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Fundamentals of Spectroscopy

La lumie`re (…) donne la
couleur et l’é  clat a `toutes
les productions de la
nature et de l’art; elle
multiplie l’univers en le
peignant dans les yeux de
tout ce qui respire.

Light (…) gives colour and
brilliance to all works of
nature and of art; it
multiplies the universe by
painting it in the eyes of all
that breathe.

Abbé  Nollet, 1783

1.1	 Introduction

“Science is spectral analysis. Art is light synthesis”, so wrote Karl Kraus, Austrian writer. Light 
has intrigued both poets and scientists. What exactly is light? What effect does it have on matter? 
These are questions that have baffled scientists for many years, prompting Einstein in 1917 to say 
“For the rest of my life I will reflect on what light is”. The branch of science that deals with the 
study of electromagnetic radiation (of which visible light is a part) and its interaction with matter 
is called spectroscopy. The word is derived from the Latin: spectron – spectre (ghost or spirit), or 
the Greek: σκοpειν – to see. This literally means that in spectroscopy, you do not look directly 
at the molecule – the matter – but what you see is its ‘ghost’ or image. To begin our study, we 
must, therefore, first discuss the nature of electromagnetic radiation and matter, and then the 
interaction between the two.

We start this chapter by giving basic formulae and definitions relating to waves, including 
travelling waves. We then go on to the wave description of electromagnetic radiation and its 
manifestations, and then discuss the properties emerging from a particulate description of  
radiation. The entire electromagnetic spectrum, its divisions and sub-divisions, the kind  
of spectroscopy observed in each region, are the topics of the next section. The populations 
of energy levels play an important role in the observed intensities. Einstein’s coefficients 
and their interrelation are introduced in this chapter, but the quantum mechanical treatment 
is reserved for the next chapter. We wind up this chapter with a discussion of line shapes 
and broadening, followed by a brief introduction to Fourier transform spectroscopy, the 
almost magical transformation of a time decay to a line width, and the experimental 
recording of spectra. This chapter sets the foundation for the future chapters. The  entire 
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2  Atomic and Molecular Spectroscopy

treatment in this chapter is semi-classical, i.e., we recognize that the energy levels of atoms 
and molecules are quantized, but do not go beyond Bohr’s theory. This makes the various 
processes easier to comprehend, and gives us guidelines for the next chapter, where we 
bring in quantum mechanics.

1.2	 Some Properties of Waves

A wave is a disturbance that travels and spreads out through some medium. Familiar examples 
are ripples on the surface of water and vibrations in a string. A wave is characterized by its 
frequency, wavelength, speed, direction and phase. These parameters are best understood by 
imagining an object, such as a ball, moving in a circular path, as shown in Figure 1.1. If, at 
time t = 0, the object is in the horizontal (or 3 o’clock) position, its vertical (y) coordinate is 
zero. Let the object now start rotating counter-clockwise in a circular path of radius A with an 
angular frequency ω. The angular frequency (ω) is a scalar measure of the rotation rate, 
measured in radian per second, and is given by rv /

 ω = , where v = v


 is the tangential speed 
at a point about the axis of rotation (measured in m s−1), and r = 


r  is the radius of rotation. (In 

this book, all vector quantities are denoted by an arrow above the symbol and 

r , for example, 

refers to the magnitude of 

r .)

Then, in time t, the object executes an angle θ ω= t  radian, and its y coordinate is now

( ) sin ( ) sin ( )y t A t A tθ ω= =

Figure 1.1.  Oscillation of a ball in circular motion
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When θ reaches π / 2 (12 o’clock position), the vertical component y achieves its maximum value, 
i.e., sin ( / 2)y A Aπ= = . At θ = π (9 o’clock position), y is again zero, and at θ = 3π / 2 (6 o’clock 
position), y = −A. We can trace y(t) as a function of time as in the panel on the right-hand side of 
Figure 1.1 until the object reaches its original position when θ = 2π ≡ 0. This completes one cycle. 
Subsequent motion is a repetition of the previous cycle, since sin ( 2 ) sin ( )pθ θ+ = .

The maximum value of y(t), i.e., A, is called the amplitude of the wave. The time taken for 
completion of a cycle is called the time period (T) of the wave and is measured in second (s). 
A cycle is completed when θ spans 2π; therefore, ωT = 2π, or T = 2π / ω. Since the pattern 
repeats itself every T seconds, the number of cycles completed per second is the reciprocal of T.  
This is called the frequency of the wave and is given the symbol ν (= 1 / T) with unit s−1 (Hz). 
The maxima in the peaks are called crests and the minima are named troughs (Figure 1.2). The 
distance traversed by the object in one cycle, called the wavelength, is denoted by the symbol λ. 
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Fundamentals of Spectroscopy  3

It is measured as the distance between two successive peaks or crests, troughs or corresponding 
zero crossings, and is expressed in metre (m).

Figure 1.2.  The wavelength of a sine wave, λ, measured between crests

1

0.8

0.2

0.6

0.4

−1

−0.8

−0.2

−0.6

−0.4

Troughs

Crests

λ

x

y

The speed of light in vacuum is represented by c
0
, and is equal to ~3 × 108 m s−1 (precisely 

299,792,458 m s−1). For media other than vacuum, the speed of light in vacuum, c
0
, is replaced 

by c, the speed in the medium, given by c
0
  / n, where n is the refractive index of the medium. 

Henceforth, we shall use the symbol c for the speed of light in any medium (with n = 1 for 
vacuum). The frequency and wavelength are related by the expression λν = c; hence, short 
wavelength radiation has high frequency. The frequency is a more fundamental property than 
the speed and wavelength of the radiation, and remains constant when radiation propagates 
through media of different densities, whereas the other two change with the medium.

Another quantity frequently used by spectroscopists is the wavenumber ( ν), defined as a count 
of the number of wave crests (or troughs) in a given unit of length: ν = ν  /  c = 1  /  λ. The 
dimensions of wavenumber are inverse length. The SI unit for the wavenumber is m−1, but the unit 
cm−1 is still in use. For example, light of 400 nm wavelength is given a wavenumber of 25,000 
cm−1, rather than 2.5 × 106 m−1. The conversion from cm−1 to m−1 may be performed by multiplying 
the wavenumber in cm−1 by 100. Alternatively, to express the wavenumber in cm−1, use the value 
2.99792458 × 1010 cm s-1 for c, in place of its value in m s−1 to convert wavelength to wavenumber.

Note: Conversion from the wavelength in nm to wavenumber in cm−1:

[cm ]
10 cm nm

[nm]
1

7 1

ν
λ

=−
−

since 1 nm = 10−7 cm.
There is still another term that needs to be defined. The case of a wave starting at zero and 

immediately increasing (Figure 1.1) is a special one. In general, the oscillation may start from 
any point, even the highest, as shown in Figure 1.3. In such a case, one may express this wave 
in terms of the cosine function, since we know that the cosine of zero radian is unity. However, 
there is another way of expressing this function without changing the general form of our 
equation. As Figure 1.3 shows, the cosine function is just the sine function, started a little 
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4  Atomic and Molecular Spectroscopy

earlier, and the cosine function can be expressed in terms of the sine function just by adding 
the starting angle. Thus, for the wave shown in Figure 1.3, we may equivalently write

θ θ= ≡ +





p
y t A t A t( ) cos ( ) sin ( )

2
� (1.1)

Figure 1.3.  A cosine wave expressed as a sine wave with φ = π / 2
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The angle at which an oscillation starts is referred to as the phase angle, or simply the phase 
of an oscillation. It is commonly given a symbol φ and is expressed in radian. The general form 
of the equation is thus sin ' cosy A Aθ φ θ φ) )( (= + ≡ + . We have seen that the wave shown in 
Figure 1.3 can be equivalently expressed in terms of the cosine function, with a phase angle 
of  zero or as a sine function with a phase of π  /  2 [equation (1.1)]. Using the relationship 

θ θ= +



cos sin

2

p
, it is possible to completely describe wave motion in terms of either the 

sine or cosine functions, just by changing the phase angle.
A trigonometrically more tractable formulation is in terms of the complex 

exponential ( )y Aei= θ φ+ . Only the real part of this expression has any physical interpretation, 
and this can be extracted using Euler’s formula y Ae A ii cos ( ) sin ( )( ) θ φ θ φ )(= = + + +θ φ+ . 
Since the cosine function represents the real part of the exponential function, we shall follow 
the cosine function in our future derivations.

In terms of the various quantities that we have developed, we are now in a position to 
express y(t) in a variety of forms:

y t A A t A t

A
t

T
A

ct

θ φ ω φ ν φ

φ
λ

φ

( ) ( ) ( )= + = + = +

= +



 = +





( ) cos cos cos 2

cos
2

cos
2

p

p p
� (1.2)

Of these, the relations in terms of the frequencies (ω and ν) will be used in what follows.
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Fundamentals of Spectroscopy  5

The phase of the first wave (t
0
) at the origin is zero, but that of the second (at t

1
) is negative. 

Since the wave at location z
1
 and time t

1
 has the same phase as the wave at location z

0
 and 

time t
0
, we can say that:

y(z
0
, t

0
) = y(z

1
, t

1
)

In addition, for the wave to maintain its shape, the phase must be a linear function of z and t; 
otherwise the wave would compress or stretch out at different locations in space or time.
Therefore:

α z
0
 + β t

0
 = α z

1
 + β t

1
, or α (z

1
 – z

0
) = −β (t

1
 – t

0
).

As discussed, if t
1
 > t

0
 ⇒ z

1
 > z

0
 (i.e., the wave moves towards z = +∞), then α and β must 

have opposite algebraic signs:

φ (z, t) = |α| z − |β |t

Since it is the argument of the cosine function, |a |  z − |β |t has the ‘dimensions’ of angle (radian). 
We have already identified β = ω [equation (1.2)], the angular frequency of the oscillation. 
Similarly, since z has the dimensions of length, α must have the dimensions of rad m−1, i.e., α tells 
us how many radians of oscillation exist per unit length – the angular spatial frequency of the wave, 
commonly denoted by k (= 2π   / λ): y

 + (z, t) = Acos (kz − ω t + φ) − travelling harmonic wave 
towards z = +∞ with arbitrary phase φ. Similarly, for a harmonic wave moving towards z = −∞,  
y

 − (z, t) = Acos (kz + ω t  +  φ) − travelling harmonic wave towards z = −∞ with arbitrary phase φ.

1.2.1	Travelling waves

Light waves are travelling waves and we now discuss the form taken by equation (1.2) for a 
travelling wave. A travelling wave is any kind of wave that propagates in a single direction 
(say, z) with negligible change in shape. Hence, it is a function of both spatial (z) and temporal 
(relating to time, t) variables. We now combine the two dependencies and write

( , ) cos ( , ) cos ( )y z t A z t A z tφ α β= = + � (1.3)

For this oscillation to move through space, i.e., towards positive z, the point z
0
 in space at a 

time t
0
 must move to z

1
 > z

0
 at time t

1
 > t

0
 (Figure 1.4).

Figure 1.4.  ‘Snapshots’ of a sinusoidal wave at two different times t0 and t1 > t0, showing motion 
of the peak originally at the origin at t0. The wave is travelling towards z = +∞
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6  Atomic and Molecular Spectroscopy

1.3	E lectromagnetic Radiation

Up till now, we have not defined y(t); it could be any variable that changes as the wave passes. 
In the case of light waves, it is their vibrating electric and magnetic fields. Electromagnetic 
radiation is so named because it consists of mutually perpendicular electric and magnetic 
fields, normal to the direction of propagation of the wave. The connection of optics with 
electricity and magnetism was first realized by Maxwell through his equations, which form the 
basis of all electricity and magnetism. However, towards the end of the nineteenth century, 
some puzzling phenomena regarding light could not be explained by classical physics, and the 
quantum theory had to be invoked to explain these. For example, the wave theory of light could 
explain most phenomena relating to light, such as propagation in a straight line, reflection, 
refraction, superposition, interference, diffraction, polarization and the Doppler effect, but it 
could not explain certain other observations regarding blackbody radiation (electromagnetic 
radiation emitted by a heated object), photoelectric effect (emission of electrons by an 
illuminated metal) and spectral lines (emission of sharp spectral lines by gas atoms in an 
electric discharge tube). Young’s double slit experiment firmly established the quantum 
mechanical explanation that both light and matter have dual nature, i.e., they can behave as 
either wave or particle, depending on what question you ask: there is a ‘wave’ aspect and a 
‘particle’ aspect, too. Thus, the intensity of light depends on the square of the amplitude of the 
wave, and its energy depends on the frequency of the photon. Since we are more familiar with 
the wave nature of light, we first characterize electromagnetic radiation as a wave.

1.3.1	Wave nature of light

Light is energy that travels in a straight line in the form of electromagnetic waves. Like all 
waves, when it encounters an object, light may get absorbed, diffracted, reflected, refracted, 
scattered or transmitted, depending on the shape and composition of the object, and on the 
light’s wavelength. In fact, many of these processes may occur simultaneously, because objects 
have uneven compositions or shapes, and beams of light are not monochromatic, i.e., they may 
include many wavelengths.

Light can be considered as oscillations of an electromagnetic field – characterized by 
electric (


E ) and magnetic (


B) components – perpendicular to the direction of light propagation 

and to each other (Figure 1.5).

Figure 1.5.  A schematic view of an electromagnetic wave propagating along the z-axis
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Fundamentals of Spectroscopy  7

It can be shown from Maxwell’s relations that the magnitudes of the electric and magnetic 
fields are related by the wave speed, i.e., =

 
E c B . The electric and magnetic fields oscillate 

in the xy plane perpendicular to the direction of propagation (Figure 1.5). As the electric field 
changes, so does the magnetic field in tandem. The wave represented in this figure has its 
electric fields aligned in the xz plane and pointing in the x direction. The magnetic fields are 
aligned in the yz plane and all vectors point in the y direction.

1.3.1.1 Polarization

Electromagnetic radiation has another (and sometimes important to spectroscopists) property: 
polarization. In contrast to sound waves, electromagnetic waves are transverse waves, 
i.e.,  the oscillations occur perpendicular to the direction of propagation of the wave. For an 
electromagnetic wave propagating in the z-direction, there are two transverse directions along 
which the electric and magnetic fields can lie. The 


E vectors could lie either in the x or y 

directions, or anywhere in the xy plane, i.e., = +


ˆ ˆE iE jEx y, where î  and  ĵ are unit vectors along 
the x and y directions, respectively. The polarization of light is defined by the orientation of the 
wave's electric field. Natural light is generally unpolarized, i.e., its electric field vectors are in 
all random directions in the xy plane (Figure 1.6). The electromagnetic wave shown in 
Figure 1.5 is an example of a plane polarized light since all the electric field vectors lie in a 
single plane, the vertical plane (xz), pointing in the x direction. The electric and magnetic fields 
for this wave are given by

E E kz t i

B B kz t j
E

c
kz t j




cos ( )ˆ

cos ( ) ˆ cos ( ) ˆ

0

0
0

ω

ω ω

= −

= − = −

This wave has 

E always pointing in the x direction and 


B always pointing in the y direction. 

A wave like this, where the fields always point along given directions, is also said to be linearly 
polarized. The example wave is linearly polarized in the x direction because the electric field 
vectors are all in this direction.

Figure 1.6.  Electric field E


 orientation for polarized and non-polarized electromagnetic waves

Non-polarized wave

Polarized wave
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8  Atomic and Molecular Spectroscopy

1.3.2	Particulate nature of radiation

Radiation can be also described in terms of particles of energy, called photons. A photon has 
energy but has neither mass nor charge. Its energy (in Joule) is given as:

h hc hc/photon
ε ν λ ν= = = � (1.4)

where h is Planck’s constant (h = 6.626075 × 10−34 J s). Equation (1.4) relates the energy of 
each photon of the radiation to the electromagnetic wave characteristics (ν and λ). It was 
Planck who, in 1901, first postulated this relation more as a matter of mathematical necessity 
to explain blackbody radiation (discussed in Section 1.4), than out of a belief that light 
consisted of discrete quanta. Einstein, on the other hand, took this mathematical ‘trick’ and 
interpreted it literally: if light could only possess energies which were integer multiples of the 
Planck discrete energy, E = hν, perhaps light was actually composed of discrete packets 
(photons), each possessing an energy hν.

By extending Planck’s hypothesis of energy quantization to include not just the absorption 
and emission mechanism but to the light itself, Einstein succeeded in explaining certain 
puzzling phenomena related to the photoelectric effect. Experiments on the emission of 
photoelectrons from the surface of metals showed that low-frequency radiation had no effect, 
but once a threshold frequency was crossed, emission occurred with no time lag. The threshold 
frequency was dependent on the ‘work function’ (ionization energy) of the metal. Higher 
frequencies of the incident radiation led to ejection of electrons with higher kinetic energies. 
All these observations could be explained if it was assumed that the incident radiation consists 
of photons of energy hν, and the maximal kinetic energy of the ejected electrons is given by 
E

k
 = hν − φ, where φ is the work function of the metal, equal to hν

0
, where ν

0
 is the threshold 

frequency.
The photon energy is directly proportional to the wavenumber. However, spectra are usually 

recorded in terms of the wavelength, so a conversion to energy is required. Putting in the values 
of h and c, we find that the conversion factor from wavelength to photon energy is

hc = 1.986447 × 10−25 J m = 1.986447 × 10−16 J nm

Table 1.1 summarizes some of the characteristics of electromagnetic radiation studied so far, 
their relationship with wavelength and their common units of measurement.

The internal energies of atoms are small (~10−19 J) because of their small size (~10−10 m). 
The individual photon energies are also of the same order and may be more conveniently 
expressed in electron volt (eV), a unit equal to the kinetic energy imparted to an electron when 
it is accelerated by a potential of 1 V. The conversion factor between electron volt and Joule is 
numerically equal to the charge on an electron.

1 eV = 1.60217733 × 10−19 C × 1 V = 1.60217733 × 10−19 J

Combining this with equation (1.4) gives the following conversion factor when the photon 
energy is expressed in electron volt and wavelength in nanometre.

ε
photon

[eV] = 1240 / λ [nm]
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Fundamentals of Spectroscopy  9

To appreciate the vast range of photon energies, consider that yellow light (λ ≈ 600 nm) has 
a photon energy of ~2 eV, while X-rays from a copper source, with a wavelength of 0.154 nm, 
have a photon energy of about 8000 eV. This shows that at least 8000 V is needed to give 
electrons sufficient energy to produce these X-rays.

The energies discussed above, although small by macroscopic standards, are very significant 
at the level of individual atoms or molecules. This can be seen by multiplying them by 
Avogadro’s number (N

A
), so as to give the energy per mole. The conversion factor from electron 

volt per molecule to Joule per mole is eN
A
, giving

1 eV per molecule = 96.5 kJ mol−1

Table 1.2 summarizes the conversion factors amongst various energy units.

Table 1.1. Characteristics of electromagnetic radiation

Characteristic Common units Relationship with wavelength

Wavelength m
μm (10−6 m)
nm (10−9 m)

Wavenumber m−1

cm−1
1

ν
λ

=

Frequency s−1 (Hz)
kHz (103 s−1)
MHz (106 s−1)
GHz (109 s−1)

ν
λ

=
c

Speed m s−1 c = νλ
Energy Joule (J)

E
hc

λ
=

Table 1.2. Conversion factors between radiation frequency, wavenumber, photon energy and the 
corresponding energy per mole

Corresponding value in

Unit Hz cm−1 eV kJ mol−1

1 Hz 1 3.336 × 10−11 4.136 × 10−15 3.990 × 10−13

1 cm−1 2.998 × 1010 1 1.236 × 10−4 1.196 × 10−2

1 eV 2.418 × 1014 8066 1 96.49

1 kJ mol−1 2.506 × 1012 83.60 1.036 × 10−2 1
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10  Atomic and Molecular Spectroscopy

Solution

The energy of one photon is ε
photon

 = hc / λ; thus, since 60 W = 60 J s−1, the number of photons 
per second, N, is

λ
= = × ×

× × ×
= ×

−

−

−

−

60(J s ) (m)

(J s) (m s )

60 0.5 10

6.6256 10 2.9979 10
1.510 10

1

1

6

34 8
20N

h c
s−1

Note: A large number of photons is required because Planck’s constant h is very small! 
It is hardly surprising that the quantum nature of this light is not usually apparent.

Example 1.2  Calculate the energy in Joule and the wavenumber in cm−1 of:
(a)	 A photon with wavelength 1 μm
(b)	 A photon with frequency 6.00 × 1014 Hz

Solution

(a)	 Energy, E = hc / λ; hence for a wavelength 10−6 m:

E = (6.626 × 10−34 J s) × (2.998 × 108 m s−1) / (10−6 m) = 1.986 × 10−19 J

Wavenumber, ν  = 1 / λ; hence ν  = 1 / (10−6 m) = 106 m−1 = 104 cm−1

(b)	 Energy E = hν; hence, E = (6.626 × 10−34 J s) × (6.00 × 1014 s−1) = 3.98 × 10−19 J

ν  = ν / c = (6.00 × 1014 s−1) / (2.998 × 108 m s−1) = 2.00 × 106 m−1 = 2.00 × 104 cm−1

Example 1.3  Two energy levels are separated in wavenumber by 200 cm−1. Convert 
this energy to Joule.

Solution

E = hcν = (6.626 × 10−34 J s) × (2.998 × 108 m s−1) × (20000 m−1) = 3.97 × 10−21 J

Note: It is essential to convert from cm−1 to m−1 if we want the final answer in SI units of Joule.

Example 1.4  k
B
T, where k

B
 is Boltzmann’s constant, is an important property in 

chemistry with units of energy. Calculate the value of k
B
T at 10 K, 100 K and 

300 K, giving your answer in J, kJ mol−1 and cm−1.

Example 1.1  A light bulb of 60 W emits at a wavelength of 0.5 μm. Calculate the 
number of photons emitted per second.

Cambridge University Press
978-1-107-06388-4 - Atomic and Molecular Spectroscopy: Basic Concepts and Applications
Rita Kakkar
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9781107063884
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107063884: 


