An Introduction to Polynomial and Semi-Algebraic Optimization

This is the first comprehensive introduction to the powerful moment approach for solving global optimization problems (and some related problems) described by polynomials (and even semi-algebraic functions). In particular, the author explains how to use relatively recent results from real algebraic geometry to provide a systematic numerical scheme for computing the optimal value and global minimizers. Indeed, among other things, powerful positivity certificates from real algebraic geometry allow one to define an appropriate hierarchy of semidefinite (sum of squares) relaxations or linear programming relaxations whose optimal values converge to the global minimum. Several specializations and extensions to related optimization problems are also described.

Graduate students, engineers and researchers entering the field can use this book to understand, experiment and master this new approach through the simple worked examples provided.

JEAN BERNARD LASSERRE is Directeur de Recherche at the LAAS-CNRS laboratory in Toulouse and a member of the Institute of Mathematics of Toulouse (IMT). He is a SIAM Fellow and in 2009 he received the Lagrange Prize, awarded jointly by the Mathematical Optimization Society (MOS) and the Society for Industrial and Applied Mathematics (SIAM).
Cambridge Texts in Applied Mathematics

All titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Nonlinear Dispersive Waves
MARK J. ALOWITZ

Flow, Deformation and Fracture
G. I. BARENBLATT

Hydrodynamic Instabilities
FRANÇOIS CHARRU

The Mathematics of Signal Processing
STEVEN B. DAMelin & WILLARD MILLER, JR

An Introduction to Stochastic Dynamics
JINQIAO DUAN

Singularities: Formation, Structure and Propagation
J. EGERS & M. A. FONTELOS

A First Course in Continuum Mechanics
OSCAR GONZALEZ & ANDREW M. STUART

A Physical Introduction to Suspension Dynamics
ÉLISABETH GUAZZELLI & JEFFREY F. MORRIS

Applied Solid Mechanics
PETER HOWELL, GREGORY KOZYREFF & JOHN OCKENDON

A First Course in the Numerical Analysis of Differential Equations (2nd Edition)
ARIEH ISERLES

Iterative Methods in Combinatorial Optimization
LAP CHI LAU, R. RAVI & MOHIT SINGH

An Introduction to Computational Stochastic PDEs
GABRIEL J. LORD, CATHERINE E. POWELL & TONY SHARDLOW

An Introduction to Parallel and Vector Scientific Computation
RONALD W. SHONKWILER & LEW LEFTON
An Introduction to Polynomial and Semi-Algebraic Optimization

JEAN BERNARD LASERRE

LAAS-CNRS and Institut de Mathématiques, Toulouse, France
To my daughter Julia, and to Carole ...
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of symbols</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Introduction and message of the book
1.1 Why polynomial optimization? 1
1.2 Message of the book 3
1.3 Plan of the book 8

PART I POSITIVE POLYNOMIALS AND MOMENT PROBLEMS
13

2 Positive polynomials and moment problems
15

2.1 Sum of squares representations and semidefinite optimization 16
2.2 Representation theorems: univariate case 19
2.3 Representation theorems: multivariate case 22
2.4 Polynomials positive on a compact basic semi-algebraic set 25
2.5 Polynomials nonnegative on real varieties 32
2.6 Representations with sparsity properties 34
2.7 Moment problems 36
2.8 Exercises 49
2.9 Notes and sources 50

3 Another look at nonnegativity
54

3.1 Nonnegativity on closed sets 54
3.2 The compact case 55
3.3 The noncompact case 58
3.4 A symmetric duality principle 60
Contents

3.5 Exercises 61
3.6 Notes and sources 61

4 The cone of polynomials nonnegative on K 62
4.1 Introduction 62
4.2 Inner semidefinite approximations when K is compact 62
4.3 Outer semidefinite approximations 64
4.4 Approximations of the dual cone 69
4.5 The cone of copositive matrices and its dual 71
4.6 Exercises 76
4.7 Notes and sources 77

PART II POLYNOMIAL AND SEMI-ALGEBRAIC OPTIMIZATION 79

5 The primal and dual points of view 81
5.1 Polynomial optimization as an infinite-dimensional LP 82
5.2 Polynomial optimization as a finite-dimensional convex optimization problem 84
5.3 Exercises 86

6 Semidefinite relaxations for polynomial optimization 87
6.1 Constrained polynomial optimization 87
6.2 Discrete optimization 103
6.3 Unconstrained polynomial optimization 106
6.4 Exercises 113
6.5 Notes and sources 114

7 Global optimality certificates 116
7.1 Putinar versus Karush–Kuhn–Tucker 116
7.2 Krivine–Stengle versus Fritz John 124
7.3 Exercises 128
7.4 Notes and sources 129

8 Exploiting sparsity or symmetry 130
8.1 Exploiting sparsity 130
8.2 Exploiting symmetry 133
8.3 Exercises 135
8.4 Notes and sources 136

9 LP-relaxations for polynomial optimization 137
9.1 LP-relaxations 138
9.2 Interpretation and the dual method in NLP 141
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Contrasting semidefinite and LP-relaxations</td>
<td>143</td>
</tr>
<tr>
<td>9.4</td>
<td>An intermediate hierarchy of convex relaxations</td>
<td>145</td>
</tr>
<tr>
<td>9.5</td>
<td>Exercises</td>
<td>148</td>
</tr>
<tr>
<td>9.6</td>
<td>Notes and sources</td>
<td>148</td>
</tr>
<tr>
<td>10</td>
<td>Minimization of rational functions</td>
<td>150</td>
</tr>
<tr>
<td>10.1</td>
<td>Minimizing a rational function</td>
<td>150</td>
</tr>
<tr>
<td>10.2</td>
<td>Minimizing a sum of many rational functions</td>
<td>153</td>
</tr>
<tr>
<td>10.3</td>
<td>Exercises</td>
<td>162</td>
</tr>
<tr>
<td>10.4</td>
<td>Notes and sources</td>
<td>163</td>
</tr>
<tr>
<td>11</td>
<td>Semidefinite relaxations for semi-algebraic optimization</td>
<td>164</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>11.2</td>
<td>Semi-algebraic functions</td>
<td>165</td>
</tr>
<tr>
<td>11.3</td>
<td>A Positivstellensatz for semi-algebraic functions</td>
<td>168</td>
</tr>
<tr>
<td>11.4</td>
<td>Optimization of semi-algebraic functions</td>
<td>170</td>
</tr>
<tr>
<td>11.5</td>
<td>Exercises</td>
<td>172</td>
</tr>
<tr>
<td>11.6</td>
<td>Notes and sources</td>
<td>173</td>
</tr>
<tr>
<td>12</td>
<td>Polynomial optimization as an eigenvalue problem</td>
<td>174</td>
</tr>
<tr>
<td>12.1</td>
<td>A converging sequence of upper bounds</td>
<td>175</td>
</tr>
<tr>
<td>12.2</td>
<td>The associated eigenvalue problem</td>
<td>186</td>
</tr>
<tr>
<td>12.3</td>
<td>On copositive programs</td>
<td>188</td>
</tr>
<tr>
<td>12.4</td>
<td>Exercises</td>
<td>192</td>
</tr>
<tr>
<td>12.5</td>
<td>Notes and sources</td>
<td>193</td>
</tr>
<tr>
<td>PART III</td>
<td>SPECIALIZATIONS AND EXTENSIONS</td>
<td>195</td>
</tr>
<tr>
<td>13</td>
<td>Convexity in polynomial optimization</td>
<td>197</td>
</tr>
<tr>
<td>13.1</td>
<td>Convexity and polynomials</td>
<td>197</td>
</tr>
<tr>
<td>13.2</td>
<td>Semidefinite representation of convex sets</td>
<td>210</td>
</tr>
<tr>
<td>13.3</td>
<td>Convex polynomial programs</td>
<td>214</td>
</tr>
<tr>
<td>13.4</td>
<td>Exercises</td>
<td>218</td>
</tr>
<tr>
<td>13.5</td>
<td>Notes and sources</td>
<td>219</td>
</tr>
<tr>
<td>14</td>
<td>Parametric optimization</td>
<td>221</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>14.2</td>
<td>Parametric optimization</td>
<td>222</td>
</tr>
<tr>
<td>14.3</td>
<td>On robust polynomial optimization</td>
<td>233</td>
</tr>
<tr>
<td>14.4</td>
<td>A “joint+marginal” algorithm in optimization</td>
<td>236</td>
</tr>
<tr>
<td>14.5</td>
<td>Exercises</td>
<td>240</td>
</tr>
<tr>
<td>14.6</td>
<td>Notes and sources</td>
<td>241</td>
</tr>
</tbody>
</table>
15 Convex underestimators of polynomials
15.1 Introduction 243
15.2 Convex polynomial underestimators 244
15.3 Comparison with the αBB convex underestimator 249
15.4 Exercises 254
15.5 Notes and sources 255

16 Inverse polynomial optimization
16.1 Introduction 257
16.2 Computing an inverse optimal solution 258
16.3 A canonical form for the ℓ₁-norm 267
16.4 Exercises 270
16.5 Notes and sources 271

17 Approximation of sets defined with quantifiers
17.1 Introduction 272
17.2 Inner and outer approximations 274
17.3 Extensions 279
17.4 Exercises 284
17.5 Notes and sources 285

18 Level sets and a generalization of the Löwner–John problem
18.1 Introduction 286
18.2 Quasi-homogeneous polynomials and their level sets 286
18.3 A generalization of the Löwner–John problem 292
18.4 A numerical scheme 299
18.5 Exercises 303
18.6 Notes and sources 304

Appendix A Semidefinite programming 306
Appendix B The GloptiPoly software 309

References 324
Index 337

Preface

This book has benefited from several stimulating discussions, especially with M. Anjos, G. Blekherman, R. E. Curto, E. de Klerk, L. A. Fialkow, J. W. Helton, M. Kojima, S. Kuhlmann, M. Laurent, M. Marshall, T. Netzer, J. Nie, P. Parrilo, D. Pasechnich, D. Plaumann, V. Powers, M. Putinar, F. Rendl, B. Reznick, C. Riener, M.-F. Roy, C. Scheiderer, K. Schmüdgen, M. Schweighofer, B. Sturmfels, T. Theobald, K. Toh, and V. Vinnikov, during several visits and/or workshops in particular at the Mathematical Sciences Research Institute (MRSI, Berkeley), the Institute of Pure and Applied Mathematics (IPAM, Los Angeles), the American Institute of Mathematics (AIM, Palo Alto), the Fields Institute for Research in Mathematical Sciences (Toronto), the Institute for Mathematics and its Applications (IMA, Minneapolis), the Oberwolfach Institute, the Isaac Newton Institute (Cambridge, UK), the Institute for Computational and Experimental Research in Mathematics (ICERM, Providence) and the Institute for Mathematical Sciences (IMS, Singapore). I gratefully acknowledge financial support from the above institutes which made these visits possible.

I also want to thank G. Blekherman, F. Bugarin, M. Ghasemi, N. Gravin, R. Laraki, M. Laurent, M. Mevissen, T. Netzer, M. Putinar, S. Robins, P. Rostalski, C. Savorgnan, and T. Phan Thanh, as some of the results presented in this book have been obtained with their collaboration. I would like to thank Cynthia Vinzant who kindly provided the picture on the book cover. Finally, special thanks are also due to my colleague Didier Henrion at LAAS (especially for our collaboration on the software GloptiPoly which he made user friendly with free access), as well as to J.-B. Hiriart-Urruty, J. Renegar, S. Sorin, and M. Todd for their constant and friendly support.

For part of this research, financial support from the (French) ANR (GEOLMI project), the Simone and Cino Del Duca foundation (OPTIGACOM project), and the Gaspar Monge Program for Optimization and Operations Research
(from the Fondation Mathématique Jacques Hadamard (FMJH)) is gratefully acknowledged. And last but not least, I want to thank the CNRS institution for providing a very nice and pleasant working environment at the LAAS-CNRS laboratory in Toulouse.

Toulouse, June 2014

Jean B. Lasserre
Symbols

\(\mathbb{N}\), the set of natural numbers
\(\mathbb{Z}\), the set of integers
\(\mathbb{Q}\), the set of rational numbers
\(\mathbb{R}\), the set of real numbers
\(\mathbb{R}_+\), the set of nonnegative real numbers
\(\mathbb{C}\), the set of complex numbers

\(\leq\), less than or equal to
\(\leq\), inequality “\(\leq\)” or equality “\(=\)”

\(A\), matrix in \(\mathbb{R}^{m \times n}\)
\(A_{j}\), column \(j\) of matrix \(A\)
\(A \succeq 0\) (\(\succ 0\)), \(A\) is positive semidefinite (definite)

\(x\), scalar \(x \in \mathbb{R}\)
\(x\), vector \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n\)
\(\alpha\), vector \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n\)

\(|\alpha| = \sum_{i=1}^{n} \alpha_i\) for \(\alpha \in \mathbb{N}^n\)
\(\mathbb{N}_d^\alpha \subseteq \mathbb{N}^n\), the set \(\{ \alpha \in \mathbb{N}^n : |\alpha| \leq d \}\)
\(x^\alpha\), monomial \(x^\alpha = (x_1^{\alpha_1} \cdots x_n^{\alpha_n})\) \(x \in \mathbb{C}^n\) or \(x \in \mathbb{R}^n\), \(\alpha \in \mathbb{N}^n\)

\(\mathbb{R}[x]\), ring of real univariate polynomials
\(\mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_n]\), ring of real multivariate polynomials

\((x^\alpha), \alpha \in \mathbb{N}^n\), canonical monomial basis of \(\mathbb{R}[x]\)

\(V_C(I) \subseteq \mathbb{C}^n\), the algebraic variety associated with an ideal \(I \subseteq \mathbb{R}[x]\)
\(\sqrt{I}\), the radical of an ideal \(I \subseteq \mathbb{R}[x]\)
\(\sqrt{I}\), the real radical of an ideal \(I \subseteq \mathbb{R}[x]\)

\(I(V_C(I)) \subseteq \mathbb{C}^n\), the vanishing ideal \(\{ f \in \mathbb{R}[x] : f(z) = 0, \forall z \in V_C(I) \}\)
\(V_\mathbb{R}(I) \subseteq \mathbb{R}^n\) (equal to \(V_C(I) \cap \mathbb{R}^n\)), the real variety associated with an ideal \(I \subseteq \mathbb{R}[x]\)

\(I(V_\mathbb{R}(I)) \subseteq \mathbb{R}[x]\), the real vanishing ideal \(\{ f \in \mathbb{R}[x] : f(x) = 0, \forall x \in V_\mathbb{R}(I) \}\)
Symbols

\[\mathbb{R}[x], \] vector space of real multivariate polynomials of degree at most \(t \)
\[\sum [x], \] \(\subset \mathbb{R}[x] \), the convex cone of SOS polynomials of degree at most \(2t \)
\[\mathbb{R}[x]^*, \] vector space of linear forms on \(\mathbb{R}[x] \)
\[\mathbb{R}[x]^+_t, \] vector space of linear forms on \(\mathbb{R}[x] \)
\[y = (y_\alpha), \alpha \in \mathbb{N}^n, \] real moment sequence indexed in the canonical basis of \(\mathbb{R}[x] \)
\[M_d(y), \] moment matrix of order \(d \) associated with the sequence \(y \)
\[M_d(g, y), \] localizing matrix of order \(d \) associated with the sequence \(y \) and \(g \in \mathbb{R}[x] \)
\[P(g) \subset \mathbb{R}[x], \] preordering generated by the polynomials \((g_j) \subset \mathbb{R}[x] \)
\[Q(g) \subset \mathbb{R}[x], \] quadratic module generated by the polynomials \((g_j) \subset \mathbb{R}[x] \)
\[\text{co} X, \] convex hull of \(X \subset \mathbb{R}^n \)
\[B(X), \] space of bounded measurable functions on \(X \)
\[C(X), \] space of bounded continuous functions on \(X \)
\[M(X), \] vector space of finite signed Borel measures on \(X \subset \mathbb{R}^n \)
\[\mathcal{M}(X)_+ \subset M(X), \] space of finite (nonnegative) Borel measures on \(X \subset \mathbb{R}^n \)
\[P(X) \subset \mathcal{M}(X)_+, \] space of Borel probability measures on \(X \subset \mathbb{R}^n \)
\[L_1(X, \mu), \text{Banach space of functions on } X \subset \mathbb{R}^n \text{ such that } \int_X |f| d\mu < \infty \]
\[L_\infty(X, \mu), \text{Banach space of measurable functions on } X \subset \mathbb{R}^n \text{ such that } \|f\|_\infty := \text{ess sup } |f| < \infty \]
\[\sigma(\mathcal{X}, \mathcal{Y}), \text{weak topology on } \mathcal{X} \text{ for a dual pair } (\mathcal{X}, \mathcal{Y}) \text{ of vector spaces} \]
\[\mu_n \Rightarrow \mu, \text{weak convergence for a sequence } (\mu_n) \subset \mathcal{M}(X)_+ \]
\[v \ll \mu, \text{is absolutely continuous with respect to } \mu \text{ (for measures)} \]
\[\uparrow, \text{monotone convergence for nondecreasing sequences} \]
\[\downarrow, \text{monotone convergence for nonincreasing sequences} \]

SOS, sum of squares
LP, linear programming (or linear program)
SDP, semidefinite programming (or semidefinite program)
GMP, generalized moment problem (or GPM, generalized problem of moments)
SDr, semidefinite representation (or semidefinite representable)
KKT, Karush–Kuhn–Tucker
CQ, constraint qualification
LMI, linear matrix inequality
b.s.a., basic semi-algebraic
b.s.a.l., basic semi-algebraic lifting
l.s.c., lower semi-continuous
u.s.c., upper semi-continuous