Contents

Preface
Preface page xiii

1. Introduction
1. What this book is about 1
2. A very brief summary of the antecedents of quantum mechanics 2

2. Mathematical Review
2.1 Linear vector spaces 8
2.2 Subspaces 9
2.3 Linear independence and dimensionality 9
2.4 Unitary spaces: The scalar product 9
2.5 Formation of an orthonormal basis: Completeness – definition of Hilbert spaces 10
2.6 Expansion of an arbitrary vector in terms of an orthonormal basis 11
2.7 The Cauchy-Schwarz inequality 12
2.8 Linear operators 13
2.9 Inverse of a linear operator 13
2.10 The adjoint operator 13
2.11 Eigenvectors and eigenvalues 14
2.12 Projection operators and completeness 15
2.13 Representations 16
2.14 Continuously infinite dimension: The Dirac delta function 17
2.15 Unitary transformations 18
2.16 Invariants 21
2.17 Simultaneous diagonalization of Hermitian matrices 21
2.18 Functions of an operator 22
Problems for Chapter 2 24

3. The Rules of Quantum Mechanics
3.1 Statement of the rules 28
3.2 Photon polarizations 34
3.3 Polarization correlations, locality, and Bell’s inequalities 37
3.4 Larmor precession of a spin \(\frac{1}{2} \) particle in a magnetic field 42
3.5 The density operator 45
Problems for Chapter 3 49
Contents

4. The Connection between the Fundamental Rules and Wave Mechanics 55
 4.1 The de Broglie relation 55
 4.2 The uncertainty principle 55
 4.3 Eigenvalues and eigenvectors of \hat{q}, \hat{p} 57
 4.4 Wave functions in coordinate and momentum space 59
 4.5 Expectation values of operators in coordinate and momentum representation 61
 4.6 Choosing the Hamiltonian. The Schroedinger wave equation 63
 4.7 General properties of Schroedinger's equation: The equation of continuity 68
 4.8 Galilean invariance of the Schroedinger wave equation 71
 4.9 Ehrenfest's equations and the classical limit 73
 Problems for Chapter 4 74

5. Further Illustrations of the Rules of Quantum Mechanics 79
 5.1 The neutron interferometer 79
 5.2 Aharonov-Bohm effect 83
 5.3 A digression on magnetic monopoles 86
 5.4 Neutrino mixing and oscillations 90
 Problems for Chapter 5 94

6. Further Developments in One-Dimensional Wave Mechanics 97
 6.1 Free-particle green function. Spreading of free-particle wave packets 97
 6.2 Two-particle wave functions: Relative motion and center-of-mass motion 100
 6.3 A theorem concerning degeneracy 101
 6.4 Space-inversion symmetry and parity 102
 6.5 Potential step 103
 6.6 One-dimensional rectangular barrier 105
 6.7 One-dimensional rectangular well 106
 6.8 Double wells 110
 6.9 Ammonia molecule 111
 6.10 Hydrogen molecular ion 113
 6.11 Periodic potentials: Bloch's theorem 114
 6.12 Particle in a uniform field 116
 6.13 One-dimensional simple harmonic oscillator 119
 6.14 Path integral method 132
 Problems for Chapter 6 139

7. The Theory of Angular Momentum 144
 7.1 Transformations and invariance 144
 7.2 Rotation group: Angular-momentum operators 145
 7.3 Commutation relations for angular-momentum operators 146
 7.4 Properties of the angular-momentum operators 148
 7.5 Rotation matrices 151
 7.6 Magnetic resonance: The rotating frame – Rabi’s formula 157
 7.7 Orbital angular momentum 161
Contents

7.8 Addition of angular momenta: Vector coupling coefficients 163
7.9 Definition of irreducible spherical tensor operators 169
7.10 Commutation rules for irreducible spherical tensors 171
7.11 Wigner-Eckart theorem 172
7.12 Consequences of the Wigner-Eckart theorem 173
7.13 $SU(n)$ 181
Problems for Chapter 7 184

8.1 General properties of solutions to Schrödinger’s wave equation 187
8.2 Power-law potentials 188
8.3 Radial Schrödinger equation for a central potential 188
8.4 Virial theorem 190
8.5 Atomic units: Bound states of a hydrogenic atom in spherical coordinates 191
8.6 Hydrogenic bound states in parabolic coordinates 195
8.7 Bound states of hydrogenic atoms and $O(4)$ symmetry 196
Problems for Chapter 8 200

9. Time-Independent Approximations for Bound-State Problems 204
9.1 Variational method 204
9.2 Semiclassical (WKB) approximation 205
9.3 Static perturbation theory 211
Problems for Chapter 9 213

10. Applications of Perturbation Theory: Bound States of Hydrogenic Atoms 221
10.1 Fine structure of hydrogenic atoms 221
10.2 Hyperfine structure of hydrogen 226
10.3 Zeeman effect 230
10.4 Stark effect 236
10.5 Van der Waals interaction between two hydrogen atoms 240
Problems for Chapter 10 243

11. Identical Particles 247
11.1 Identical particles in classical and quantum mechanics 247
11.2 Symmetric and antisymmetric wave functions 247
11.3 Composite bosons and composite fermions 249
11.4 Pauli exclusion principle 249
11.5 Example of atomic helium 250
11.6 Perturbation-variation calculation of the ground-state energy of helium 253
11.7 Excited states of helium: Exchange degeneracy 255
11.8 Matrix elements of determinantal wave functions 258
11.9 Second quantization for fermions 261
11.10 Generalizations of exchange symmetrization and antisymmetrization 266
Problems for Chapter 11 269
Contents

12. Atomic Structure 273
 12.1 Central field approximation: General remarks 273
 12.2 Hartree's self-consistent field method 275
 12.3 Hartree-Fock method 277
 12.4 Thomas-Fermi model 279
 12.5 Corrections to the central field approximation: Introduction 285
 12.6 Theory of multiplets in the Russell-Saunders scheme 286
 12.7 Calculation of multiplet energies in the \(L-S\) coupling scheme 290
 12.8 Spin-orbit interaction 293
 Problems for Chapter 12 299

13. Molecules 302
 13.1 The Born-Oppenheimer approximation 302
 13.2 Classification of diatomic molecular states 304
 13.3 Analysis of electronic motion in the hydrogen molecular ion 305
 13.4 Variational method for the hydrogen molecular ion 307
 13.5 Molecular orbital and Heitler-London methods for \(H_2\) 313
 13.6 Valency: An elementary and qualitative discussion of the chemical bond 316
 13.7 Nuclear vibration and rotation 321
 13.8 Quantum statistics of homonuclear diatomic molecules 323
 Problems for Chapter 13 324

14. The Stability of Matter 325
 14.1 Stabilities of the first and second kind: The thermodynamic limit 325
 14.2 An application of second quantization: The stability of a metal 329
 14.3 Some astrophysical consequences 336
 Problems for Chapter 14 340

15. Photons 343
 15.1 Hamiltonian form of the classical radiation field 343
 15.2 Quantization of the radiation field in Coulomb gauge 347
 15.3 Zero-point energy and fluctuations in the field 350
 15.4 The Casimir-Polder effect 353
 15.5 Blackbody radiation and Planck's law 358
 15.6 Classical limit of the quantized radiation field 361
 15.7 Digression on special relativity: Covariant description of the radiation field 363
 15.8 The possibility of nonzero photon rest mass 368
 Problems for Chapter 15 370

16. Interaction of Nonrelativistic Charged Particles and Radiation 374
 16.1 General form of the Hamiltonian in Coulomb gauge 374
 16.2 Time-dependent perturbation theory 377
 16.3 Single-photon emission and absorption processes 380
 16.4 Damping and natural linewidth 389
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5</td>
<td>Approximate character of the exponential law of decay</td>
<td>393</td>
</tr>
<tr>
<td>16.6</td>
<td>Second-order processes: Scattering of light by an atomic electron</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Problems for Chapter 16</td>
<td>400</td>
</tr>
<tr>
<td>17.1</td>
<td>Lamb shift</td>
<td>405</td>
</tr>
<tr>
<td>17.2</td>
<td>Adiabatic approximation: The geometric phase</td>
<td>410</td>
</tr>
<tr>
<td>17.3</td>
<td>Sudden approximation</td>
<td>415</td>
</tr>
<tr>
<td>17.4</td>
<td>Time-dependent perturbation theory and elementary theory of beta decay</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>Problems for Chapter 17</td>
<td>418</td>
</tr>
<tr>
<td>17.1</td>
<td>Further Topics in Perturbation Theory</td>
<td>405</td>
</tr>
<tr>
<td>17.2</td>
<td>17.1 Lamb shift</td>
<td>405</td>
</tr>
<tr>
<td>17.3</td>
<td>17.2 Adiabatic approximation: The geometric phase</td>
<td>410</td>
</tr>
<tr>
<td>17.4</td>
<td>17.3 Sudden approximation</td>
<td>415</td>
</tr>
<tr>
<td>17.5</td>
<td>17.4 Time-dependent perturbation theory and elementary theory</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>of beta decay</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>Problems for Chapter 17</td>
<td>418</td>
</tr>
<tr>
<td>18.1</td>
<td>Scattering</td>
<td>421</td>
</tr>
<tr>
<td>18.2</td>
<td>18.1 Typical scattering experiment</td>
<td>421</td>
</tr>
<tr>
<td>18.3</td>
<td>18.2 Amplitude for elastic potential scattering</td>
<td>423</td>
</tr>
<tr>
<td>18.4</td>
<td>18.3 Partial wave expansion of the scattering amplitude for a central potential</td>
<td>424</td>
</tr>
<tr>
<td>18.5</td>
<td>18.4 s-Wave scattering at very low energies: Resonance scattering</td>
<td>430</td>
</tr>
<tr>
<td>18.6</td>
<td>18.5 Coulomb scattering</td>
<td>437</td>
</tr>
<tr>
<td>18.7</td>
<td>18.6 Green functions: The path integral method and Lippmann-Schwinger equation</td>
<td>441</td>
</tr>
<tr>
<td>18.8</td>
<td>18.7 Potential scattering in the Born approximation</td>
<td>447</td>
</tr>
<tr>
<td>18.9</td>
<td>18.8 Criterion for the validity of the Born approximation</td>
<td>449</td>
</tr>
<tr>
<td>18.10</td>
<td>18.9 Coulomb scattering in the first Born approximation</td>
<td>449</td>
</tr>
<tr>
<td>18.11</td>
<td>18.10 Elastic scattering of fast electrons by atoms in the first Born approximation</td>
<td>450</td>
</tr>
<tr>
<td>18.12</td>
<td>18.11 Connection between the Born approximation and time-dependent perturbation theory</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>18.12 Inelastic scattering in the Born approximation</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>Problems for Chapter 18</td>
<td>456</td>
</tr>
<tr>
<td>19.1</td>
<td>Special Relativity and Quantum Mechanics: The Klein-Gordon Equation</td>
<td>461</td>
</tr>
<tr>
<td>19.2</td>
<td>19.1 General remarks on relativistic wave equations</td>
<td>461</td>
</tr>
<tr>
<td>19.3</td>
<td>19.2 The Klein-Gordon equation</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Problems for Chapter 19</td>
<td>464</td>
</tr>
<tr>
<td>20.1</td>
<td>The Dirac Equation</td>
<td>466</td>
</tr>
<tr>
<td>20.2</td>
<td>20.1 Derivation of the Dirac equation</td>
<td>466</td>
</tr>
<tr>
<td>20.3</td>
<td>20.2 Hamiltonian form of the Dirac equation</td>
<td>469</td>
</tr>
<tr>
<td>20.4</td>
<td>20.3 Covariant form of the Dirac equation</td>
<td>469</td>
</tr>
<tr>
<td>20.5</td>
<td>20.4 A short mathematical digression on gamma matrices</td>
<td>470</td>
</tr>
<tr>
<td>20.6</td>
<td>20.5 Standard representation: Free-particle plane-wave solutions</td>
<td>472</td>
</tr>
<tr>
<td>20.7</td>
<td>20.6 Lorentz covariance of the Dirac equation</td>
<td>474</td>
</tr>
<tr>
<td>20.8</td>
<td>20.7 Bilinear covariants</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>20.8 Properties and physical significance of operators in Dirac’s theory</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Problems for Chapter 20</td>
<td>483</td>
</tr>
</tbody>
</table>
Table of Contents

21. Interaction of a Relativistic Spin-½ Particle with an External Electromagnetic Field 486

- 21.1 The Dirac equation 486
- 21.2 The second-order equation 486
- 21.3 First-order two-component reduction of Dirac’s equation 487
- 21.4 Pauli moment 489
- 21.5 Two-component reduction of Dirac’s equation in the second approximation 491
- 21.6 Symmetries for the Dirac Hamiltonian with a central potential 493
- 21.7 Coupled radial equations 497
- 21.8 Dirac radial functions for the Coulomb potential 498
- 21.9 Perturbation calculations with Dirac bound-state wave functions 503

Problems for Chapter 21 507

22. The Dirac Field 511

- 22.1 Dirac negative-energy sea 511
- 22.2 Charge-conjugation symmetry of the Dirac equation 512
- 22.3 A digression on time-reversal symmetry 515
- 22.4 Construction of the Dirac field operator 517
- 22.5 Lagrangian formulation of electromagnetic and Dirac fields and interactions 522
- 22.6 $U(1)$ gauge invariance and the Dirac field 524

Problems for Chapter 22 526

23. Interaction between Relativistic Electrons, Positrons, and Photons 527

- 23.1 Interaction density: The S-matrix expansion 527
- 23.2 Zeroth- and first-order amplitudes 530
- 23.3 Photon propagator 534
- 23.4 Fermion propagator 541
- 23.5 Summary of Feynman rules obtained so far for QED 546
- 23.6 Survey of various QED processes in second order 547
- 23.7 Transition probabilities and cross sections 551
- 23.8 Coulomb scattering of a relativistic electron: Traces of products of gamma matrices 552
- 23.9 Calculation of the cross section for $e^+e^- \rightarrow \mu^+\mu^-$ 559
- 23.10 Further discussion of second-order QED processes 561

Problems for Chapter 23 562

24. The Quantum Mechanics of Weak Interactions 564

- 24.1 The Four interactions: Fundamental fermions and bosons 564
- 24.2 A Brief history of weak interactions: Early years 570
- 24.3 Fermi’s theory of beta decay 570
- 24.4 Universal Fermi interaction: Discovery of new particles 573
- 24.5 Discovery of parity violation 574
- 24.6 The $V-A$ Law 576
- 24.7 Difficulties with Fermi-type theories 579
- 24.8 Naive intermediate boson theory of charged weak interaction 581
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.9</td>
<td>The GIM mechanism</td>
<td>584</td>
</tr>
<tr>
<td>24.10</td>
<td>CP Violation and the CKM matrix</td>
<td>585</td>
</tr>
<tr>
<td>24.11</td>
<td>Invention of the standard electroweak model</td>
<td>588</td>
</tr>
<tr>
<td>24.12</td>
<td>Essential features of the Yang-Mills theory</td>
<td>593</td>
</tr>
<tr>
<td>24.13</td>
<td>Spontaneous symmetry breaking and the Higgs mechanism</td>
<td>597</td>
</tr>
<tr>
<td>24.14</td>
<td>The lepton sector</td>
<td>605</td>
</tr>
<tr>
<td>24.15</td>
<td>The quark sector</td>
<td>608</td>
</tr>
<tr>
<td>24.16</td>
<td>Summary of Feynman vertex factors in the electroweak standard model</td>
<td>609</td>
</tr>
<tr>
<td>24.17</td>
<td>Illustrative calculations of electroweak processes</td>
<td>613</td>
</tr>
<tr>
<td></td>
<td>Problems for Chapter 24</td>
<td>625</td>
</tr>
<tr>
<td>25.</td>
<td>The Quantum Measurement Problem</td>
<td>630</td>
</tr>
<tr>
<td>25.1</td>
<td>Statement of the problem</td>
<td>630</td>
</tr>
<tr>
<td>25.2</td>
<td>Is there no problem?</td>
<td>633</td>
</tr>
<tr>
<td>25.3</td>
<td>Can interpretation of the rules of quantum mechanics be changed to</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>resolve the quantum measurement problem, and can this be done so</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that the modified theory is empirically indistinguishable from the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>standard theory?</td>
<td></td>
</tr>
<tr>
<td>25.4</td>
<td>Is deterministic unitary evolution only an approximation? Should</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>the time-dependent Schrödinger equation be modified? Might such</td>
<td></td>
</tr>
<tr>
<td></td>
<td>modifications have testable observational consequences?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix A. Useful Inequalities for Quantum Mechanics</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>Appendix B. Bell’s Inequality</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td>Appendix C. Spin of the Photon: Vector Spherical Waves</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td>Works Cited</td>
<td>663</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>673</td>
</tr>
</tbody>
</table>