algorithm
 aBB, 244
extraction, 96
global optimization, 90
local optimization, 118
almost-uniform convergence, 225
Artin, 15
atom, 36

basic semi-algebraic lifting, 167
Borel σ-field, 36

canonical basis, 17
Carleman, 40, 52
certificate
 Farkas, 23
 nonnegativity, 16
 positivity, 141
 Putinar, 26
 Schmüdgen, 25
 Stengle, 23
completely positive matrix, 188
constraint qualification, 117
 Mangasarian–Fromovitz, 117
 Slater, 117
convex, 202
 pseudoconvex, 203
 quasiconvex, 203
 SOS, 205
strictly, 202
convex underestimator, 10, 243
convexity
 algebraic certificate, 200
copositive matrix, 180, 188
copositive program, 188
cubature rule, 48
Curto–Fialkow, 52
duality
 conic, 191
 strong, 307
 weak, 307
eigenvalue problem, 186
generalized, 176
entropy
 Boltzmann–Shannon, 230
 maximum, 230
Euler identity, 288
extension
 flat, 42
 positive, 42
Farkas Lemma, 23
Fritz–John, 124
gap
duality, 108, 307
 integrality, 115, 149
GloptiPoly, 95, 102, 112, 309
Goursat Lemma, 49
Hilbert, 15
ideal, 23, 32
 radical, 33, 113
 real radical, 93, 121, 202
 vanishing, 93, 121
 zero-dimensional, 32, 33, 104, 113
Jacobi–Prestel, 52
Jensen’s inequality, 209
joint+marginal approach, 9
Index

Karush–Kuhn–Tucker (KKT), 7, 116, 147, 257
Krivine, 124
Lagrangian, 118
generalized, 120
LMI, 210, 213, 281, 300, 301, 306
Löwner–John ellipsoid, 11, 286
Löwner–John problem, 11
LP, 2, 146
matrix
localizing, 41
moment, 39
matrix inequality
linear, 61, 210
polynomial, 281
measure
atomic, 36, 37
Borel, 36
determinate, 37
Dirac, 37
indeterminate, 37
representing, 37
MINLP, 10
moment determinate, 155
moment problem
full, 37
one-dimensional, 37
 truncated, 37
moment-LP approach, 5, 6
moment-SOS approach, 5, 6, 145, 164, 197, 214, 244
multipliers
generalized Lagrange KKT, 120, 123
Lagrange KKT, 117, 207
Newton polytope, 287
Nussbaum, 52
optimality conditions
first-order KKT, 116, 117, 122, 123
Fritz John, 125
global, 7, 9, 116, 120, 122
KKT, 7, 9
local, 124
local first-order, 116
optimization
0/1, 33
combinatorial, 7
conic, 71
convex polynomial, 9
inverse, 258
inverse polynomial, 10
parametric polynomial, 9
polynomial, 3, 16
semidefinite, 16, 34, 81
P-BDR property, 212
persistency, 229
PML, 281
Polya, 22
polynomial
homogeneous, 287
Lagrangian, 118, 147, 208
quasi-homogeneous, 11, 287
SOS convex, 197
Positivstellensätze
matrix version, 27
Putinar, 26
Schmüdgen, 25
Stengle, 24
preordering, 22, 198, 200
program
conic, 189, 306
linear, 9, 216, 306, 307
mixed-integer nonlinear, 10
nonlinear, 179
semidefinite, 9, 18, 28, 306
quadratic module, 25
quotient ring, 33
rank sufficient condition, 94
relaxation
convex, 10, 16
Lagrangian, 137
linear, 85, 138
LP, 6, 137
RLT, 137
semidefinite, 6, 9, 85
Sherali–Adams, 137
sparse semidefinite, 132
representation
lifted semidefinite, 210
Putinar, 26
Putinar bounded degree, 211
Schmüdgen, 25
semidefinite, 64, 210
sparse, 34
Riesz linear functional, 38, 88, 138
Riesz–Haviland, 38
running intersection property, 35
SDP, 2, 112, 306
SDr set, 210
lifted, 210

© in this web service Cambridge University Press

www.cambridge.org
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>second-order sufficient conditions</td>
<td>118</td>
</tr>
<tr>
<td>semi-algebraic function</td>
<td>165</td>
</tr>
<tr>
<td>basic</td>
<td>166</td>
</tr>
<tr>
<td>semi-algebraic set</td>
<td>22</td>
</tr>
<tr>
<td>basic</td>
<td>15, 25, 46</td>
</tr>
<tr>
<td>semidefinite constraint</td>
<td>140, 213, 306</td>
</tr>
<tr>
<td>Slater’s condition</td>
<td>117</td>
</tr>
<tr>
<td>SOOSTOOLS</td>
<td>323</td>
</tr>
<tr>
<td>SOS</td>
<td>5, 16</td>
</tr>
<tr>
<td>SparsePOP</td>
<td>323</td>
</tr>
<tr>
<td>sparsity</td>
<td>34</td>
</tr>
<tr>
<td>sparsity pattern</td>
<td>130, 131</td>
</tr>
<tr>
<td>structured</td>
<td>34, 131</td>
</tr>
<tr>
<td>spectrahedron</td>
<td>64, 65, 181</td>
</tr>
<tr>
<td>Stengle</td>
<td>23, 124</td>
</tr>
<tr>
<td>sublevel set</td>
<td>11, 286</td>
</tr>
<tr>
<td>sum of squares</td>
<td>15–17, 19</td>
</tr>
<tr>
<td>support</td>
<td>175</td>
</tr>
<tr>
<td>support (of a measure)</td>
<td>36, 54, 58</td>
</tr>
<tr>
<td>variety</td>
<td>32, 33</td>
</tr>
<tr>
<td>finite</td>
<td>32, 33</td>
</tr>
<tr>
<td>real</td>
<td>32</td>
</tr>
</tbody>
</table>