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10 Integer-valued entire functions II – Gramain 111

11 Transcendence I – Mahler 123

12 Irrationality measures II – Thue 133

13 Transcendence II – Hermite–Lindemann 158

14 Heights 166

15 Equidistribution – Bilu 193

16 Height lower bounds – Dobrowolski 200

17 Height upper bounds 212

18 Counting – Bombieri–Pila 218

19 Transcendence III – Gelfond–Schneider–Lang 228

v

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-06157-6 - Auxiliary Polynomials in Number Theory
David Masser
Frontmatter
More information

http://www.cambridge.org/9781107061576
http://www.cambridge.org
http://www.cambridge.org


vi Contents

20 Elliptic functions 243

21 Modular functions 279

22 Algebraic independence 292
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Introduction

Ever since it was invented, arguably by Runge, the method of auxiliary poly-
nomials has been vital to (and of unreasonable effectiveness in) the modern
development of key aspects of number theory. The aim of this book is to give
an account of the method in many of its forms, focusing almost exclusively on
those polynomials which cannot be written down explicitly.

I well remember (standing in Heffers bookshop Cambridge around 1970)
reading about this method in the foreword to Lang’s book on transcendental
numbers, and experiencing disbelief that anything so far-fetched could work at
all. So I will not attempt any explanation at this point.

Instead, I (or from now on, the authorial we) treat the method as the union
of its examples, and there is no shortage of these.

Here is the plan of this book (Mike Tyson said that everyone has a plan until
you punch them in the face – then they don’t have a plan). The general strategy
is to present in each chapter an application of the method to a different sort of
problem, often the simplest in its area. Then at the end of each chapter we give
a brief account of subsequent developments in the area.

We start with a short Prologue (Chapter 1) where we show that the basic idea
can be used in rather simple situations which have nothing to do with number
theory.

Then in Chapter 2 we commence our diophantine considerations with a
discussion of irrationality. We quickly dispose of the number e by the standard
truncation argument and we show also that e is not a quadratic irrational.
Here we meet a small problem, which can be rather quickly solved; how-
ever, it is typical of the problems that arise in later applications and in some
examples its solution can be distinctly non-trivial. Thus Roth, in showing that
irrational algebraic numbers cannot be approximated to within an order of
q−2−ε by rationals p/q, had to solve such a problem. The solution is called

vii
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viii Introduction

Roth’s Lemma, and it was certainly one of the achievements that gained him
a Fields Medal. We do not prove Roth’s Theorem here but we do treat Thue’s
Method in Chapter 12.

We postpone to Chapter 13 a proof that

eα =
∞∑

k=0

αk

k! = 1 + α + 1

2
α2 + 1

6
α3 + 1

24
α4 + · · ·

is irrational and even transcendental for all rational and even algebraic α �= 0,
as this requires elements of algebraic number theory. Truncation gives only
irrationality and that essentially only for α = 1, 2, 4 (and slightly surprisingly
α = √

2).
In the same Chapter 2 we construct our first auxiliary polynomial with a

diophantine purpose: namely, to show that for any rational α �= 0 the classical
series

∞∑
k=0

αk

2k(k−1)/2
= 1 + α + 1

2
α2 + 1

8
α3 + 1

64
α4 + · · ·

is irrational. This is somewhat related to theta functions. Although it converges
quite rapidly, the speed is also insufficient for mere truncation. The result
itself is not so fundamental, but it provides a good introduction to the use
of auxiliary polynomials; that used here is probably the simplest of its kind,
and we calculate a few examples. One needs also some elementary complex
analysis, which will be much developed later on.

In Chapter 3 we then progress to the similar but more elaborate Mahler’s
Method, still sticking just to irrationality; the results here are historically
important and they led to the solution of the Mahler–Manin Conjecture and
then to Nesterenko’s Theorem on the algebraic independence of π and eπ . The
irrationality here will be generalized to full-blooded transcendence in a later
chapter. Here we treat just

∞∑
k=0

α2k = α + α2 + α4 + α8 + α16 + · · ·

for every rational α with 0 < |α| < 1. The proof is quite similar to that
in Chapter 2 but a little more analysis is needed, and further the auxiliary
polynomial is more complicated, in fact already of a fairly typical sort; still we
calculate some more examples. Mahler’s Method has been greatly developed
and some recent applications refer to the famous Mandelbrot set. It also played
a transient role in proving that the decimal digits of numbers like

√
2 cannot

be generated by a finite automaton.
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Introduction ix

In Chapter 4 we prove that certain diophantine equations in two variables
have at most finitely many solutions, using the auxiliary polynomial pioneered
by Runge. The method enables all solutions to be found in principle. A typical
example is that there are at most finitely many integers x, y with

x(x3 − 2y3) = y.

Or, coming from Cassels’s well-known result on the Catalan Equation recently
solved completely by Mihăilescu, there are at most finitely many integers x, y
with x5 −y7 = 1 provided y is not divisible by 5 (we do not prove Mihăilescu’s
Theorem here). Of course equations like

x3 − 2y3 = m

for fixed m are more natural, and these will be considered in Chapter 12. For
the proofs here, we need to know that the large complex solutions are given
by Puiseux (or better Laurent) series. It seems that this is not so easy to find
in the literature, especially regarding the crucial convergence properties, so we
provide quite a few details.

Then in Chapter 5 we prove some results similar to the classical Hilbert
Irreducibility Theorem, usually abbreviated to HIT, by using the machinery of
the preceding chapter. They are not so general as HIT, but when they do work,
they deliver more information. The results were first found by Sprindzhuk also
using auxiliary polynomials, but in a more elaborate way. Nowadays this sort
of thing can be done with heights machinery, but that is not so elementary. A
typical example, related to that of the previous chapter, is that there are at most
finitely many integers y such that the polynomial

X(X3 − 2y3)− y

in Q[X] is reducible over the rationals, and in principle these can all be found.
A literal application of HIT would show only that there are infinitely many
rational y such that the polynomial is not reducible. So sometimes we get a
Strong Hilbert Irreducibility Theorem; but we refrain from abbreviating this.
Here we need resultants; these can be found almost anywhere, but because we
use them frequently in this book we provide a self-contained account.

In Chapter 6 we jump to a different topic. We prove that the number N of
points modulo a prime p on an affine elliptic curve satisfies

|N − p| ≤ 8
√

p;

this is slightly weaker than the classical result of Hasse involving 2
√

p. The
proof uses the simplest non-trivial example of the auxiliary polynomial intro-
duced in a surprising way by Stepanov in 1969; here we attempt to motivate the
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x Introduction

proof with the help of some easier intermediate results. Not even the definition
of elliptic curve is needed here, let alone any properties. Thus all we do is count
the integer solutions (x, y) modulo p of an equation y2 = x3 + ax2 + bx + c
modulo p. There are many generalizations (and Schmidt wrote an entire book
about them) but none has quite the same appeal. With rather little extra effort
one can treat y2 = x5 +· · · and worse; in the geometric context this is far from
simple because it would involve curves of genus 2 and worse.

In Chapter 7 we make another jump which seems even bigger, to the topic
of exponential sums. The best known is Gauss’s

p∑
k=1

exp

(
2π ik2

p

)
,

also for prime p, whose absolute value p1/2 is much smaller than the number of
its terms. One of these sums, due to Heilbronn, resisted for some time all efforts
to prove its smallness until Heath-Brown in 1996 achieved this. His beautiful
proof imitated Stepanov’s auxiliary polynomial in a kind of analytic context
involving a logarithm-like function. Some arguments had been anticipated by
Mitkin in 1992. We give the details. Specifically∣∣∣∣∣

p∑
k=1

exp

(
2π ikp

p2

)∣∣∣∣∣ ≤ 4p11/12.

As far as I know, these arguments have not been developed very far since then,
despite some interesting features involving differential equations.

In Chapter 3 we proved the irrationality of the values μ of Mahler’s series
at non-zero rationals. Thus the quantity |μ− p/q| is positive for all integers p
and q ≥ 1. A natural question is: “How small can this quantity get?” Indeed
with an algebraic irrational in place of μ this question is fundamental in the
theory of diophantine equations, as we will see in Chapter 12. Our answer
in Chapter 8 requires refining the arguments of Chapter 3. There are two key
steps. One is a “zero estimate” asserting that not too many things can vanish;
such estimates play a major role in more recent developments. The other, more
classical, is an estimate for the coefficients of the auxiliary polynomial; this
involves the famous Siegel Lemma, which will be used over and over again
in the sequel. We also make a simple application of the maximum modulus
principle for analytic functions. This too will be used frequently later, under
the popular name of the Schwarz Lemma. In this way we will prove that there
exist c = c(μ) > 0 and κ = κ(μ) such that∣∣∣∣μ− p

q

∣∣∣∣ ≥ c

qκ
.
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Introduction xi

For example with μ =∑∞
k=0(2/3)

2k
we can take κ = 77.

There is a famous result of Pólya on entire functions mapping the natural
numbers to the rational integers; this may have influenced Gelfond in his pio-
neering work on the transcendence of αβ (see Chapter 19). Pólya’s original
proof used interpolation formulae and gave the best possible constant. Much
later Waldschmidt gave a version by auxiliary polynomials, which sadly gives
a worse constant. The proof is nevertheless illuminating; it needs binomial
coefficients to avoid factorials, one of the key ideas in Thue’s famous proof
(see Chapter 12). More precisely, we show in Chapter 9 that an entire function
f with

f (0), f (1), f (2), . . . , f (n), . . .

all in Z must be a polynomial if |f (z)| grows of order at most C|z| for a certain
C > 1. Pólya could take any C < 2; and the standard example 2z shows that
nothing better is possible. Or reformulated: if a non-polynomial entire function
f has this growth, then at least one of f (0), f (1), f (2), . . . must be non-integral.
Gelfond’s step from non-integrality to transcendence needed many more ideas,
all of which will be developed in this book.

The rather natural generalization to the Gaussian integers G = Z + Zi with
f mapping G into itself also played a similar historical role; for example it
probably directly inspired Gelfond’s proof of the transcendence of eπ . But the
best possible constant did not appear until a relatively recent paper of Gramain;
paradoxically enough, his proof involves an auxiliary polynomial (or better an
auxiliary function). More precisely, f itself must be a polynomial if |f (z)| now
grows of order at most C|z|2 for a certain C > 1. Gelfond considered this
problem too, and obtained the notorious value

C = exp

(
π

2(1 + exp(164/π))2

)
< 1 + 10−45

(modestly not mentioned in his book). In the late 1970s, I obtained a constant,
extremely difficult to compute, which later turned out to be about 1.181; and
I conjectured that the best possible constant was exp( π2e ) about 1.782. This
Gramain proved, and so do we in Chapter 10.

In Chapter 11 we present our first transcendence result. We extend Mahler’s
Method in Chapter 3 to prove the transcendence of his

∑∞
k=0 α

2k
for all alge-

braic α with 0 < |α| < 1. That is apparently how he tested his recovery while
convalescing at home from an illness. No more ideas are needed, but to go
beyond irrationality requires some rudimentary notion of “size” of an algebraic
number, with some sort of “Liouville estimate”. This sort of technicality is
fundamental to all transcendence proofs. The concept will be developed later
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xii Introduction

into the more sophisticated “height”, which will then be studied for its own
sake, for example with reference to Lehmer’s Question of 1933 in connexion
with factorization problems.

At last in Chapter 12 we prove the famous Thue improvement of Liouville’s
classical result. The proofs here start getting more elaborate, and another key
element is dealing with the dangerously heavy factorials that threaten to sink
the method; however this problem has been solved in Chapter 9. Yet another
feature is a simple form of zero estimate. These have proved crucial in later
developments involving Roth, Schmidt, Schlickewei, and others. More pre-
cisely, given any algebraic number α of degree d ≥ 3 and any κ > d

2 + 1, we
show that there is a positive constant c = c(α, κ) such that∣∣∣∣α − p

q

∣∣∣∣ ≥ c

qκ

for all integers p and q ≥ 1. The Liouville result was for κ = d, and the
later Roth estimate was for any κ > 2. Here we try to break the proof into
molecules, and we also speculate on how Thue may have arrived at his proof;
there are interesting connexions with Newton’s Method in numerical analysis
and later improvements by Halley and others. We also give the applications to
diophantine equations. Here we encounter the uncomfortable phenomenon of
ineffectivity for the first time.

Then in Chapter 13, using the machinery of the previous chapter, we
prove the Hermite–Lindemann result on the transcendence of the values of
the exponential function at algebraic numbers; thus eα is transcendental for
every algebraic α �= 0. Our proof is a kind of ad hoc development of the
auxiliary polynomial techniques introduced so far; we have by now illustrated
so many of these techniques that several proofs are available. We choose the
one most suited for generalization to the Schneider–Lang Theorem later on in
Chapter 19.

Chapter 14 is where we develop the size in Chapter 11 to the absolute height
H(α) ≥ 1 or the logarithmic version h(α) = log H(α) ≥ 0. This is rather easy
to define, but to establish properties like H(α2) = H(α)2, we need quite a
bit of algebraic number theory, and we will sketch the details. The motivation
is two-fold: first, the results of the next two chapters are about heights per
se, and second, the proof of the later Schneider–Lang result then becomes
fairly streamlined. We also give a version of the Siegel Lemma in the heights
language. This requires essentially defining the height of a vector (α1, . . . ,αn)

of algebraic numbers. To break the monotony, we prove on the way some easy
results on lower and upper bounds for heights that have led to some lively
modern developments.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-06157-6 - Auxiliary Polynomials in Number Theory
David Masser
Frontmatter
More information

http://www.cambridge.org/9781107061576
http://www.cambridge.org
http://www.cambridge.org


Introduction xiii

Then in Chapter 15 we prove Bilu’s Theorem on the distribution of the con-
jugates of an algebraic number, using an auxiliary polynomial due to Mignotte
as well as the Siegel Lemma from the previous chapter. As a matter of fact,
our version is completely explicit numerically. But there is a problem: this
explicitness is based on the Erdős–Turán Theorem, and there seems to be no
easy proof of that. So at this point the book is definitely not self-contained;
however we find this didactically permissible, as the present chapter serves
as a natural springboard for the next one, and Bilu’s Theorem is not further
used in the book. More precisely, if α is an algebraic number of degree d and
absolute logarithmic height h, we show that the number n of its conjugates in
any sector of angle θ based at the origin satisfies∣∣∣∣n − θ

2π
d

∣∣∣∣ ≤ 24(d2/3(log 2d)1/3 + dh1/3).

That n is asymptotically θ
2π d as h → 0 is the main content of Bilu’s result

(which is expressed more felicitously in terms of weak approximation).
Then in Chapter 16 using the machinery developed in the previous chapter,

we prove up to logarithms the famous Dobrowolski Theorem, which is to this
day the best approach to the classical Lehmer Question, using essentially the
original auxiliary polynomial. The result is exceptionally useful and, as far as
I know, none of the applications actually need the logarithms. Providing the
best known logarithms is an exercise on the Prime Number Theorem, which is
carried out in several books. Thus we prove here that for any κ > 1 there is a
positive constant c = c(κ) such that every non-zero algebraic α �= 0 of degree
d which is not a root of unity satisfies

h(α) ≥ c

dκ
.

Admittedly there are quicker proofs without auxiliary polynomials, but these
don’t generalize to the higher dimensional results such as the Amoroso–David
Theorem that are very important today in diophantine geometry.

In Chapter 17 we restore some symmetry by giving a non-trivial height
upper bound. This concerns the algebraic numbers α with αn + (1 − α)n = 1
for some integer n ≥ 2. In a relatively recent investigation connected with irre-
ducibility, Beukers showed that H(α) ≤ 216. His proof used hypergeometric
functions. Using instead the powerful method of auxiliary polynomials, we get
H(α) ≤ 10120 (in the style of Stephen Leacock “ten years ago the deficit on my
farm was about a hundred dollars; but by well-designed capital expenditure,
by drainage and greater attention to detail, I have got it into the thousands”).
However this method generalizes considerably, as current work of Amoroso,
Zannier and the author shows.
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xiv Introduction

In Chapter 18 we use some of the ideas developed so far to give a general-
ization to algebraic points of the 1989 Bombieri–Pila Theorem on counting
rational points on analytic curves. The original proof, although not funda-
mentally different from ours, is based on identities related to the confluent
Lagrange Interpolation Formulae and not on an auxiliary polynomial. Such
counting results (usually in higher dimensions) are nowadays being applied to
prove a variety of special cases of the general Zilber–Pink Conjectures about
unlikely intersections. We will prove something implying the following. Let f
be a transcendental function analytic on an open set containing the real interval
[0, 1]. Then for any ε > 0 there exists c = c(f , ε) such that, for every positive
integer n, at most cnε of the values

f (0), f

(
1

n

)
, f

(
2

n

)
, . . . , f (1)

are in Z/n. This vaguely resembles the reformulation of Pólya’s Theorem.
Then in Chapter 19 we prove the famous Schneider–Lang Theorem, which

includes Hermite–Lindemann in Chapter 13 as well as several other things
involving elliptic and abelian functions. Thanks to the preceding chapters the
proof is now reasonably smooth. It is a natural climax to the book; however
the next chapter follows on quite naturally, and so does the one after that.
Thus we prove the Gelfond–Schneider Theorem on the transcendence of αβ =
exp(β logα) whenever α �= 0 and irrational β are algebraic, which includes
the transcendence of 2

√
2 as specified by Hilbert in his Seventh Problem. A key

technical trick is the use of “large radius” in the Schwarz Lemma.
In Chapter 20 we systematically consider the elliptic analogues, motivated

partly by the need to prove the transcendence of integrals like

∫ 1

0

dX√
X − X3

,
∫ 5

4

(X − 8)dX√
X3 − 7X + 6

.

The results involve a Weierstrass function ℘(z) with invariants g2, g3 that are
themselves algebraic; the analogue of Hermite–Lindemann then asserts the
transcendence of ℘(α) for any algebraic α �= 0. Already the elliptic ana-
logue of Gelfond–Schneider has consequences for the modular function j(τ )
defined on the upper half-plane: namely that j(α) is transcendental whenever
α is algebraic but not quadratic; this we postpone to the next chapter. But as
Schneider discovered, there are several other interesting consequences; and
even he overlooked one of them. This chapter is the longest in the book, due to
our supplying the main details for the proofs of most of these consequences. It
might get shorter if we could use facts about commutative group varieties, but
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Introduction xv

that would introduce too much algebraic geometry not in the elementary spirit
of the book.

In 1969 Mahler conjectured that the alternative modular function

J(q) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3

+20245856256q4 + · · ·
(the pattern of coefficients is quite self-evident), defined for all q in the unit
disc, takes transcendental values at non-zero algebraic q. In 1996 Barré, Diaz,
Gramain and Philippon proved this using an auxiliary polynomial directly
on J itself. This was not only the first auxiliary polynomial of its kind (as
Schneider had wanted many years ago in his Second Problem), but it led soon
afterwards to Nesterenko’s unexpected breakthrough implying the algebraic
independence of π and eπ . This is a most attractive area where aspects of
elliptic, modular and exponential functions blend into each other. We give
a proof of Mahler’s Conjecture in Chapter 21, after deducing the analogous
result for j(τ ) = J(e2π iτ ) from the results of the previous chapter.

Up to now we never discussed problems of algebraic independence. Maybe
the reader’s curiosity for this topic has been awakened at the end of the pre-
vious chapter, and now she gets a classical example. After the famous Linde-
mann–Weierstrass result (not covered in this book), which was generalized to
E-functions by Siegel and Shidlovsky (likewise not here), the most spectacular
was the algebraic independence of αβ and αβ

2
, for algebraic α �= 0 and cubic

β, due to Gelfond in 1949. But as a lot of the machinery is already available,
our proof in Chapter 22 will not be too long. Here too one needs “large radius”.

Finally in an Appendix we prove exotic height results like

h

(
3ξ − 4

√
ξ3 + 3ξ + 4 + 8

ξ2

)
≤ h(ξ)+ 10000(

√
h(ξ)+ 1)

where a crude estimate would give at least 2h(ξ) on the right-hand side. Indeed
if we replace 8 in the numerator by 7 this is unavoidable. The square root here,
traditionally associated with the quadratic nature of Néron–Tate heights on
abelian varieties, is actually needed.

Let us mention here yet another use for auxiliary polynomials: to show
that certain algebraic numbers arising from commutative group varieties have
“large degree”. It is well-known that the root of unity e2π i/n has degree φ(n)
the Euler φ-function, and also that for any θ < 1 there is a positive con-
stant c, of course effectively computable, with φ(n) ≥ cnθ . By a famous
result of Serre the elliptic analogue has any θ < 2, but only recently has
this been made effective, in an elaborate proof involving, among other things,
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xvi Introduction

isogeny estimates. Using an auxiliary polynomial directly, in the functions
℘(z),℘(Nz) which are “almost algebraically independent”, one can quickly
obtain an effective lower bound for any θ < 1. Furthermore this method works
also for abelian varieties, where the analogue of Serre’s Theorem is still not
yet fully known. The resulting estimates have recently been very useful in
problems of unlikely intersections. We omitted any detailed account, first for
lack of space and second because one needs more theory, such as Néron–Tate
heights. See Masser (1977) and also Appendix D of Zannier (2012). However
in Exercise 14.92 we sketch how the lower bound cn/ log n can be obtained in
the cyclotomic case.

The reader will observe that the auxiliary polynomial usually operates in a
proof by contradiction. So this book is mostly about things that don’t exist!
With Woody Allen we may hate reality but it’s still the best place to get a
decent steak. Or we may think of the Cape Town telephone company error
message “the number that you have called does not exist”.

The pleasant task of collecting together all these applications of auxiliary
polynomials has resulted in some features that may not be familiar to all
experts.

Thus I am not sure if Theorem 5.1 in Chapter 5 appears explicitly in the
literature. In Chapter 6 the warm-up before the proof of Theorem 6.1 may not
have appeared before in this form. In Chapter 7 the proof of Lemma 7.3 is
new, although it proceeds on well-known general principles. The (rather easy)
estimate (8.7) of Chapter 8 is probably new. In Chapter 10 the Proposition 10.4
might possibly be useful in other contexts. In Chapter 12 it is indeed I who must
accept full responsibility for the attempt to explain the proof of Theorem 12.1
in terms of numerical analysis; also the Proposition 12.2, although known to
some experts, may not have appeared explicitly before. Our explicit estimate
in Theorem 15.2 of Chapter 15 could be new, although its shape is fairly well-
known. Some of the preliminary discussion in Chapter 16 may not be familiar.
The method introduced in Chapter 17 is new, due to Amoroso, Zannier and
myself. In Chapter 18 the main result Theorem 18.2 for Q(i) is not in the
published work that I have seen, although here too its shape for Q is fairly well-
known. Lemma 20.7 from Chapter 20 might look familiar, but it is not; also
some of the details towards the end of this chapter have never appeared in print,
although this may well be due to the alternative approach, more conceptual to
some, through group varieties. In particular the proof of Theorem 20.11 might
well be a “desperately-needed gap in the literature”. Here also the (again rather
easy) remark about the gamma function is new. And in Chapter 21 the Lemma
21.8 enables us to avoid an appeal to certain estimates for coefficients of mod-
ular transformation polynomials, whose (non-classical) proofs are somewhat

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-06157-6 - Auxiliary Polynomials in Number Theory
David Masser
Frontmatter
More information

http://www.cambridge.org/9781107061576
http://www.cambridge.org
http://www.cambridge.org


Introduction xvii

elaborate. In Chapter 22 the proof of Proposition 22.5 is a small variation of
a proof that I have seen. Finally in the Appendix the Theorem A.1, although
presented only for a particular example, is also new, arising from the above
work of Amoroso, Zannier and myself.

What are the prerequisites for a happy reading of this book? The first thirteen
chapters could be understood by third-year university students or good second-
year students (and indeed in 2013/2014 they were – and I thank this class,
especially Gabriel Dill, who examined with a fine-toothed comb the first ten,
although I may well have invented new mistakes during revision). The proofs
are elementary (but that does not always imply that they are easy). Here there
are elements of algebra such as the concept of transcendence, the fact that
Z[X] is a unique factorization domain, or the integral closure of a ring R in
a larger ring S (which I like to denote by RS); elements of analysis such as
order of vanishing, Cauchy’s Theorem or the Maximum Modulus Principle;
and elements of algebraic number theory such as field embeddings, conjugates
or rings of integers. There is a jump at Chapter 14, where we need slightly
more advanced algebraic number theory, which we explain without full proofs,
freely using concepts like prime ideals and valuations. This enables us to
get all the way to Chapter 20, where we then need some theory of elliptic
functions, which again we explain without full proofs. Similarly in Chapter 21
we need some theory of modular functions. Finally in Chapter 22 we need a
bit about transcendence degree. By contrast in the Appendix, although it has
a considerable whiff of diophantine geometry, we develop from scratch the
rudiments of algebraic curve theory that we need. And oh yes, it will be good
to bear in mind that our

N = {1, 2, 3, . . .}
does not contain 0 as it might in some other cultures. But Z,Q,R,C and the
fields Fp = {0, 1, . . . , p − 1} are unambiguous.

And what about the exercises? These are at the end of each chapter, where
they are divided into two parts by a starred line. Those above the line need only
the prerequisites above and what’s in the book so far, and they are essentially
what were fed to students as homework reinforcing the lectures. Those below
the line go further, and sometimes need extra knowledge; they are of varying
levels of difficulty, sometimes hinted at. Concerning the lectures themselves,
there are many possibilities; for example I covered Chapters 1, 2, 3, 4, 5
together with some algebraic number theory in a single semester, then followed
up with Chapters 6, 8, 9, 11, 12, 13 and more algebraic number theory, and so
was able to start a third semester with Chapter 14 in detail, then Chapters 15,
16, 18, 19 and bits of Chapter 20.
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xviii Introduction

There is also a bibliography, but this has no pretence of being comprehen-
sive. Instead I have tried to restrict it to books, especially those that give a good
overview of the subsequent development of some of the topics treated here; but
I have also included some key original papers.

I conjecture, but have no time to prove, that every mathematics book with at
least 100 pages contains at least one misprint (possibly apart from those that
have gone through several editions – however in a 2008 seminar we did find
a mistake in Landau’s “Elementary Number Theory” (Chelsea 1958), despite
the author, according to Littlewood, reading proof sheets seven times, once
for each sort of error – curiously we could not find it again later, this “Lost
Mistake”). Boas has a conjecture that is shockingly stronger, and (continued
p. 94).

The book you are now reading is certainly no countexerample, and I apolo-
gize in advance for my misprints, howlers and blunders (and my King Charles’s
Head of continued fractions). In fact I was once thanked in print by a non-
English author for “teaching him mistakes”. I hope to be able to pass on these
skills to my readers.

And also to convey to them the joys of “doing transcendence” rather than
merely “doing mathematics”.

I gladly express my great gratitude to David Tranah of Cambridge University
Press, for his warm initial encouragement to write the book, for his gentle
reminders about actually writing it, and, once I gave in and started in earnest,
for his regular enquiries about its progress and his rapid and detailed answers
to my many questions.
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