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Introduction

Robert Lowen and Walter Tholen

In this introductory chapter we explain, in largely non-technical terms, not only

how monoids and their actions occur everywhere in algebra, but also how they

provide a common framework for the ordered, metric, topological, or similar

structures targeted in this book. This framework is categorical, both at a micro

level, since individual spaces may be viewed as generalized small categories, and

at a macro level, as we are providing a common setting and theory for the cate-

gories of all ordered sets, all metric spaces, and all topological spaces – and many

other categories.

Whilst this Introduction uses some basic categorical terms, we actually pro-

vide all required categorical language and theory in Chapter II, along with the

basic terms about order, metric, and topology, before we embark on presenting

the common setting for our target categories. Many readers may therefore want

to jump directly to Chapter III, using the Introduction just for motivation and

Chapter II as a reference for terminology and notation.

I.1 The ubiquity of monoids and their actions

Nothing seems to be more benign in algebra than the notion of monoid, i.e. of a

set M that comes with an associative binary operation m : M × M −→ M and a

neutral element, written as a nullary operation e : 1 −→ M . If mentioned at all,

normally the notion finds its way into an algebra course only as a brief precursor

to the segment on group theory. However, with the advent of monoidal categories,

as first studied by Bénabou [1963], Eilenberg and Kelly [1966], Mac Lane [1963],

and others, came the realization that monoids and their actions occur everywhere
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2 Introduction

in algebra, as the fundamental building blocks of more sophisticated structures.

This book is about the extension of this realization from algebra to topology.

I.1.1 Monoids and their actions in algebra

Every algebraist of the past hundred years would subscribe to the claim that free

algebras amongst all algebras of a prescribed type contain all the information

needed to study these algebras in general. However, what “contain” means was

made precise only during the second half of this period. First, there was the obser-

vation of the late 1950s [Godement, 1958; Huber, 1961] that the endofunctor

T = G F induced by a pair F ⊣ G : A −→ X of adjoint functors comes equipped

with natural transformations

m : T T −→ T and e : 1X −→ T ,

which, when we trade the Cartesian product of sets and the singleton set 1 for

functor composition and the identity functor on X, respectively, are associative

and neutral in an easily described diagrammatic sense. Hence, they make T a

monoid in the monoidal category of all endofunctors on X, i.e. a monad on X

[Mac Lane, 1971]. If G is the underlying-set functor of an algebraic category,

like the variety of groups, rings, or a particular type of algebras, the free structure

T X on X -many generators is just a component of that monad.

On the question of how to recoup the other objects of the algebraic category

from the monad they have induced, let us look at the easy example of actions of a

fixed monoid M in Set. Hence, our algebraic objects are simply sets X equipped

with an action a : M × X −→ X making the diagrams

M × M × X
1M ×a

��

m×1X

��

M × X

a

��

M × X
a

�� X

X
〈e,1X 〉

��

1X
��
●

●

●

●

●

●

●

●

●

●

M × X

a

��

X

commutative. Realizing that T X = M × X is in fact the carrier of the free

structure over X , we may now rewrite these diagrams as

T T X
T a

��

m X

��

T X

a

��

T X
a

�� X

X
eX

��

1X
��
❈

❈

❈

❈

❈

❈

❈

❈

T X

a

��

X .

(I.1.1.i)

Using a similar presentation of the relevant morphisms, i.e. of the action-

preserving or equivariant maps, Eilenberg and Moore [1965] realized that with

every monad T = (T, m, e) on a category X (in lieu of Set) one may asso-

ciate the category XT whose objects are X-objects X equipped with a morphism

a : T X −→ X making the two diagrams (I.1.1.i) commutative. Furthermore, there
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I.1 The ubiquity of monoids and their actions 3

is an adjunction FT ⊣ GT : XT −→ X inducing T, such that, when T is induced by

any adjunction F ⊣ G : A −→ X, there is a “comparison functor” K : A −→ XT

which, at least for X = Set, measures the “degree of algebraicity” of A over X. In

fact, for any variety of general algebras (with “arities” of operations allowed to be

arbitrarily large, as long as the existence of free algebras is guaranteed), K is an

equivalence of categories and therefore faithfully recoups the algebras from their

monad. By contrast, an application of this procedure to the underlying-set func-

tors of categories of ordered sets or topological spaces in lieu of general algebras

would just render the identity monad on Set whose Eilenberg–Moore category is

Set itself, i.e. all structural information would be lost.

Whilst all categories of general algebras allowing for free structures may be

seen as categories of generalized monoid actions as just described, this fact by

no means describes the full extent of the ubiquity of monoids and their actions in

algebra. For example, a unital ring R is nothing but an Abelian group R equipped

with homomorphisms

m : R ⊗ R −→ R and e : Z −→ R ,

which are associative and neutral in a quite obvious diagrammatic sense. Hence,

when one trades the Cartesian category (Set,×, 1) for the monoidal category

(AbGrp,⊗,Z), monoids R are simply rings, and their actions are precisely the

left R-modules. This example, however, is just the tip of an iceberg which places

the systematic use of monoidal structures, monoids, and their actions at the core

of post-modern algebra.

I.1.2 Orders and metrics as monoids and lax algebras

Although trying to describe ordered sets via the monad induced by the forgetful

functor to Set is hopeless, since it induces just the identity monad on Set, a

“monoidal perspective” on structures is nevertheless beneficial. First, departing

from the notion of a monad, but trading endofunctors T on a category X for

relations a on a set X , one can express transitivity and reflexivity of a by

a · a ≤ a and 1X ≤ a , (I.1.2.i)

with ≤ to be read as set-theoretical inclusion if a is presented as a ⊆ X × X .

Hence, with the morphisms m : a · a −→ a and e : 1X −→ a simply given by

≤, what we regard as the two indispensable requirements of an order a on X ,

transitivity and reflexivity, are expressed by a carrying the structure of a monoid

in the monoidal category of endorelations of X .1 (The fact that such a relation

actually satisfies the equation a · a = a is of no particular concern at this point.)

1 In this book, in order to avoid the proliferation of meaningless prefixes, we refer to what is
usually called a preorder as an order, considering the much less used antisymmetry axiom as an
add-on separation condition whenever needed. In fact, with respect to the induced order topology,
antisymmetry amounts to the T0-separation requirement.
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4 Introduction

But it is also possible to consider an order a on X in its role as a structure on X

in the spirit of Section I.1.1 as follows. Replacing Set by the category Rel of sets

with relations as morphisms and choosing for T the identity monad on Rel, we

see that the inequalities (I.1.2.i) are instances of lax versions of the Eilenberg–

Moore requirements (I.1.1.i). Indeed, when formally replacing strict (“=”) by lax

(“≤”) commutativity in (I.1.1.i), we obtain

T T X
T a

��

m X

��

≥

T X

a

��

T X
a

�� X

X
eX

��

1X
��
❈

❈

❈

❈

❈

❈

❈

❈

T X

a

��

≤

X .

(I.1.2.ii)

In doing so, we suppose that the ambient category X (which is Rel in the case

at hand) is ordered, so that its hom-sets are ordered, compatibly with composi-

tion. Briefly: ordered sets are precisely the lax Eilenberg–Moore algebras of the

identity monad on the ordered category Rel.

Next, presenting relations a on X as functions a : X × X −→ 2 = {⊥< ⊤}

with at most two truth values, let us rewrite the transitivity and reflexivity

requirements as

a(x, y) ∧ a(y, z) ≤ a(x, z) and ⊤ ≤ a(x, x)

for all x, y, z ∈ X . In this way, there appears a striking formal similarity with

what we regard as the two principal requirements of a metric a : X×X −→ [0,∞]

on X , the triangle inequality and the 0-distance requirement for a point to itself:2

a(x, y) + a(y, z) ≥ a(x, z) and 0 ≥ a(x, x) .

Hence, the set 2 with its natural order ≤ and its inherent structure ∧ and ⊤ has

been formally replaced by the extended real half-line [0,∞], ordered by the nat-

ural ≥ (!), and structured by + and 0. Just as for orders, one can now interpret

metrics as both monoids and lax Eilenberg–Moore algebras with respect to the

identity monad, after extending the relational composition

(b · a)(x, z) =
∨

y∈Y
(a(x, y) ∧ b(y, z))

for a : X × Y −→ 2, b : Y × Z −→ 2 and all x ∈ X , y ∈ Y , by3

(b · a)(x, z) = infy∈Y (a(x, y) + b(y, z))

for a : X × Y −→ [0,∞], b : Y × Z −→ [0,∞] and all x ∈ X , y ∈ Y .

2 Similarly to the use of the term ordered set, in this book we refer to a distance function a

satisfying these two basic axioms as a metric, using additional attributes for the other commonly
used requirements when needed, like finiteness, symmetry, and separation.

3 Although we use
∧

,
∨

to refer to infima and suprema in general, in order to avoid ambiguity
arising from the “inversion of order” in [0, ∞], we use sup and inf when denoting suprema and
infima with respect to the natural order.
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I.1 The ubiquity of monoids and their actions 5

The generalized framework encompassing both structures that we will use in

this book is provided by a unital quantale V in lieu of 2 or [0,∞]; i.e. of a

complete lattice equipped with a binary operation ⊗ (in lieu of ∧ or +) respecting

arbitrary joins in each variable, and a ⊗-neutral element k (in lieu of ⊤ or 0).

The role of the monad T that appears to be rather artificial in the presentation

of ordered sets and metric spaces will become much more pronounced in the

presentation of the structures discussed next.

I.1.3 Topological and approach spaces as monoids and lax algebras

In Section I.1.2 we described ordered sets and metric spaces as lax algebras

with respect to the identity monad on the category of relations and “numerical”

relations, respectively. Taking a historical perspective, we can now indicate how

topological spaces fit into this setting once we allow the identity monad to be

traded for an arbitrary “lax monad,” and how the less-known approach spaces

[Lowen, 1997] emerge as the natural hybrid of metric and topology in this

context.

Although the axiomatization of topologies in terms of convergence, via filters

or nets, has been pursued early on in the development of these structures since

Hausdorff [1914], notably by Fréchet [1921] and others, the geometric intu-

ition provided by the open-set and neighborhood perspective clearly dominates

the way in which mathematicians perceive topological spaces. Nevertheless,

the proof by Manes [1969] that compact Hausdorff spaces are precisely the

Eilenberg–Moore algebras of the ultrafilter monad β = (β, m, e) on Set could not

be ignored, as it gives the ultimate explanation for why the category CompHaus

behaves in many ways just like algebraic categories do. (For example, just as in

algebra, but unlike in the case of arbitrary topological spaces, the set-theoretic

inverse of a bijective morphism in CompHaus is automatically a morphism

again.) In this description, a compact Hausdorff space is a set X equipped with a

map a : β X −→ X assigning to every ultrafilter x on X (what turns out to be) its

point of convergence in X , requiring the two basic axioms of an Eilenberg–Moore

algebra:

a(βa(X )) = a(m X (X )) and a(eX (x)) = x (I.1.3.i)

for all X ∈ ββ X and x ∈ X ; here the following ultrafilters on X are used:

eX (x) = ẋ = {A ⊆ X | x ∈ A}

is the principal filter on x ;

m X (X ) =
∑

X =
{

A ⊆ X | {x ∈ β X | A ∈ x } ∈ X
}

is the Kowalsky sum of X ; and

βa(X ) = a[X ] =
{

A ⊆ X | {x ∈ β X | a(x ) ∈ A} ∈ X
}
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6 Introduction

is simply the image filter of X under the map a. Writing x −→ y instead of

a(x ) = y and X −→ y instead of a[X ] = y , the conditions (I.1.3.i) take the

more intuitive form

∃y ∈ β X (X −→ y & y −→ z) ⇐⇒
∑

X −→ z and ẋ −→ x

for all X ∈ ββ X and x ∈ X . In fact, in the presence of the implication “ =⇒ ” in

the displayed equivalence, the implication “ ⇐= ” comes for free (as y = a[X ]

necessarily satisfies y −→ z when
∑

X −→ z), and conditions (I.1.3.i) take the

form

X −→ y & y −→ z =⇒
∑

X −→ z and ẋ −→ x (I.1.3.ii)

for all X ∈ ββ X , y ∈ β X , x, z ∈ X .

As Barr [1970] observed, if one allows a to be an arbitrary relation between

ultrafilters on X and points of X , rather than a map, so that we are no longer

assured that every ultrafilter has a point of convergence (compactness) and that

there is at most one such point (Hausdorffness), then the relations −→ satisfying

(I.1.3.ii) describe arbitrary topologies on X , with continuous maps characterized

as convergence-preserving maps. Furthermore, given the striking similarity of

(I.1.3.ii) with the transitivity and reflexivity conditions of an ordered set, it is not

surprising that (I.1.3.ii) gives rise to the presentation of topological spaces as both

monoids and lax algebras of the ultrafilter monad.

In this statement, however, we glossed over an important point: having the Set-

functor β, one knows what βa is when a is a map, but not necessarily when a

is just a relation. Whilst there is a fairly straightforward answer in the case at

hand, in general we are confronted with the problem of having to extend a monad

T = (T, m, e) on Set to Rel or, even more generally, to V-Rel, the category of

sets and V-relations r : X −→� Y , given by functions r : X × Y −→ V . Although

for our purposes it suffices that this extension be lax, i.e. quite far from being a

genuine monad on V-Rel, the study of the various needed methods of just laxly

extending monads on Set to V-Rel can be cumbersome and takes up significant

space in this book.

The general framework that emerges as a common setting is therefore given

by a unital (but not necessarily commutative) quantale (V,⊗, k) and a monad

T = (T, m, e) on Set laxly extended to V-Rel, with the lax extension usually

denoted by T̂ : V-Rel −→ V-Rel (although a given T may have several lax

extensions). The lax algebras considered are sets X equipped with a V-relation

a : T X −→� X satisfying the two basic axioms

T̂ a(X , y ) ⊗ a(y , z) ≤ a(m X (X ), z) and k ≤ a(eX (x), x) (I.1.3.iii)

for all X ∈ T T X , y ∈ T X , z ∈ Z . The lax algebras are to be considered as gen-

eralized categories enriched in V , with the domain x of the hom-object a(x , y)
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I.1 The ubiquity of monoids and their actions 7

not lying in X but in T X . Furthermore, relational composition can be generalized

to Kleisli convolution for V-relations r : T X × Y −→ V , s : T Y × Z −→ V via

(s ◦ r)(x , z) =
∨

X ∈T T X
m X (X )=x

∨

y ∈T Y
T̂ r(X , y ) ⊗ s(y , z)

for all x ∈ T X , z ∈ Z . The lax algebra axioms for (X, a) are then represented

via the monoidal structures

a ◦ a ≤ a and 1
♯

X ≤ a ,

where 1
♯

X is neutral with respect to the Kleisli convolution.

In this general framework we have so far encountered the objects in the fol-

lowing table, displayed with the corresponding monad T and quantale V (here,

P+ = (([0,∞],≥),+, 0) is the extended non-negative real half-line):

T V 2 P+

Identity monad ordered sets metric spaces

Ultrafilter monad topological spaces ?

Fortunately, the field left blank is filled with a well-studied, but much less famil-

iar, structure, called approach space. It is perhaps easiest described in metric

terms: an approach structure on a set X can be given by a point-set distance func-

tion δ : X × P X −→ [0,∞] satisfying suitable conditions. A metric space (X, d)

becomes an approach space via

δ(x, B) = infy∈B d(y, x)

for all x ∈ X , B ⊆ X . When an approach space is presented as a lax algebra

(X, a) with a : β X × X −→ [0,∞], one can think of the value a(x , y) as the dis-

tance that the point y is away from being a limit point of x . Indeed, a topological

space X has its approach structure given by

a(x , y) =

{

0 if x −→ y,

∞ otherwise.

As for topological spaces, the more categorical view of approach spaces in terms

of convergence proves useful.

I.1.4 The case for convergence

A topology (of open sets) on a set X is most elegantly introduced as a subframe

of the powerset X , i.e. a collection of subsets of X closed under finite inter-

section and arbitrary union. Via complementation, a topology (of closed sets)

is equivalently described as a collection closed under finite union and arbitrary
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8 Introduction

intersection, and this simple tool of Boolean duality (switching between open and

closed sets) proves to be very useful. There is, however, an unfortunate break-

down of this duality when it comes to morphisms. Although continuous maps

are equivalently described by their inverse-image function preserving openness

or closedness of subsets, the seemingly most important and natural subclasses

of morphisms, namely those continuous maps whose image functions preserve

openness or closedness (open or closed continuous maps) behave very differently:

whilst open maps are stable under pullback, closed maps are not; not even the

subspace restriction f −1 B −→ B of a closed map f : X −→ Y with B ⊆ Y will

generally remain closed. Hence, as recognized by Bourbaki [1989], more impor-

tant than the closed maps are the proper maps, i.e. the morphisms f that are stably

closed, so that every pullback of the map f is closed again, also characterized as

the closed maps f with compact fibers.

Although under the open- or closed-set perspective no immediate “symmetry”

between open and proper maps becomes visible, their characterization in terms

of ultrafilter convergence reveals a remarkable duality: a continuous map f :

X −→ Y is

• open if y −→ f (x) (with x ∈ X and y ∈ βY ) implies

y = f [x ] with x −→ x for some x ∈ β X ,

x �� x

y �� f (x)

• proper if f [x ] −→ y (with x ∈ β X and y ∈ Y ) implies

y = f (x) with x −→ x for some x ∈ X .

x �� x

f [x ] �� y

In fact, once presented as lax homomorphisms between lax Eilenberg–Moore

algebras with respect to the ultrafilter monad (laxly extended from Set to Rel),

these two types of special morphisms occur most naturally as the ones for which

an inequality characterizing their continuity may be replaced by equality, i.e. by

a strict homomorphism condition.

Another indicator why convergence provides a most useful complementary

view of topological spaces is the following. For a set X and maps fi : X −→ Yi

into topological spaces Yi , i ∈ I , there is a “best” topology on X making all

fi continuous, often called “weak,” but “initial” in this book. Its description in

terms of open sets is a bit cumbersome, as it is generated by the sets f −1(B),

B ⊆ Yi open, i ∈ I , whereas the characterization in terms of ultrafilter conver-

gence is immediate: x −→ x in X precisely when fi [x ] −→ f (x) for all i ∈ I .

For example, when X =
∏

i∈I Yi with projections fi , so that the topology on X

just described is the product topology, a proof of the Tychonoff Theorem (on the

stability of compactness under products) becomes almost by necessity cumber-

some when performed in the open-set environment, but is in fact a triviality in the

convergence setting.
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I.1 The ubiquity of monoids and their actions 9

We stress, however, the fact that the roles of open sets versus convergence rela-

tions are reversed in the dual situation, when one wants to describe the “best”

(or “final”) topology on a set Y with respect to given maps fi : X i −→ Y

originating from topological spaces X i , i ∈ I . Its description in terms of open sets

is immediate, as B ⊆ Y is declared open whenever all f −1
i (B) are open, whereas

a characterization in terms of convergence involves a cumbersome generation

process.

In conclusion, we regard the two perspectives not at all as mutually exclusive

but rather as complementary to each other. Consequently, this book provides a

number of results on topological and approach spaces which arise naturally from

the general convergence perspective, but which are far from being obvious when

expressed in the more classical open-set or point-set distance language.

I.1.5 Filter convergence and Kleisli monoids

To what extent is it possible to trade ultrafilter convergence for filter convergence

when presenting topological spaces as in Section I.1.3 or characterizing open and

proper maps as in Section I.1.4? In order to answer this question, it is useful to

axiomatize topologies on a set X in terms of maps ν : X −→ F X into the set F X

of filters on X , to be thought of as assigning to each point its neighborhood filter.

Ordering such maps pointwise by reverse inclusion and using the same notation as

in Section I.1.3, except that now ◦ denotes the Kleisli composition rather than the

Kleisli convolution, one obtains another (and, in fact, more elementary) monoidal

characterization of topologies on a set X :

ν ◦ ν ≤ ν and eX ≤ ν ;

in pointwise terms, this reads as

∑

ν[ν(x)] ⊇ ν(x) and ẋ ⊇ ν(x)

for all x ∈ X . We say that topological spaces are represented as Kleisli monoids

(X, ν), or simply as F-monoids, since the filter monad F = (F, m, e) may be

traded for any monad T on Set such that the sets T X carry a complete-lattice

order, suitably compatible with the monad operations. As such a monad T may

be characterized via a monad morphism τ : P −→ F, with P the powerset monad,

we call T power-enriched. The basic correspondence between filter convergence

and neighborhood systems, given by

f −→ x ⇐⇒ f ⊇ ν(x) ,

may now be established at the level of a power-enriched monad T. With a suitable

lax extension of T to Rel, it yields a presentation of T-monoids as lax algebras.

For T = F it tells us that, remarkably, the characterization (I.1.3.ii) of topolog-

ical spaces remains valid if we trade ultrafilters for filters. This fact, although
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10 Introduction

established by Pisani [1999] in slightly weaker form, remained unobserved until

proved by Seal [2005]. All previous axiomatizations of the notions of topology in

terms of filter convergence entailed redundancies.

The answer to our initial question is therefore affirmative with respect to the

convergence presentation of topological space. Also, the characterization of open

maps given in Section I.1.4 survives the filters-for-ultrafilters exchange, but that

of proper maps does not. Hence, we must be cognizant of the fact that the notions

introduced for lax algebras will in general depend on the parameters T and V , not

just on the category of lax algebras described by them, such as the category of

topological spaces considered here.

I.2 Spaces as categories, and categories of spaces

It has been commonplace since the very beginning of category theory to regard

individual ordered sets as categories: they are precisely the categories whose

hom-sets have at most one element. By contrast, it was a very bold step for Law-

vere [1973] to interpret the distance a(x, y) in a metric space as hom(x, y). To

understand this interpretation, we first recall how ordinary categories fare in the

context of orders and metrics as described in Section I.1.2. We then indicate how

the consideration of individual ordered sets, metric spaces, topological spaces,

and similar objects as small generalized categories leads to new insights and cross

fertilization between different areas, as does the investigation of the properties of

the category of all such small categories of a particular type.

I.2.1 Ordinary small categories

Replacing “truth values” (2-valued or [0,∞]-valued) by arbitrary sets, for a given

set X of “objects” let us consider functions

a : X × X −→ Set .

X is then the set of objects of a category with hom-sets a(x, y) if there are families

of maps

m X,Y,Z : a(x, y) × a(y, z) −→ a(x, z) and eX : 1 −→ a(x, x)

satisfying the obvious associativity and neutrality conditions, expressible in terms

of commutative diagrams. Hence, the notion of small category fits into the

same structural pattern already observed for orders and metrics, where now the

composition of functions a : X × Y −→ Set, b : Y × Z −→ Set is given by

(b · a)(x, z) =
∐

y∈Y (a(x, y) × b(y, z))

for all x ∈ X , z ∈ Z .

Briefly, if one allows the above-mentioned setting of a unital quantale (V,⊗, k)

to be extended to that of a monoidal closed category, ordinary small categories
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