Italy, the Netherlands and the USA. He has been awarded numerous prizes, most recently the 2018 Fluid Dynamics Prize of the American Physical Society.

EMMANUEL DORMY is a CNRS Directeur de Recherche in the Department of Mathematics and its Applications at the Ecole Normale Supérieure (ENS) in Paris. He is also Professor at the ENS and at the Ecole Polytechnique, where he teaches different aspects of fluid dynamics. Convinced of the need to embrace all aspects of the dynamo problem, in 2006 he started a research group at the ENS which promotes an interdisciplinary approach and jointly studies all geophysical and astrophysical aspects of dynamo theory. He also founded and directed the Dynamo-GDRE, which promotes exchanges among researchers working on all aspects of dynamo theory throughout Europe and beyond, and he organises widely attended meetings.
The aim of this series is to provide a focus for publishing textbooks in applied mathematics at the advanced undergraduate and beginning graduate level. The books are devoted to covering certain mathematical techniques and theories and exploring their applications.

All titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Geometric and Topological Inference
JEAN-DANIEL BOISSONNAT, FRÉDERIC CHAZAL & MARIETTE YVINEC

Introduction to Magnetohydrodynamics (2nd Edition)
P. A. DAVIDSON

An Introduction to Stochastic Dynamics
JINQIAO DUAN

Singularities: Formation, Structure and Propagation
J. EGGERS & M. A. FONTELOS

Microhydrodynamics, Brownian Motion and Complex Fluids
MICHAEL D. GRAHAM

Discrete Systems and Integrability
J. HIETARINTA, N. JOSHI & F. W. NIJHOFF

An Introduction to Polynomial and Semi-Algebraic Optimization
JEAN BERNARD LASSERRE

Numerical Linear Algebra
HOLGER WENDLAND
Self-Exciting Fluid Dynamos

KEITH MOFFATT
University of Cambridge

EMMANUEL DORMY
Ecole Normale Supérieure, Paris
Dedicated to the memory of
George Keith Batchelor
1920–2000
Contents

Preface xvii

PART I BASIC THEORY AND OBSERVATIONS 1

1 Introduction 3
 1.1 What is dynamo theory? 3
 1.2 Historical background 4
 1.2.1 The geodynamo 4
 1.2.2 The solar dynamo 8
 1.3 The homopolar disc dynamo 10
 1.4 Axisymmetric and non-axisymmetric systems 12

2 Magnetokinematic Preliminaries 20
 2.1 Structural properties of the \mathbf{B}-field 20
 2.1.1 Solenoidality 20
 2.1.2 The Biot–Savart integral 21
 2.1.3 Lines of force (‘\mathbf{B}-lines’) 21
 2.1.4 Helicity and flux tube linkage 22
 2.2 Chirality 25
 2.2.1 The rattleback: a prototype of dynamic chirality 26
 2.2.2 Mean response provoked by chiral excitation 28
 2.3 Magnetic field representations 30
 2.3.1 Spherical polar coordinates 30
 2.3.2 Toroidal/poloidal decomposition 32
 2.3.3 Axisymmetric fields 34
 2.3.4 Two-dimensional fields 34
 2.4 Relations between electric current and magnetic field 36
 2.4.1 Ampère’s law 36
Contents

2.4.2 Multipole expansion of the magnetic field 37
2.4.3 Axisymmetric fields 38

2.5 Force-free fields 39
2.5.1 Force-free fields in spherical geometry 41

2.6 Lagrangian variables and magnetic field evolution 43
2.6.1 Change of flux through a moving circuit 44
2.6.2 Faraday’s law of induction 45
2.6.3 Galilean invariance of the pre-Maxwell equations 45
2.6.4 Ohm’s law in a moving conductor 46

2.7 Kinematically possible velocity fields 47

2.8 Free decay modes 48
2.8.1 Toroidal decay modes 49
2.8.2 Poloidal decay modes 50
2.8.3 Behaviour of the dipole moment 51

2.9 Fields exhibiting Lagrangian chaos 53

2.10 Knotted flux tubes 54
2.10.1 Twist surgery 54
2.10.2 Helicity of a knotted flux tube 56

3 Advection, Distortion and Diffusion 59

3.1 Alfvén’s theorem and related results 59
3.1.1 Conservation of magnetic helicity 60

3.2 The analogy with vorticity 62

3.3 The analogy with scalar transport 64
3.4 Maintenance of a flux rope by uniform irrotational strain 64
3.5 A stretched flux tube with helicity 66
3.6 An example of accelerated ohmic diffusion 67

3.7 Equation for vector potential and flux-function under particular symmetries 68
3.7.1 Two-dimensional case 69
3.7.2 Axisymmetric case 69

3.8 Shearing of a space-periodic magnetic field 70
3.9 Oscillating shear flow 73
3.9.1 The case of steady rotation of the shearing direction 75

3.10 Field distortion by differential rotation 76

3.11 Effect of plane differential rotation on an initially uniform field: flux expulsion 77
3.11.1 The initial phase 78
3.11.2 The ultimate steady state 79
3.11.3 Flow distortion by the flow due to a line vortex 81
Contents

3.11.4 The intermediate phase 82
3.11.5 Flux expulsion with dynamic back-reaction 84
3.11.6 Flux expulsion by Gaussian angular velocity distribution 84
3.12 Flux expulsion for general flows with closed streamlines 86
3.13 Expulsion of poloidal field by meridional circulation 88
3.14 Generation of toroidal field by differential rotation 89
 3.14.1 The initial phase 90
 3.14.2 The ultimate steady state 90
3.15 Topological pumping of magnetic flux 93

4 The Magnetic Field of the Earth and Planets 99
 4.1 Planetary magnetic fields in general 99
 4.2 Satellite magnetic fields 104
 4.3 Spherical harmonic analysis of the Earth’s field 106
 4.4 Variation of the dipole field over long time-scales 113
 4.5 Parameters and physical state of the lower mantle and core 116
 4.6 The need for a dynamo theory for the Earth 117
 4.7 The core–mantle boundary and interactions 118
 4.8 Precession of the Earth’s angular velocity 119

5 Astrophysical Magnetic Fields 121
 5.1 The solar magnetic field 121
 5.2 Velocity field in the Sun 122
 5.2.1 Surface observations 122
 5.2.2 Helioseismology 124
 5.3 Sunspots and the solar cycle 126
 5.4 The general poloidal magnetic field of the Sun 131
 5.5 Magnetic stars 132
 5.6 Magnetic interaction between stars and planets 134
 5.7 Galactic magnetic fields 136
 5.8 Neutron stars 140

PART II FOUNDATIONS OF DYNAMO THEORY 143

6 Laminar Dynamo Theory 145
 6.1 Formal statement of the kinematic dynamo problem 145
 6.2 Rate-of-strain criterion 146
 6.3 Rate of change of dipole moment 148
 6.4 The impossibility of axisymmetric dynamo action 149
 6.4.1 Ultimate decay of the toroidal field 150
6.5 Cowling’s neutral point argument 151
6.6 Some comments on the situation $\mathbf{B} \cdot (\nabla \times \mathbf{B}) \equiv 0$ 153
6.7 The impossibility of dynamo action with purely toroidal motion 153
6.8 The impossibility of dynamo action with plane two-dimensional motion 156
6.9 Rotor dynamos 156
6.9.1 The 3-sphere dynamo 158
6.9.2 The 2-sphere dynamo 161
6.9.3 Numerical treatment of the Herzenberg configuration 163
6.9.4 The rotor dynamo of Lowes and Wilkinson 164
6.10 Dynamo action associated with a pair of ring vortices 165
6.11 Dynamo action with purely meridional circulation 169
6.12 The Ponomarenko dynamo 171
6.13 The Riga dynamo experiment 176
6.14 The Bullard–Gellman formalism 176
6.15 The stasis dynamo 183

7 Mean-Field Electrodynamics 185
7.1 Turbulence and random waves 185
7.2 The linear relation between \mathcal{E} and \mathbf{B}_0 188
7.3 The α-effect 189
7.4 Effects associated with the coefficient β_{ijk} 193
7.5 First-order smoothing 195
7.6 Spectrum tensor of a stationary random vector field 196
7.7 Determination of α_{ij} for a helical wave motion 200
7.8 Determination of α_{ij} for a random \mathbf{u}-field under first-order smoothing 202
7.9 Determination of β_{ijk} under first-order smoothing 205
7.10 Lagrangian approach to the weak diffusion limit 206
7.10.1 Evaluation of α_{ij} 206
7.10.2 Evaluation of β_{ijk} 208
7.10.3 The isotropic situation 209
7.11 Effect of helicity fluctuations on effective turbulent diffusivity 209
7.12 Renormalisation approach to the zero-diffusivity limit 212

8 Nearly Axisymmetric Dynamos 216
8.1 Introduction 216
8.2 Lagrangian transformation of the induction equation when $\eta = 0$ 219
8.3 Effective variables in a Cartesian geometry 221
Contents

8.4 Lagrangian transformation including weak diffusion effects 222
8.5 Dynamo equations for nearly rectilinear flow 223
8.6 Corresponding results for nearly axisymmetric flows 225
8.7 A limitation of the pseudo-Lagrangian approach 227
8.8 Matching conditions and the external field 228
8.9 Related developments 230

9 Solution of the Mean-Field Equations 231
9.1 Dynamo models of α^2- and $\alpha\omega$-type 231
 9.1.1 Axisymmetric systems 232
9.2 Free modes of the α^2-dynamo 233
 9.2.1 Weakly helical situation 235
 9.2.2 Influence of higher-order contributions to \mathcal{E} 235
9.3 Free modes when α_{ij} is anisotropic 236
 9.3.1 Space-periodic velocity fields 237
 9.3.2 The α^2-dynamo in a spherical geometry 238
 9.3.3 The α^2-dynamo with antisymmetric α 241
9.4 Free modes of the $\alpha\omega$-dynamo 244
9.5 Concentrated generation and shear 247
 9.5.1 Symmetric $U(z)$ and antisymmetric $\alpha(z)$ 249
9.6 A model of the galactic dynamo 251
 9.6.1 Dipole modes 254
 9.6.2 Quadrupole modes 255
 9.6.3 Oscillatory dipole and quadrupole modes 257
 9.6.4 Oblate-spheroidal galactic model 258
9.7 Generation of poloidal fields by the α-effect 258
9.8 The $\alpha\omega$-dynamo with periods of stasis 260
9.9 Numerical investigations of the $\alpha\omega$-dynamo 261
9.10 More realistic modelling of the solar dynamo 269
9.11 The Karlsruhe experiment as an α^2-dynamo 272
9.12 The VKS experiment as an $\alpha\omega$-dynamo 273
 9.12.1 Field reversals in the VKS experiment 275
9.13 Dynamo action associated with the Taylor–Green vortex 276

10 The Fast Dynamo 279
10.1 The stretch-twist-fold mechanism 279
 10.1.1 Writhe and twist generated by the STF cycle 279
 10.1.2 Existence of a velocity field in \mathbb{R}^3 that generates the STF cycle 281
 10.1.3 Tube reconnection and helicity cascade 282
10.2 Fast and slow dynamos 283
PART III DYNAMIC ASPECTS OF DYNAMO ACTION

11 Low-Dimensional Models of the Geodynamo
11.1 Dynamic characteristics of the segmented disc dynamo
11.2 Disc dynamo driven by thermal convection
11.2.1 The Welander loop
11.2.2 Coupling of Welander loop and Bullard disc
11.3 The Rikitake dynamo
11.4 Symmetry-mode coupling
11.5 Reversals induced by turbulent fluctuations
11.5.1 Dipole-quadrupole model

12 Dynamic Equilibration
12.1 The momentum equation and some elementary consequences
12.1.1 Alfvén waves
12.1.2 Alfvén wave invariants and cross-helicity
12.2 Lehnrter waves
12.2.1 Dispersion relation and up-down symmetry breaking
12.2.2 Inertial and magnetostrophic wave limits
12.3 Generation of a fossil field by decaying Lehnrter waves
12.4 Quenching of the α-effect by the Lorentz force
12.4.1 A simple model based on weak forcing
12.4.2 Quenching of the β-effect
12.5 Magnetic equilibration due to α-quenching
12.5.1 The case of steady forcing
12.5.2 The case of unsteady forcing with $\omega^2 \gg \eta k^4$
12.5.3 Cattaneo–Hughes saturation
12.6 Quenching of the α-effect in a field of forced Lehnrter waves
12.7 Equilibration due to α-quenching in the Lehnrter wave field
12.7.1 Energies at resonance
12.8 Forcing from the boundary
Contents

12.9 Helicity generation due to interaction of buoyancy and Coriolis forces 342
12.10 Excitation of magnetostrophic waves by unstable stratification 343
12.11 Instability due to magnetic buoyancy 348
 12.11.1 The Gilman model 350
12.12 Helicity generation due to flow over a bumpy surface 353

13 The Geodynamo: Instabilities and Bifurcations 356
 13.1 Models for convection in the core of the Earth 356
 13.2 Onset of thermal convection in a rotating spherical shell 357
 13.2.1 The Roberts–Busse localised asymptotic theory for small \mathcal{E} 360
 13.2.2 The Soward–Jones global theory for the onset of spherical convection 361
 13.2.3 Localised mode of instability in a spherical shell 363
 13.2.4 Dynamic equilibration 365
 13.3 Onset of dynamo action: bifurcation diagrams and numerical models 366
 13.3.1 Numerical models 369
 13.3.2 Model equations for super- and subcritical bifurcations 371
 13.3.3 Three regimes, WD, FM and SD; numerical detection 372
 13.3.4 The SD regime 373
 13.3.5 The WD/SD dichotomy 375
 13.4 The Childress–Soward convection-driven dynamo 376
 13.4.1 Mixed asymptotic and numerical models 380
 13.5 Busse’s model of the geodynamo 381
 13.6 The Taylor constraint and torsional oscillations 384
 13.6.1 Necessary condition for a steady solution $\mathbf{U}(x)$ 384
 13.6.2 Sufficiency of the Taylor constraint for the existence of a steady $\mathbf{U}(x)$ 385
 13.6.3 The arbitrary geostrophic flow $v(s)$ 387
 13.6.4 Deviations from the Taylor constraint 388
 13.6.5 Torsional oscillations when the Taylor constraint is violated 388
 13.6.6 Effect of mantle conductivity 389
 13.7 Scaling laws 390

14 Astrophysical dynamic models 396
 14.1 A range of numerical approaches 396
 14.1.1 Low-order models 396
 14.1.2 Mean-field models 398
Contents

14.1.3 Direct numerical simulations 400
14.2 From planets to stars 402
14.3 Extracting dynamo mechanisms 403
14.4 Dipole breakdown and bistability 405
14.5 Kinematically unstable saturated dynamos 406
14.6 The galactic dynamo 408
14.7 Accretion discs and the magnetorotational instability (MRI) 409
14.7.1 Rayleigh stability criterion 410
14.7.2 Magnetorotational instability 411
14.7.3 Shearing-box analysis 412
14.7.4 Dynamo action associated with the magnetorotational instability 414
14.7.5 Experimental realisation of the magnetorotational instability 415

15 Helical Turbulence 417
15.1 Effects of helicity on homogeneous turbulence 417
15.1.1 Energy cascade in non-helical turbulence 418
15.1.2 Intermittency 419
15.1.3 Effect of helicity on energy cascade 422
15.2 Influence of magnetic helicity conservation in energy transfer processes 426
15.3 Modification of inertial range due to large-scale magnetic field 432
15.4 Non-helical turbulent dynamo action 433
15.5 Dynamo action incorporating mean flow effects 435
15.6 Chiral and magnetostrophic turbulence 438

16 Magnetic Relaxation under Topological Constraints 441
16.1 Lower bound on magnetic energy 441
16.2 Topological accessibility 443
16.3 Relaxation to a minimum energy state 443
16.3.1 Alternative ‘Darcy’ relaxation procedure 445
16.4 Two-dimensional relaxation 446
16.5 The relaxation of knotted flux tubes 448
16.6 Properties of relaxed state 451
16.7 Tight knots 453
16.8 Structure of magnetostatic fields 453
16.9 Stability of magnetostatic equilibria 454
16.9.1 The two-dimensional situation 456
16.10 Analogous Euler flows 457
16.11 Cross-helicity and relaxation to steady MHD flows 458
Contents

16.11.1 Structure of steady states 459
16.11.2 The isomagnetovortical foliation 460
16.11.3 Relaxation to steady MHD states 461

17 Magnetic Relaxation in a Low-β Plasma 463
17.1 Relaxation in a pressureless plasma 463
17.2 Numerical relaxation 465
17.3 The pinch effect 467
17.4 Current collapse in an unbounded fluid 468
17.4.1 Similarity solution when $\eta = 0$ 470
17.5 The Taylor conjecture 471
17.6 Relaxation of a helical field 475
17.7 Effect of plasma turbulence 477
17.8 Erupting flux in the solar corona 479
17.9 Conclusion 481

Appendix Orthogonal Curvilinear Coordinates 482

References 485
Author index 511
Subject index 515
Preface

In fifty years almost every book begins to require notes either to explain forgotten allusions and obsolete words; or to subjoin those discoveries which have been made by the gradual advancement of knowledge; or to correct those mistakes which time may have discovered.

Samuel Johnson, *Letters*, 1774

This book is an update and amplification of a research monograph *Magnetic Field Generation in Electrically Conducting Fluids* first published 40 years ago (Moffatt 1978a). Despite the passage of time, much of the work described in that monograph remains at the core of dynamo theory, and it has provided a useful text for graduate students approaching the subject for the first time. Nevertheless, as Samuel Johnson so aptly recorded, it is now desirable “to subjoin those discoveries which have been made by the gradual advancement of knowledge” and “to correct those mistakes which time may have discovered”.

It is now exactly 100 years since Larmor (1919) enunciated his famous question “How could a rotating body such as the Sun become a magnet?” A reasonably convincing answer can now be given to this question! And “a rotating body such as the Sun” now includes planets, stars and galaxies, which nearly all exhibit internally generated magnetic fields.

Our knowledge of the self-exciting dynamo process has advanced dramatically over the last 40 years, stimulated by a wealth of satellite data, by great advances in computational power and by the extremely challenging laboratory experiments that seek to replicate either laminar or turbulent dynamo action. Mean-field electrodynamics, greatly developed since the late 1960s, remains at the heart of the subject; this theory takes account of a fluctuating velocity field, in the form of either weak random waves or strong ‘Kolmogorov-type turbulence’. It is the mean helicity of this type of flow that is known to be particularly conducive to dynamo action.
in any conducting fluid of sufficiently large extent. Helicity, and its topological interpretation, therefore continues to play a central role in our approach.

The work is presented here in three parts: Part I treats the theoretical and observational background; Part II covers the foundations of the ‘kinematic’ dynamo theory that pertains to arbitrary velocity fields; and Part III incorporates dynamics governed by the Navier–Stokes equations in a rotating conducting fluid, including the ‘back-reaction’ of the Lorentz force distribution associated with a dynamo-generated magnetic field. Much of the presentation is completely new; we draw particular attention to the treatment of the VKS experiment (§9.12), fast dynamo action (Chapter 10), low-dimensional models of the geodynamo (Chapter 11), dynamic equilibration and quenching of the α-effect (Chapter 12), magnetorotational instability (§14.7), magnetostrophic turbulence (§15.6) and the final two chapters, 16 and 17, on magnetic relaxation, which can be viewed as ‘the other side of the dynamo-theory coin’, important in relation to equilibration in a statistically steady state.

Helicity, a topological invariant of the Euler equations of ideal fluid flow, still plays a central role in dynamo theory. Indeed we may confidently assert that turbulence having non-zero mean helicity will always generate a large-scale magnetic field in an electrically conducting fluid of sufficient spatial extent. The mean-field theories on which this assertion is based are presented in Chapters 7–9. These chapters provide a fundamental basis for the dynamical theories presented in subsequent chapters. Magnetic helicity, a similar topological invariant of the equations of ideal magnetohydrodynamics, plays a correspondingly central role in the theory of magnetic relaxation, providing in general a lower bound on the energy of any magnetic field of non-trivial topology.

We have taught much of the content of this book over many years in courses at graduate level in Cambridge, at the Ecole Normale Supérieure (ENS) and at the Ecole Polytechnique (’X’). However, some of the material, particularly in later chapters, records recent work, as yet presentable only at research seminar level.

We acknowledge the invaluable comments and vital input of many collaborators, who have helped to shape our ideas over many years – Philippe Cardin, Atta Chui, Stéphane Fauve, David Gérard-Varet, Andrew Gilbert, David Hughes, Dominique Jault, Yoshifumi Kimura, David Loper, Dionysis Linardatos, Krzysztof Mizerski, Gordon Ogilvie, Michael Proctor, Glyn Roberts, Renzo Ricca, Andrew Soward, Steve Tobias, Juri Toomre, Vladimir Vladimirov and Nigel Weiss all deserve special mention; above all, the late Konrad Bajer (1956–2014), who was involved in initial planning for this volume, but sadly did not live to see its completion.

Finally, we record our deep gratitude to Linty and Ludivine, without whose constant understanding, encouragement and support this work could not have been accomplished!

14 July 2018

HKM, ED