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Introduction and message of the book

1.1 Why polynomial optimization?

Consider the global optimization problem:

P : f ∗ := inf
x
{ f (x) : x ∈ K } (1.1)

for some feasible set

K := { x ∈ Rn : gj (x) ≥ 0, j = 1, . . . , m }, (1.2)

where f, gj : Rn→R are some continuous functions.

If one is only interested in finding a local (as opposed to global) minimum
then P is a Nonlinear Programming (NLP) problem for which several methods
and associated algorithms are already available.
But in this book we insist on the fact that P is a global optimization problem,

that is, f ∗ is the globalminimum of f onK. In full generality problem (1.1) is
very difficult and there is no general purpose method, even to approximate f ∗.

However, and this is one of the messages of this book, if one now restricts
oneself to Polynomial Optimization, that is, optimization problems P in (1.1)
with the restriction that:

f and gj : Rn→R are all polynomials, j = 1, . . . , m,

then one may approximate f ∗ as closely as desired, and sometimes solve P
exactly. (In fact one may even consider Semi-Algebraic Optimization, that is,
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2 Introduction and message of the book

when f and gj are semi-algebraic functions.) That this is possible is due to the
conjunction of two factors.

• On the one hand, Linear Programming (LP) and Semidefinite Programming
(SDP) have become major tools of convex optimization and today’s power-
ful LP and SDP software packages can solve highly nontrivial problems of
relatively large size (and even linear programs of extremely large size).

• On the other hand, remarkable and powerful representation theorems (or
positivity certificates) for polynomials that are positive on sets likeK in (1.2)
were produced in the 1990s by real algebraic geometers and, importantly,
the resulting conditions can be checked by solving appropriate semidefinite
programs (and linear programs for some representations)!

And indeed, in addition to the usual tools from Analysis, Convex Analysis
and Linear Algebra already used in optimization, in Polynomial Optimization
Algebra may also enter the game. In fact one may find it rather surprising that
algebraic aspects of optimization problems defined by polynomials have not
been taken into account in a systematic manner earlier. After all, the class of
linear/quadratic optimization problems is an important subclass of Polynomial
Optimization! But it looks as if we were so familiar with linear and quadratic
functions that we forgot that they are polynomials! (It is worth noticing that
in the 1960s, Gomory had already introduced some algebraic techniques for
attacking (pure) linear integer programs. However, the algebraic techniques
described in the present book are different as they come from Real Algebraic
Geometry rather than pure algebra.)
Even though Polynomial Optimization is a restricted class of optimization

problems, it still encompasses a lot of important optimization problems. In
particular, it includes the following.

• Continuous convex and nonconvex optimization problems with linear and/or
quadratic costs and constraints, for example

inf
x
{ xT A0x+ bT

0 x : xT Ajx+ bT
j x− cj ≥ 0, j = 1, . . . , m },

for some scalars cj , j = 1, . . . , m, and some real symmetric matrices Aj ∈
Rn×n and vectors bj ∈ Rn, j = 0, . . . , m.

• 0/1 optimization problems, modeling a Boolean variable xi ∈ {0, 1} via the
quadratic polynomial constraint x2

i − xi = 0. For instance, the celebrated
MAXCUT problem is the polynomial optimization problem
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1.2 Message of the book 3

sup
x
{ xT Ax : x2

i − xi = 0, i = 1, . . . , n },

where the real symmetric matrix A ∈ Rn×n is associated with some given
graph with n vertices.

• Mixed-Integer Linear and NonLinear Programming (MILP and MINLP),
for instance:

inf
x

{
xT A0x+ bT

0 x : xT Ajx+ bT
j x− cj ≥ 0, j = 1, . . . , m;

x ∈ [−M,M]n;
xk ∈ Z, k ∈ J

}
,

for some real symmetric matrices Aj ∈ Rn×n, vectors bj ∈ Rn, j =
0, . . . , m, and some subset J ⊆ {1, . . . , n}. Indeed, it suffices to model the
constraint xi ∈ [−M,M], i � J , with the quadratic inequality constraints
M − x2

i ≥ 0, j � J , and the integrality constraints xk ∈ Z ∩ [−M,M],
k ∈ J , with the polynomial equality constraints:

(xk +M) · (xk +M − 1) · · · xk · (xk − 1) · · · (xk −M) = 0, k ∈ J.

1.2 Message of the book

We have already mentioned one message of the book.

• Polynomial Optimization indeed deserves a special treatment because its
algebraic aspects can be taken into account in a systematic manner by invok-
ing powerful results from real algebraic geometry.

But there are other important messages.

1.2.1 Easyness

A second message of the book which will become clear in the next chapters,
is that the methodology for handling polynomial optimization problems P as
defined in (1.1) is rather simple and easy to follow.

• Firstly, solving a polynomial optimization problem (1.1) is trivially equiva-
lent to solving

f ∗ = sup
λ

{ λ : f (x)− λ ≥ 0, ∀ x ∈ K }, (1.3)

which, if f is a polynomial of degree at most d, is in turn equivalent to
solving
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4 Introduction and message of the book

f ∗ = sup
λ

{ λ : f − λ ∈ Cd(K) }, (1.4)

where Cd(K) is the convex cone of polynomials of degree at most d which
are nonnegative on K. But (1.4) is a finite-dimensional convex optimization
problem. Indeed, a polynomial f : Rn→R of degree d is encoded by its vec-
tor f ∈ Rs(d) of coefficients (e.g. in the usual canonical basis of monomials),
where s(d) := (

n+d
n

)
is the dimension of the vector space of polynomials

of degree at most d (that is the number of monomials xα = x
α1
1 · · · xαn

n ,
α ∈ Nn, such that

∑n
i=1 αi ≤ d). And so Cd(K) is a finite-dimensional

cone which can be viewed as (or identified with) a convex cone of Rs(d).
Therefore (with some abuse of notation) (1.4) also reads

f ∗ = sup
λ

{
λ : f− λ

(
1
0
·
·
0

)
∈ Cd(K)

}
, (1.5)

a convex conic optimization problem in Rs(d). Note in passing that the con-
vex formulations (1.3) and (1.5) are proper to the global optimum f ∗ and
are not valid for a local minimum f̂ > f ∗! However, (1.5) remains hard to
solve because in general there is no simple and tractable characterization of
the convex cone Cd(K) (even though it is finite dimensional).

Then the general methodology that we use follows a simple idea. We first
define a (nested) increasing family of convex cones (C�

d(K)) ⊂ Cd(K) such
that C�

d(K) ⊂ C�+1
d (K) for every �, and each C�

d(K) is the projection of
either a polyhedral cone or the intersection of a subspace with the convex
cone of positive semidefinite matrices (whose size depends on �). Then we
solve the hierarchy of conic optimization problems

ρ� = sup
λ

{
λ : f− λ

(
1
0
·
·
0

)
∈ C�

d(K)

}
, � = 0, 1, . . . (1.6)

For each fixed �, the associated conic optimization problem is convex and
can be solved efficiently by appropriate methods of convex optimization.
For instance, by using some appropriate interior points methods, (1.6) can
be solved to arbitrary precision fixed in advance, in time polynomial in its
input size. As the C�

d(K) provide a nested sequence of inner approximations
of Cd(K), ρ� ≤ ρ�+1 ≤ f ∗ for every �. And the C�

d(K) are chosen
so as to ensure the convergence ρ�→f ∗ as �→∞. So depending on
which type of convex approximation is used, (1.6) provides a hierarchy
of linear or semidefinite programs (of increasing size) whose respective
associated sequences of optimal values both converge to the desired global
optimum f ∗.
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1.2 Message of the book 5

• Secondly, the powerful results from Real Algebraic Geometry that we
use to justify the convergence ρ�→f ∗ in the above methodology, are
extremely simple to understand and could be presented (without proof)
in undergraduate courses of Applied Mathematics, Optimization and/or
Operations Research. Of course their proof requires some knowledge of
sophisticated material in several branches of mathematics but we will
not prove such results, we will only use them! After all, the statement in
Fermat’s theorem is easy to understand and this theorem may be used with
no need to understand its proof.
For illustration and to give the flavor of one such important and powerful

result, we will repeatedly use the following result which states that a
polynomial f which is (strictly) positive on K (as defined in (1.2) and
compact) can be written in the form

f (x) = σ0(x)+
m∑

j=1
σj (x) gj (x), ∀ x ∈ Rn, (1.7)

for some polynomials σj that are Sums of Squares (SOS). By SOS we mean
that each σj , j = 0, . . . , m, can be written in the form

σj (x) =
sj∑

k=1
hjk(x)2, ∀ x ∈ Rn,

for finitely many polynomials hjk , k = 1, . . . , sj .
As one may see, (1.7) provides f with a certificate of its positivity on K.

This is because if x ∈ K then f (x) ≥ 0 follows immediately from (1.7) as
σj (x) ≥ 0 (because σj is SOS) and gj (x) ≥ 0 (because x ∈ K), for all j . In
other words, there is no need to check the positivity of f on K as one may
read it directly from (1.7)!

• Finally, the convex conic optimization problem (1.4) has a dual which is
another finite-dimensional convex conic optimization problem. And in fact
this classical duality of convex (conic) optimization captures and illustrates
the beautiful duality between positive polynomials and moment problems.
We will see that the dual of (1.4) is particularly useful for extracting global
minimizers of P when the convergence is finite (which, in addition, happens
generically!). Depending on which type of positivity certificate is used we
call this methodology the moment-LP or moment-SOS approach.

1.2.2 A general methodology

The class of polynomial optimization problems contains “easy” convex
problems (e.g. Linear Programming and convex Quadratic Programming) as
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6 Introduction and message of the book

well as NP-hard optimization problems (e.g. the MAXCUT problem already
mentioned).

Still, the general methodology presented in this book does not distin-
guish between easy convex problems and nonconvex, discrete and mixed-
integer optimization problems!

This immediately raises the following issues.
How effective can a general purpose approach be for addressing problems

which can be so different in nature (e.g. convex, or continuous but possibly
with a nonconvex and nonconnected feasible set, or discrete, or mixed-integer,
etc.)?

• Should we not specialize the approach according to the problem on hand,
with ad hoc methods for certain categories of problems?

• Is the general approach reasonably efficient when applied to problems con-
sidered easy? Indeed would one trust a general purpose method designed for
hard problems, and which would not behave efficiently on easy problems?

Indeed, a large class of convex optimization problems are considered “easy”
and can be solved efficiently by several ad hoc methods of convex optimiza-
tion. Therefore a highly desirable feature of a general purpose approach is the
ability somehow to recognize easier convex problems and behave accordingly
(even if this may not be as efficient as specific methods tailored to the convex
case).
A third message of this book is that this is indeed the case for the moment-

SOS approach based on semidefinite relaxations, which uses representation
results of the form (1.7) based on SOS. This is not the case for the moment-LP
approach based on LP-relaxations, which uses other representation results.
In our mind this is an important and remarkable feature of the moment-

SOS approach. For instance, and as already mentioned, a Boolean variable xi

is not treated with any particular attention and is modeled via the quadratic
equality constraint x2

i − xi = 0, just one among the many other polynomial
equality or inequality constraints in the definition of the feasible setK in (1.2).
Running a local minimization algorithm of continuous optimization with such
a modeling of a Boolean constraint would not be considered wise (to say
the least)! Hence this might justify some doubts concerning the efficiency of
the moment-SOS approach by lack of specialization. Yet, and remarkably, the
resulting semidefinite relaxations
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1.2 Message of the book 7

• still provide the strongest relaxation algorithms for hard combinatorial
optimization problems, and

• recognize easy convex problems as in this latter case convergence is
even finite (and sometimes at the first semidefinite relaxation of the
hierarchy)!

Of course, and especially in view of the present status of semidefinite
solvers, the moment-SOS approach is still limited to problems of modest size;
however, if symmetries or some structured sparsity in the problem data are
detected and taken into account, then problems of much larger size can be
solved.

1.2.3 Global optimality conditions

Another message of this book is that in the moment-SOS approach, generically
the convergence ρ�→f ∗ as �→∞ is finite (and genericity will be given a
precise meaning)!

And so in particular, generically, solving a polynomial optimization
problem (1.1) on a compact set K as in (1.2) reduces to solving a single
semidefinite program.

But of course and as expected, the size of the resulting semidefinite program
is not known in advance and can be potentially large.

Moreover, the powerful Putinar representation (1.7) of polynomials that
are (strictly) positive on K also holds generically for polynomials that
are only nonnegative on K. And this translates into global optimality
conditions that must be satisfied by global minimizers, provided that each
global minimizer satisfies standard well-known constraint qualification,
strict complementarity and second-order sufficiency conditions in nonlin-
ear programming. Again, such conditions hold generically.

Remarkably, these optimality conditions are the perfect analogues in (non-
convex) polynomial optimization of the Karush–Kuhn–Tucker (KKT) optimal-
ity conditions in convex programming. In particular, and in contrast to the KKT
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8 Introduction and message of the book

conditions in nonconvex programming, the constraints that are important but
not active at a global minimizer still play a role in the optimality conditions.

1.2.4 Extensions

The final message is that the above methodology can also be applied in the
following situations.

• To handle semi-algebraic functions, a class of functions much larger than
the class of polynomials. For instance one may handle functions like

f (x) :=
√
min[q1(x), q2(x)] −max[q3(x), q4(x)] + (q5(x)+ q6(x))1/3,

where the qi are given polynomials.
• To handle extensions like parametric and inverse optimization problems.
• To build up polynomial convex underestimators of a given nonconvex
polynomial on a box B ⊂ Rn.

• To approximate as closely as desired, sets defined with quantifiers, for exam-
ple the set

{ x ∈ B : f (x, y) ≤ 0 for all y such that (x, y) ∈ K },
where K ⊂ Rn+p is a set of the form (1.2), and B ⊂ Rn is a simple set.

1.3 Plan of the book

The book is divided into three main parts.

Part I is introductory and Chapter 2 is dedicated to presenting basic and
important results on the representation of polynomials that are positive on a
subset K of Rn. This problem of real algebraic geometry has a nice dual facet,
the so-called K-moment problem in Functional Analysis and Probability. And
so results on the algebraic side are complemented with their dual counterparts
on the moment side. Interestingly, convex duality in optimization (applied to
appropriate convex cones) nicely captures this duality. Chapter 3 describes
another characterization of polynomials nonnegative on a closed set K which
is of independent interest and is dual to the characterizations of Chapter 2.
Now knowledge on K is from moments of a measure supported on K rather
than from polynomials that describe the boundary of K. These two dual points
of view are exploited in Chapter 4 to provide explicit outer and inner approxi-
mations of the cone of polynomials nonnegative on K.
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1.3 Plan of the book 9

Part II is dedicated to polynomial and semi-algebraic optimization. It
describes how to use results of Part I to define hierarchies of convex relaxations
whose optimal values provide monotone sequences of lower bounds which
converge to the global optimum. Depending on the type of representation
(or positivity certificate) used, one obtains a hierarchy of linear programs or
semidefinite programs. Their respective merits and drawbacks are analyzed,
especially in the light of global optimality conditions. In particular, we describe
a global optimality condition which is the exact analogue in nonconvex
polynomial optimization of the celebrated KKT optimality conditions in
convex optimization.
Using the representation results described in Chapter 3, one also obtains a

hierarchy of eigenvalue problems which provide a monotone sequence of upper
bounds which converges to the global optimum. Notice that most (primal-type)
minimization algorithms provide sequences of upper bounds on the global
minimum (as they move from a feasible point to another feasible point) but in
general their convergence (if it eventually takes place) is guaranteed to a local
minimum only. We also (briefly) describe how to use sparsity or symmetry to
reduce the computational burden associated with the hierarchy of relaxations.
It is worth noticing that the extension from polynomials to semi-algebraic
functions (in both the objective function and the description of the feasible set)
enlarges significantly the range of potential applications that can be treated.

Part III describes some specializations and extensions.

• Convex polynomial optimization to show that the moment-SOS approach
somehow “recognizes” some classes of easy convex problems; in particular
the hierarchy of semidefinite relaxations has finite convergence. Some prop-
erties of convex polynomials and convex basic semi-algebraic sets are also
described and analyzed.

• Parametric polynomial optimization, that is, optimization problems where
the criterion to minimize as well as the constraints that describe the feasible
set, may depend on some parameters that belong to a given set. The ultimate
and difficult goal is to compute or at least provide some information and/or
approximations on the global optimum and the global minimizers, viewed
as functions of the parameters. Hence there is a qualitative jump in difficulty
as one now searches for functions on some domain (an infinite-dimensional
object) rather than a vector x ∈ Rn (a finite-dimensional object). With this in
mind we describe what we call the “joint+marginal” approach to parametric
optimization and show that in this context the moment-SOS approach is
well suited for providing good approximations (theoretically as closely as
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10 Introduction and message of the book

desired) when the parametric optimization problem is described via polyno-
mials and basic semi-algebraic sets.

• Inverse polynomial optimization where given a point y ∈ K (think of an
iterate of some local minimization algorithm) and a polynomial criterion f ,
one tries to find a polynomial f̃ as close as possible to f and for which y is
a global minimizer on K. This problem has interesting potential theoretical
and practical applications. For instance, suppose that y ∈ K is a current
iterate of a local optimization algorithm to minimize f on K, and suppose
that solving the inverse problem provides a new criterion f̃ relatively close
to f . Should we spend (expensive) additional effort to obtain a better iterate
or should we stop (as y solves an optimization problem close to the original
one)? In addition, the inverse problem is also a way to measure how ill-
conditioned is the (direct) optimization problem.

• Convex underestimators. For difficult large scale nonlinear problems and
particularly for mixed-integer nonlinear programs (MINLP), the only prac-
tical way to approximate the global minimum is to explore an appropriate
Branch and Bound search tree in which exploration is guided by lower
bounds computed at each node of the tree. The quality of lower bounds is
crucial for the overall efficiency of the approach. In general and for obvious
reasons, efficient computation of lower bounds is possible only on some
appropriate convex relaxation of the problem described at the current node.
A standard way to obtain a convex relaxation is to replace the nonconvex
objective function with a convex underestimator; similarly, an inequality
constraint g(x) ≤ 0 is replaced with g̃(x) ≤ 0 for some convex underes-
timator g̃ of g. Therefore deriving tight convex underestimators is of crucial
importance for the quality of the resulting lower bounds. We show that the
moment-SOS approach is particularly well suited to obtaining tight convex
underestimators.

• Polynomial optimization on sets defined with quantifiers. In this context one
is given a set K := { (x, y) : gj (x, y) ≥ 0, j = 1, . . . , m } for some
polynomials gj , j = 1, . . . , m. Given a set B ⊂ Rn (typically a box or an
ellipsoid) the goal is to approximate as closely as desired the set

Kx := { x ∈ B : f (x, y) ≤ 0 for all y such that (x, y) ∈ K },
by a set K�

x ⊂ Kx simply defined by K�
x = { x : h�(x) ≤ 0 } for some

polynomial h�. We show how to obtain a sequence of polynomials (h�) of
increasing degree � ∈ N, such that the Lebesgue volume vol(Kx \K�

x) tends
to zero as �→∞. And so any optimization problem involving the set Kx

(difficult to handle) can be approximated by substituting Kx with K�
x for

some sufficiently large �.
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