

MONOIDAL TOPOLOGY

Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize "spaces" in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafilter convergence with Lawvere's interpretation of metric spaces as small categories enriched over the extended real half-line. Hence, equipped with a quantale $\mathcal V$ (replacing the reals) and a monad $\mathbb T$ (replacing the ultrafilter monad) laxly extended from set maps to $\mathcal V$ -valued relations, the book develops a categorical theory of $(\mathbb T,\mathcal V)$ -algebras that is inspired simultaneously by its metric and topological roots. The book highlights in particular the distinguished role of equationally defined structures within the given lax-algebraic context and presents numerous new results ranging from topology and approach theory to domain theory. All the necessary pre-requisites in order and category theory are presented in the book.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the **Encyclopedia of Mathematics and Its Applications** cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit www.cambridge.org/mathematics.

- 106 A. Markoe Analytic Tomography
- 107 P. A. Martin Multiple Scattering
- 108 R. A. Brualdi Combinatorial Matrix Classes
- 109 J. M. Borwein and J. D. Vanderwerff Convex Functions
- 110 M.-J. Lai and L. L. Schumaker Spline Functions on Triangulations
- 111 R. T. Curtis Symmetric Generation of Groups
- 112 H. Salzmann et al. The Classical Fields
- 113 S. Peszat and J. Zabczyk Stochastic Partial Differential Equations with Lévy Noise
- 114 J. Beck Combinatorial Games
- 115 L. Barreira and Y. Pesin Nonuniform Hyperbolicity
- 116 D. Z. Arov and H. Dym J-Contractive Matrix Valued Functions and Related Topics
- 117 R. Glowinski, J.-L. Lions and J. He Exact and Approximate Controllability for Distributed Parameter Systems
- 118 A. A. Borovkov and K. A. Borovkov Asymptotic Analysis of Random Walks
- 119 M. Deza and M. Dutour Sikirić Geometry of Chemical Graphs
- 120 T. Nishiura Absolute Measurable Spaces
- 121 M. Prest Purity, Spectra and Localisation
- 122 S. Khrushchev Orthogonal Polynomials and Continued Fractions
- 123 H. Nagamochi and T. Ibaraki Algorithmic Aspects of Graph Connectivity
- 124 F. W. King Hilbert Transforms I
- 125 F. W. King Hilbert Transforms II
- 126 O. Calin and D.-C. Chang Sub-Riemannian Geometry
- 127 M. Grabisch et al. Aggregation Functions
- 128 L. W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker Topics in Topological Graph Theory
- 129 J. Berstel, D. Perrin and C. Reutenauer Codes and Automata
- 130 T. G. Faticoni Modules over Endomorphism Rings
- 131 H. Morimoto Stochastic Control and Mathematical Modeling
- 132 G. Schmidt Relational Mathematics
- 133 P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic
- 134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering
- 135 V. Berthé and M. Rigo (eds.) Combinatorics, Automata and Number Theory
- 136 A. Kristály, V. D. Rădulescu and C. Varga Variational Principles in Mathematical Physics, Geometry, and Economics
- 137 J. Berstel and C. Reutenauer Noncommutative Rational Series with Applications
- 138 B. Courcelle and J. Engelfriet Graph Structure and Monadic Second-Order Logic
- 139 M. Fiedler Matrices and Graphs in Geometry
- 140 N. Vakil Real Analysis through Modern Infinitesimals
- 141 R. B. Paris Hadamard Expansions and Hyperasymptotic Evaluation
- 142 Y. Crama and P. L. Hammer Boolean Functions
- 143 A. Arapostathis, V. S. Borkar and M. K. Ghosh Ergodic Control of Diffusion Processes
- 144 N. Caspard, B. Leclerc and B. Monjardet Finite Ordered Sets
- 145 D. Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations
- 146 G. Dassios Ellipsoidal Harmonics
- 147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory
- 148 L. Berlyand, A. G. Kolpakov and A. Novikov Introduction to the Network Approximation Method for Materials Modeling
- 149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation
- 150 J. Borwein et al. Lattice Sums Then and Now
- 151 R. Schneider Convex Bodies: The Brunn-Minkowski Theory (Second Edition)
- 152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)
- 153 D. Hofmann, G. J. Seal and W. Tholen (eds.) Monoidal Topology
- 154 M. Cabrera-García and Á. Rodríguez Palacios Non-Associative Normed Algebras I: The Vidav-Palmer and Gelfand-Naimark Theorems
- 155 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Monoidal Topology

A Categorical Approach to Order, Metric, and Topology

Edited by

DIRK HOFMANN

Universidade de Aveiro, Portugal

GAVIN J. SEAL

Swiss Federal Institute of Technology

WALTER THOLEN

York University, Toronto

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107063945

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Monoidal topology : a categorical approach to order, metric, and topology / edited by Dirk Hofmann, Universidade de Aveiro, Gavin J. Seal, Swiss Federal Institute of Technology, Walter Tholen, York University, Toronto.

pages cm. – (Encyclopedia of mathematics and its applications) ISBN 978-1-107-06394-5 (hardback)

Topological semigroups.
 Group theory.
 Hofmann, Dirk, 1970–
 Seal, Gavin J.
 Tholen, W. (Walter), 1947–
 QA387.M65 2014
 514´.32–dc23
 2013046221

ISBN 978-1-107-06394-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Horst Herrlich

Summary of contents

Pre	face	page xv
Ι	Introduction Robert Lowen and Walter Tholen	1
II	Monoidal structures Gavin J. Seal and Walter Tholen	18
III	Lax algebras Dirk Hofmann, Gavin J. Seal, and Walter Tholen	145
IV	Kleisli monoids Dirk Hofmann, Robert Lowen, Rory Lucyshyn-Wright, and Gavin J. Seal	284
V	Lax algebras as spaces Maria Manuel Clementino, Eva Colebunders, and Walter Tholen	375
Bib	liography	467
Sele	ected categories	480
	ected functors	484
Sele	ected symbols	487
Ind	ex	491

Contents

Preface				page xv
I	Introduction			
	I.1	The ubiquity of monoids and their actions		
		I.1.1	Monoids and their actions in algebra	2
		I.1.2	Orders and metrics as monoids and lax algebras	3
		I.1.3	Topological and approach spaces as monoids and	
			lax algebras	5
		I.1.4	The case for convergence	7
		I.1.5	Filter convergence and Kleisli monoids	9
	I.2	Spaces	as categories, and categories of spaces	10
		I.2.1	Ordinary small categories	10
		I.2.2	Considering a space as a category	11
		I.2.3	Moving to the large category of all spaces	13
	I.3	Chapter	highlights and dependencies	14
II	Monoidal structures			18
	II.1	Ordered	l sets	18
		II.1.1	The Cartesian structure of sets and its monoids	18
		II.1.2	The compositional structure of relations	19
		II.1.3	Orders	21
		II.1.4	Modules	22
		II.1.5	Adjunctions	22
		II.1.6	Closure operations and closure spaces	24
		II.1.7	Completeness	25
		II.1.8	Adjointness criteria	27
		II.1.9	Semilattices, lattices, frames, and topological space	es 28
		II.1.10	Quantales	30

x Contents

	II.1.11	Complete distributivity	32		
	II.1.12	<u>*</u>	34		
	II.1.13	Ultrafilters	35		
	II.1.14	Natural and ordinal numbers	37		
	Exercise	es	38		
II.2	Categor	ries and adjunctions	42		
	II.2.1	Categories	42		
	II.2.2	Functors	44		
	II.2.3	Natural transformations	46		
	II.2.4	The Yoneda embedding	48		
	II.2.5	Adjunctions	49		
	II.2.6	Reflective subcategories, equivalence of categories	53		
	II.2.7	Initial and terminal objects, comma categories	54		
	II.2.8	Limits	56		
	II.2.9	Colimits	60		
	II.2.10	Construction of limits and colimits	61		
	II.2.11	Preservation and reflection of limits and colimits	63		
	II.2.12	Adjoint Functor Theorem	65		
	II.2.13	Kan extensions	67		
	II.2.14	Dense functors	69		
	Exercise	es	70		
II.3	Monads	S	74		
	II.3.1	Monads and adjunctions	74		
	II.3.2	The Eilenberg–Moore category	76		
	II.3.3	Limits in the Eilenberg–Moore category	78		
	II.3.4	Beck's monadicity criterion	79		
	II.3.5	Duskin's monadicity criterion	82		
	II.3.6	The Kleisli category	84		
	II.3.7	Kleisli triples	85		
	II.3.8	Distributive laws, liftings, and composite monads	86		
	II.3.9	Distributive laws and extensions	90		
	Exercises				
II.4	Monoid	lal and ordered categories	96		
	II.4.1	Monoidal categories	96		
	II.4.2	Monoids	98		
	II.4.3	Actions	99		
	II.4.4	Monoidal closed categories	101		
	II.4.5	Ordered categories	104		
	II.4.6	Lax functors, pseudo-functors, 2-functors, and			
		their transformations	105		
	II.4.7	Maps	106		
	II.4.8	Quantaloids	107		

			Contents	X1
		II.4.9	Kock–Zöberlein monads	109
		II.4.10	Enriched categories	111
		Exercise	es	112
	II.5	Factoriz	ations, fibrations, and topological functors	114
		II.5.1	Factorization systems for morphisms	114
		II.5.2	Subobjects, images, and inverse images	117
		II.5.3	Factorization systems for sinks and sources	119
		II.5.4	Closure operators	122
		II.5.5	Generators and cogenerators	125
		II.5.6	U-initial morphisms and sources	127
		II.5.7	Fibrations and cofibrations	129
		II.5.8	Topological functors	130
		II.5.9	Self-dual characterization of topological functors	132
		II.5.10	Epireflective subcategories	134
		II.5.11	Taut Lift Theorem	136
		Exercise	es	137
	Notes	on Chap	ter II	143
III	Lax a	algebras		145
	III.1	_	oncepts	145
		III.1.1	•	145
		III.1.2	Maps in V-Rel	147
		III.1.3	V-categories, V -functors, and V -modules	150
		III.1.4	Lax extensions of functors	154
		III.1.5	Lax extensions of monads	157
		III.1.6	$(\mathbb{T}, \mathcal{V})$ -categories and $(\mathbb{T}, \mathcal{V})$ -functors	158
		III.1.7	Kleisli convolution	161
		III.1.8	Unitary $(\mathbb{T}, \mathcal{V})$ -relations	163
		III.1.9	Associativity of unitary $(\mathbb{T}, \mathcal{V})$ -relations	165
		III.1.10	The Barr extension	169
		III.1.11	The Beck–Chevalley condition	172
		III.1.12	The Barr extension of a monad	175
		III.1.13	A double-categorical presentation of lax	
			extensions	178
	Exercises		es	180
	III.2	2 Fundamental examples		185
		III.2.1	Ordered sets, metric spaces, and probabilistic	
			metric spaces	185
		III.2.2	Topological spaces	186
		III.2.3	Compact Hausdorff spaces	190
		III.2.4	Approach spaces	192
		III.2.5	Closure spaces	198
		Exercise	es	199

Cambridge University Press 978-1-107-06394-5 — Monoidal Topology Edited by Dirk Hofmann , Gavin J. Seal , Walter Tholen Frontmatter More Information

xii Contents

	III.3	Categories of lax algebras		
		III.3.1	Initial structures	201
		III.3.2	Discrete and indiscrete lax algebras	203
		III.3.3	Induced orders	203
		III.3.4	Algebraic functors	207
		III.3.5	Change-of-base functors	209
		III.3.6	Fundamental adjunctions	212
		Exercise	es	213
	III.4	Embedo	ling lax algebras into a quasitopos	216
		III.4.1	(\mathbb{T},\mathcal{V}) -graphs	216
		III.4.2	Reflecting $(\mathbb{T}, \mathcal{V})$ -RGph into $(\mathbb{T}, \mathcal{V})$ -Cat	221
		III.4.3	Coproducts of $(\mathbb{T}, \mathcal{V})$ -categories	223
		III.4.4	Interlude on partial products and local Cartesian	
			closedness	227
		III.4.5	Local Cartesian closedness of $(\mathbb{T}, \mathcal{V})$ -Gph	230
		III.4.6	Local Cartesian closedness of subcategories of	
			(\mathbb{T},\mathcal{V}) -Gph	234
		III.4.7	Interlude on subobject classifiers and partial-map	
			classifiers	237
		III.4.8	The quasitopos $(\mathbb{T}, \mathcal{V})$ -Gph	245
		III.4.9	Final density of $(\mathbb{T}, \mathcal{V})$ -Cat in $(\mathbb{T}, \mathcal{V})$ -Gph	246
		Exercise	es	249
	III.5	Representable lax algebras		252
		III.5.1	The monad \mathbb{T} on \mathcal{V} -Cat	252
		III.5.2	T -algebras in <i>V</i> -Cat	254
		III.5.3	Comparison with lax algebras	257
		III.5.4	The monad \mathbb{T} on $(\mathbb{T}, \mathcal{V})$ -Cat	261
		III.5.5	Dualizing $(\mathbb{T}, \mathcal{V})$ -categories	264
		III.5.6	The ultrafilter monad on Top	266
		III.5.7	Representable topological spaces	270
		III.5.8	Exponentiable topological spaces	273
		III.5.9	Representable approach spaces	276
		Exercise	es	278
	Notes	otes on Chapter III		
				284
IV		Kleisli monoids		
	IV.1		monoids and lax algebras	284
		IV.1.1	Topological spaces via neighborhood filters	285
		IV.1.2	Power-enriched monads	287
		IV.1.3	T-monoids	289
		IV.1.4	The Kleisli extension	291
		IV.1.5	Topological spaces via filter convergence	294
		Exercise	es	298

		Contents	xiii		
IV.2	Lax extensions of monads				
	IV.2.1	Initial extensions	301		
	IV.2.2	Sup-dense and interpolating monad morphisms	304		
	IV.2.3		306		
	IV.2.4		310		
	IV.2.5	$(\mathbb{S}, \mathcal{V})$ -categories as Kleisli towers	313		
	Exercis		317		
IV.3	Lax alg	ebras as Kleisli monoids	320		
	IV.3.1	The ordered category $(\mathbb{T}, \mathcal{V})$ -URel	320		
	IV.3.2	The discrete presheaf monad	323		
	IV.3.3	Approach spaces	328		
	IV.3.4	Revisiting change of base	332		
	Exercis		334		
IV.4	Injectiv	e lax algebras as Eilenberg–Moore algebras	336		
	IV.4.1	Eilenberg–Moore algebras as Kleisli monoids	336		
	IV.4.2	Monads on categories of Kleisli monoids	337		
	IV.4.3	Eilenberg-Moore algebras over \$-Mon	341		
	IV.4.4	Continuous lattices	344		
	IV.4.5	Kock–Zöberlein monads on T-Mon	347		
	IV.4.6	Eilenberg-Moore algebras and injective Kleisli			
		monoids	349		
	Exercis	es	353		
IV.5	Domair	ns as lax algebras and Kleisli monoids	355		
	IV.5.1	Modules and adjunctions	355		
	IV.5.2	Cocontinuous ordered sets	356		
	IV.5.3	Observable realization spaces	358		
	IV.5.4	Observable realization spaces as lax algebras	361		
	IV.5.5	Observable specialization systems	362		
	IV.5.6	Ordered abstract bases and round filters	364		
	IV.5.7	Domains as Kleisli monoids of the ordered-filter			
		monad	364		
	IV.5.8	Continuous dcpos as sober domains	366		
	IV.5.9	Cocontinuous lattices among lax algebras	370		
	Exercis	es	372		
Note	s on Chap	oter IV	372		
Lax	algebras	as spaces	375		
V.1	Hausdo	orff separation and compactness	375		
	V.1.1	Basic definitions and properties	376		
	V.1.2	Tychonoff Theorem, Čech-Stone compactification	379		
	V.1.3	Compactness for Kleisli-extended monads	381		
	V.1.4	Examples involving monoids	385		
	Exercis	es	388		

V

xiv Contents

V.2	Low se	Low separation, regularity, and normality		
	V.2.1	Order separation	389	
	V.2.2	Between order separation and Hausdorff separation	391	
	V.2.3	Regular spaces	393	
	V.2.4	Normal and extremally disconnected spaces	397	
	V.2.5	Normal approach spaces	402	
	Exercis	ees	404	
V.3	Proper	and open maps	405	
	V.3.1	Finitary stability properties	406	
	V.3.2	First characterization theorems	409	
	V.3.3	Notions of closure	415	
	V.3.4	Kuratowski-Mrówka Theorem	419	
	V.3.5	Products of proper maps	423	
	V.3.6	Coproducts of open maps	426	
	V.3.7	Preservation of space properties	429	
	Exercis	Exercises		
V.4	Topolo	Topologies on a category		
	V.4.1	Topology, fiberwise topology, derived topology	432 433	
	V.4.2	\mathcal{P} -compactness, \mathcal{P} -Hausdorffness	437	
	V.4.3	A categorical characterization theorem	439	
	V.4.4	\mathcal{P} -dense maps, \mathcal{P} -open maps	442	
	V.4.5	\mathcal{P} -Tychonoff and locally \mathcal{P} -compact Hausdorff		
		objects	447	
	Exercis	Exercises		
V.5	Connec	Connectedness		
	V.5.1	Extensive categories	453	
	V.5.2	Connected objects	457	
	V.5.3	Topological connectedness governs	459	
	V.5.4	Products of connected spaces	461	
	Exercis	Exercises		
No	tes on Chap	pter V	464	
Bibliogr	aphy		467	
_	Selected categories			
	Selected functors			
	Selected symbols			
Index	•			

Preface

Monoidal topology describes an active research area that, after many proposals throughout the past century on how to axiomatize "spaces" in terms of convergence, started to emerge at the beginning of the millennium. It provides a powerful unifying framework and theory for fundamental ordered, metric, and topological structures. Inspired by the topological concept of filter convergence, its methods are lax-algebraic and categorical, with generalized notions of monoid recurring frequently as the fundamental building blocks of its key notions. Since the main components of this new area have to date been available only in a scattered array of research articles, the authors of this book hope that a self-contained and consistent introduction to the theory will serve a broad range of mathematicians, scientists, and their graduate students with an interest in a modern treatment of the mathematical structures in question. With all essential elements from order and category theory provided in the book, it is assumed that the reader will appreciate a framework which highlights the power of equationally defined algebraic structures as particularly important elements of the broader lax-algebraic context which, roughly speaking, replaces equalities by inequalities.

There are two principal roots to the theory presented in this book: Barr's 1970 relational presentation of topological spaces which naturally extends Manes' 1969 equational presentation of compact Hausdorff spaces as the Eilenberg–Moore algebras of the ultrafilter monad, and Lawvere's 1973 description of metric spaces as (small individual) categories enriched over the extended non-negative real half-line. In hindsight, it seems surprising that it took some thirty years until the two general parameters at play here were combined in a compatible fashion, given by a monad $\mathbb T$ replacing the ultrafilter monad and a quantale (or, more generally, a monoidal closed category) $\mathcal V$ replacing the half-line. Of course, when considered separately, these two pivotal papers triggered numerous important developments. Lawvere's surprising discovery quickly became a cornerstone of enriched category theory, with his characterization of Cauchy completeness

xvi Preface

in purely enriched-categorical terms enjoying most of the attention, and Barr's paper was followed by at least two major but quite distinct attempts to develop a general topologically inspired theory using a lax-algebraic monad approach, by Manes [1974] and Burroni [1971]. However, the uptake of these articles in terms of follow-up work remained sporadic, perhaps because not many strikingly new applications beyond Barr's work came to the fore, with one prominent exception: the inclusion of Lambek's 1969 multicategories in addition to Barr's topological spaces provides a powerful motivation for Burroni's elegant setting.

In 2000, Bill Lawvere was the first to suggest (in a private communication to Walter Tholen) that, in the same way as topological spaces generalize ordered sets, Lowen's 1989 approach spaces should be describable as generalized metric spaces "using \mathcal{V} -multicategories in a good way" instead of just \mathcal{V} -categories, thus implicitly envisioning a merger of the parameters \mathbb{T} and \mathcal{V} . At about the same time, following a suggestion by George Janelidze, Clementino and Hofmann [2003] gave a lax-algebraic description of approach spaces using a "numerical extension" of the ultrafilter monad. Both suggestions set the stage for Clementino and Tholen [2003] to develop a setting that combines the two parameters efficiently, especially when the monoidal-closed category \mathcal{V} is just a quantale. As emphasized in [Clementino, Hofmann, and Tholen, 2004b], this setting suffices to capture ordered, metric, and topological structures. In a slightly relaxed form, as presented in [Seal, 2005], it also permits to replace ultrafilter convergence by filter convergence (and its "approach generalization") for its key applications, and it is this setting that has been adopted in this book.

When, following a meeting in Barisciano (Italy) in 2006, the authors of this book began to embark decisively on a project to give a self-contained presentation of the emerging theory, the heterogeneous make-up of the group itself made it necessary to document clearly all needed ingredients in a coherent fashion. Hence, this book contains:

- a "crash course" on order and category theory that highlights many aspects not readily available in existing texts and of interest beyond its use for order, metric, and topology;
- ullet an in-depth presentation of the syntactical framework involving the monad $\mathbb T$ and the quantale $\mathcal V$ needed for a unified treatment of the principal target categories;
- some novel applications leading to new insights, even in the context of ordinary topological spaces, with ample directions to additional or subsequent work that could not be included in this book.

In acknowledging the valuable advice and contributions received from many colleagues, we should highlight first some theses written on subjects pertaining to this book and to various degrees influencing its development, including the Ph.D. theses of Van Olmen [2005], Schubert [2006], Cruttwell [2008], and

Preface xvii

Reis [2013], and the Master's theses of Akhvlediani [2008] and Lucyshyn-Wright [2009]. We are grateful especially to Christoph Schubert and Andrei Akhvlediani, who respectively helped to transform Walter Tholen's lecture notes for courses given at the University of Bremen (Germany) in 2003 and at a workshop organized by Francis Borceux at Haute Bodeux (Belgium) in 2007 into something legible and digestible. Christoph was also an active contributor to the various meetings that the group of authors held at the University of Antwerp until 2009, generously organized by Eva Colebunders and Robert Lowen.

The long but surely incomplete list of names of colleagues who offered helpful comments at various stages includes those of Bernhard Banaschewski, Francis Borceux, Franck van Breugel, Marcel Erné, Cosimo Guido, Eraldo Giuli, Horst Herrlich, Kathryn Hess, George Janelidze, Bill Lawvere, Frédéric Mynard, Robert Paré, Hans Porst, Sergejs Solovjovs, Isar Stubbe, Paweł Waszkiewicz, and Richard Wood; we thank them all. We also appreciate the help in proofreading provided by Luca Hunkeler, Valentin Mercier, and Eiichi Piguet.

The authors of this book gratefully acknowledge the financial assistance received from various sources while working on this book project, including the Research Foundation Flanders (FWO) research project G.0244.05, the Centre for Mathematics of the University of Coimbra, the European Regional Development Fund through the program COMPETE, the Portuguese Government through the Fundação para a Ciência e a Tecnologia, the Center for Research and Development in Mathematics and Applications of the University of Aveiro, the European Union through a Marie-Curie International Reintegration Grant, the Swiss National Science Foundation through an Advanced Researcher Fellowship, and the Natural Sciences and Engineering Council of Canada through Discovery Grants. We also thank Roger Astley and his colleagues at Cambridge University Press for having been receptive and open to our wishes regarding the publication of this book.

We dedicate this book to Horst Herrlich, whose work and dedication to mathematics have had formative influence on all authors of this book.