Flow in Porous Rocks

Energy and Environmental Applications

Driven by the increasing need for energy resources and by worsening environmental scenarios, techniques to exploit flows in porous rocks, such as fracking and CO_2 sequestration, are gaining international importance.

This book describes some of the challenges of modelling flow in natural rocks, which often have a complex, layered or heterogeneous structure, and whose properties are typically unknown in detail. Simplified physical models are introduced to help identify the challenges associated with the recovery of oil and gas from hydrocarbon reservoirs, the long-term geosequestration of CO_2 , geothermal power production, and the processes which drive underground contaminant dispersal relevant for example in assessing the long-term storage of nuclear waste. The author approaches these problems by developing simplified mathematical models which help to identify the key dimensionless variables that control the processes. Analytical solutions for flows are provided where possible, and analogue laboratory experiments are presented to help illustrate and provide a different perspective on the flows.

Based on the author's extensive research and teaching experience, this book provides an important introduction to the different controls on flow in porous rocks, especially relevant to the energy industry. Incorporating end-of-chapter exercises, it is a key resource for academic researchers, energy industry professionals and graduate students.

Andrew W. Woods is the BP Professor and Head of the BP Institute in the University of Cambridge, and a Fellow of St Johns College, Cambridge. His research interests include theoretical and experimental modelling of flows in porous rocks, phase changes, turbulent plumes, volcanic systems and other natural flows in the environment and near surface of the Earth. Professor Woods has received several awards including the 1997 Italgas Prize for work on geothermal systems, the 1997 Marcello Carapezza Prize for work on volcanic systems, and the 2002 Wager Medal of the International Association of Volcanology and Chemistry of the Earth's Interior.

Cambridge University Press 978-1-107-06585-7 - Flow in Porous Rocks: Energy and Environmental Applications Andrew W. Woods Frontmatter <u>More information</u> Cambridge University Press 978-1-107-06585-7 - Flow in Porous Rocks: Energy and Environmental Applications Andrew W. Woods Frontmatter More information

Flow in Porous Rocks

Energy and Environmental Applications

Andrew W. Woods

University of Cambridge

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107065857

© Andrew W. Woods 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

 $\label{eq:action} A\ catalogue\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library$

ISBN 978-1-107-06585-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefe	ice	page ix
1	Intro	1	
	1.1	The energy context	4
2	Poro	11	
	2.1	Turbidites	11
	2.2	Deltaic deposits	13
	2.3	Fluvial deposits	18
	2.4	Aeolian	20
	2.5	Compaction	21
	2.6	Carbonates	22
	2.7	Modelling flow in complex rocks	23
3	Flow	28	
	3.1	Source-sink flows	29
	3.2	Sweep and flow in a two-layer system	32
	3.3	Sweep in a multi-layer system	34
	3.4	Lenses and trapping	35
	3.5	Wavy layers	39
	3.6	Seal layers	39
	3.7	Effects of multiple baffles and reduced vertical permeability	45
	3.8	Faults	47
	3.9	Cross-bedding	49
	3.10	Exercises	51
4	Acco	52	
	4.1	Sweep in the layered reservoir	53
	4.2	Boundary location and geological uncertainty	53
	4.3	Difference in spatial distribution of mean and variance	59
	4.4	Sensitivity to geological uncertainties	63
	4.5	Exercises	68

V

vi	Conte	ents		
5	Disp	ersion in porous media	70	
	5.1	Molecular diffusion in a porous layer	71	
	5.2	Pore-scale mechanical dispersion	72	
	5.3	No-slip effects	75	
	5.4	Experimental laws for dispersion	77	
	5.5	Lenses of different permeability	80	
	5.6	Large-scale shear dispersion	84	
	5.7	Oscillatory flow	89	
	5.8	Exercises	91	
6	From	Frontal instability		
	6.1	A model of the instability	92	
	6.2	Surface tension	97	
	6.3	Axisymmetric flow	99	
	6.4	Fluid annuli and droplet formation	100	
	6.5	Instability of reaction fronts	103	
	6.6	Instabilities in unconsolidated porous media	104	
	6.7	Fingering in fractures of variable width	106	
	6.8	Exercises	109	
7	Two-phase flow		110	
	7.1	Wetting	110	
	7.2	Capillary entry pressure	112	
	7.3	Gas cap size and transition zones	114	
	7.4	Two-phase flow	116	
	7.5	The thin gap analogue	123	
	7.6	Capillary imbibition	124	
	7.7	Exercises	127	
8	Flui	128		
	8.1	Thermal energy conservation	129	
	8.2	Instability of a thermal front	132	
	8.3	Compositional reactions	133	
	8.4	Thermally controlled reactions	136	
	8.5	The partial dissolution reaction	137	
	8.6	The full dissolution reaction	140	
	8.7	Polymer floods	143	
	8.8	Polymer released from a dissolving encapsulant	143	
	8.9	Polymer activated by a thermal trigger	147	
	8.10	Polymer injection into a multi-layer formation	151	
	8.11	Exercises	154	

vii	Conte	nts	
9	Grav	vity-driven flow in porous media	156
	9.1	Point release of buoyant fluid	162
	9.2	The leaky boundary	166
	9.3	Rapid injection and drain back: the dipole	169
	9.4	Multiple fluids and stratified currents	170
	9.5	Reacting fronts	173
	9.6	Capillary trapping	176
	9.7	Flow on a slope	178
	9.8	Capillary trapping in a plume running upslope	179
	9.9	Confined gravity-driven flows	181
	9.10	Confined buoyancy-driven flow on a slope	184
	9.11	Three-dimensional gravity currents	190
	9.12	Exercises	194
10	Buoy	196	
	10.1	Buoyancy effects on pore-scale mechanical dispersion	199
	10.2	Convective plumes	202
	10.3	Dispersal of a vertical plume by shale baffles	207
	10.4	Dispersion by inclined baffles	210
	10.5	Dispersion in a multi-layered horizontal system	213
	10.6	Boundaries and buoyancy-driven dispersion through trapping	216
	10.7	Exchange flows, mixing and controls on dissolution of CO_2	219
	10.8	Long-time buoyancy-driven dispersion	223
	10.9	Exercises	226
1	Geot	227	
	11.1	Thermal fronts	229
	11.2	Boiling fronts	230
	11.3	Slow boiling	232
	11.4	Fast boiling	233
	11.5	Boiling gravity-driven flows	236
	11.6	Double-advective plumes with reversing buoyancy	238
	11.7	Gravity currents with thermal and compositional buoyancy	243
	11.8	Scale precipitation and its impact on buoyancy-driven flow	246
	11.9	Aquifer thermal energy storage	249
	11.10	One-dimensional injection and production of hot water	251
	11.11	Heat loss to lenses of low permeability	252
	11.12	Heat loss to the surrounding formation	255
	11.13	Mixing of the injected and formation fluids on extraction	257
	11.14	Exercises	260
2	Com	pressibility and gas flows	262
	12.1	Idealised one-dimensional gas production	264

viii	Contents			
	12.2 Well selection12.3 Radial flow and fracking	268 270		
	12.4 Multiple-layer formations	273		
	12.5 Shale gas	275		
	12.6 Exercises	278		
13	Epilogue	279		
	References	281		
	Index	285		
	Colour plate section found in between pages 150 to 151			

Preface

This book originated with a series of lectures related to the production of oil and gas from layered permeable rocks, which were focused on the challenge of the areal sweep of oil from injection to production wells, through complex, heterogeneous rock. Over the past few years, these lectures have been combined with some of my ongoing research into various fluid mechanical aspects of (i) power generation from geothermal systems through recovery of heat; (ii) scale formation in porous rocks; problems of (iii) carbon sequestration; and (iv) the dispersion of radioactive contaminants from geological nuclear waste repositories, to form a graduate-level course related to the fluid mechanics of energy systems in porous rocks.

The book explores the physical processes which influence oil and gas production, CO_2 sequestration and geothermal energy production. It draws together a series of simplified physical models of the many complex processes relating to flow in porous media to provide insight into the different phenomena, and where possible results from laboratory experiments are used to illustrate the processes, as well as quantitative scalings which identify the dominant controls on the flows and help build up insight into the processes.

After a brief discussion of the importance of oil and gas resources for global energy supply, this book reviews the topology of various porous rocks and presents simplified models for pressure-driven flow through a variety of complex rock architectures. It then briefly discusses how such models may help quantify the impact of the uncertainty in the rock properties and structure in making predictions. We then discuss the processes of dispersion and mixing in pressure driven flows, both produced by the pore-scale flow and larger scale flows around lenses or layers of low or high permeability. Saffman–Taylor instability is discussed and generalised to problems of reaction, temperature change and erosion of loose sand. After a discussion of two-phase flow, and the Buckley–Leverett shock formation process, there is a chapter discussing reactions in rocks, including both compositional and thermally driven reactions; these ideas are generalised to discuss the injection of polymers and their gelling within a porous rock as may be desirable to modify properties of a reservoir. The book then turns to buoyancy-driven flows and introduces gravity currents, including effects of capillary

ix

Cambridge University Press 978-1-107-06585-7 - Flow in Porous Rocks: Energy and Environmental Applications Andrew W. Woods Frontmatter More information

x Preface

trapping and leakage relevant for CO_2 sequestration. We then discuss the role of buoyancy in promoting mixing and dispersion, especially with complex rock structure, relevant for enhanced oil recovery through gas injection or CO_2 sequestration. Water injection into hot rocks to recover geothermal energy is then discussed, and the phenomena of boiling for steam generation, as well as the water flooding patterns which may be produced when the buoyancy depends on temperature and composition, are presented and explored. Finally, we present some models of compressible flow, which provide insight into gas production from layered and low permeability gas/shale-gas fields.

There are many texts on flow in porous media, including the comprehensive treatise by Bear (1972), on modelling flow in porous media, the fascinating book on reactions and flow in porous media by Phillips (1991), the work of Dagan on dispersion in porous media and the book *Enhanced Oil Recovery* by Lake (1991). The objective of this book is to complement these earlier works, focusing on the physical processes, with simple laboratory models supported by simplified mathematical models. The work draws from the well-established modelling of pressure-driven flow in layered and heterogeneous porous rocks, including the resulting processes of dispersion, interfacial instability, and two-phase flow dynamics, to explore problems of buoyancy-driven flows in porous media and the dispersion of flows in complex layered strata. There is an underlying theme of energy related applications throughout the text.

I have been extremely fortunate to work with many colleagues and students whose quest for knowledge and application to their research has driven forward much of the work reported in this volume, largely during my time in the BP Institute in Cambridge. This includes in particular Silvana Cardoso, Adrian Farcas, Will Rayward-Smith, Jason Furtney, Peter Dudfield, Thierry Menand, Mats Nigam, Gennaro Del Ioio and Karen Otto, who has kindly assisted with figures in Chapters 5, 6 and 9. I am also very grateful to Colm Caulfield for carefully checking the contents, as well as to Gil Arnaud, Alex Evans and Adrian Farcas. In addition, I have been very fortunate to work with numerous colleagues from industry who have shared their challenges and experience of real energy systems in helping to frame many of the problems set out in this work, including in particular Pete Smith, Andy Leonard, Ian Collins, Tony Espie, Simon Norris and Bryan Lovell.

I am first and foremost indebted to my family for their generous encouragement, patience and support in the writing of this book, and also the research reported herein, especially my wife Sharon.