

Experimental Economics

Method and Applications

Over the past two decades, experimental economics has moved from a fringe activity to become a standard tool for empirical research. With experimental economics now regarded as part of the basic tool-kit for applied economics, this book demonstrates how controlled experiments can be useful in providing evidence relevant to economic research. Professors Jacquemet and L'Haridon take the standard model in applied econometrics as a basis for the methodology of controlled experiments. Methodological discussions are illustrated with standard experimental results. This book provides future experimental practitioners with the means to construct experiments that fit their research question, and newcomers with an understanding of the strengths and weaknesses of controlled experiments. Graduate students and academic researchers working in the field of experimental economics will be able to learn how to undertake, understand and criticise empirical research based on lab experiments, and refer to specific experiments, results or designs completed with case study applications.

Nicolas Jacquemet is a full professor at University Paris-1 Panthèon Sorbonne and the Paris School of Economics. His research combines experimental methods and econometrics to study discrimination, the effect of personality traits on economic behaviour, the role of social pre-involvement in strategic behaviour and experimental game theory. His research has been published in *Econometrica, Management Science, Games and Economic Behavior, Journal of Environmental Economics and Management, Journal of Health Economics* and *Journal of Economic Psychology*.

Olivier L'Haridon is a full professor at the University of Rennes 1. His research combines experimental methods and decision theory, applied in the study of individual decision-making as affected by uncertainty. His work has been published in *American Economic Review, Management Science, Journal of Risk and Uncertainty, Theory and Decision, Experimental Economics, Journal of Health Economics* and *Journal of Economic Psychology*.

Experimental Economics

Method and Applications

NICOLAS JACQUEMET

University Paris 1 Panthèon-Sorbonne and Paris School of Economics, France

OLIVIER L'HARIDON

Université de Rennes I, France

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107060272

DOI: 10.1017/9781107446786

© Cambridge University Press 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Jacquemet, Nicolas, author. | L'Haridon, Olivier, author.

Title: Experimental economics method and applications / Nicolas Jacquemet, Paris School of Economics, Olivier L'Haridon, Université de Rennes I, France.

Description: Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, [2018] | Includes bibliographical references and index.

Identifiers: LCCN 2018007008 | ISBN 9781107060272

Subjects: LCSH: Experimental economics.

Classification: LCC HB131 .J33 2018 | DDC 330.072/4-dc23

LC record available at https://lccn.loc.gov/2018007008

ISBN 978-1-107-06027-2 Hardback

ISBN 978-1-107-62977-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List	of Figures	page viii
	List	of Tables	X
		of Illustrations	xii
	List	of Focuses	xiv
	Abb	reviations and Symbols	xvi
	Pref	ace	xxi
Part I V	What Is	It? An Introduction to Experimental Economics	1
1	The	Emergence of Experiments in Economics	3
	1.1	The End of a Long-Standing Regretful Impossibility	4
	1.2	Why Such a Change: Two Early Examples	6
	1.3	The Research Programme: Three Examples	12
	1.4	Experimental Economics Today: What Every Newcomer Must Know	22
2	A La	boratory Experiment: Overview	26
	2.1	The Experiment	27
	2.2	The Experimenter's Role: The Game under Study	34
	2.3	Experimental Second-Price Auction with Private Values	38
	2.4	Case Study: Experimentally Designed Devices to Reduce Hypothetical	
		Bias	41
Part II	Why? TI	ne Need for Experiments in Economics	49
3	The	Need for Controlled Experiments in Empirical Economics	51
	3.1	The Econometric Approach to Data Analysis	52
	3.2	Estimating Causal Effects of Treatments	59
	3.3	Identification Based on Observational Data	68
	3.4	Inference Based on Controlled Experiments	72
	3.5	From the Laboratory to the Field: An Overview of Controlled	
		Experiments in Economics	83
4	The	Need for Experimental Methods in Economic Science	88
	4.1	What Laboratory Experiments Aim For	88

vi **Contents**

	4.2	Experiments, Theory and Reality: How Experiments Achieve Their	
	4.0	Goals	90
	4.3	Case Study. Deepening Understanding through Additional Controls and	0.5
		Measures: The Dictator Game	95
	4.4	How Experiments Interact with Theory: Testing Models	103
	4.5	How Experiments Interact with Reality: Searching for Facts	110
Part III	How? L	aboratory Experiments in Practice	117
5	Desi	gning an Experiment: Internal-Validity Issues	119
	5.1	What Is an Experiment? How Is It Linked to Internal Validity?	119
	5.2	The Incentive Structure of Experiments	132
	5.3	Parameters and Experimental Treatments	147
	5.4	The Perceived Experiment	159
	5.5	Perceived Opponents and Learning	166
	5.6	Case Study: Eliciting Beliefs	170
6	Con	ducting an Experiment	191
	6.1	A Long, Long Time Beforehand: Setting Up an Experimental Laboratory	191
	6.2	Two Months Before: The Basics	195
	6.3	One Month Before: The Final Settings	204
	6.4	One Week Before: Almost There	206
	6.5	D-Day: Step-by-Step Proceedings	207
	6.6	Case Study: Measuring Preferences in Choice over Time	208
7	The	Econometrics of Experimental Data	229
	7.1	Experimental Data	230
	7.2	Estimation and Inference	243
	7.3	Testing Procedures	256
	7.4	Case Study: Eliciting Preferences under Risk	289
Part IV	What F	or? What Laboratory Experiments Tell Us	321
8	The	External Validity of Experimental Results	323
	8.1	When and How Does External Validity Matter?	324
	8.2	Is External Validity Testable?	336
	8.3	Testing External Validity	339
	8.4	Case Study: Replication: Enhanced Credibility Thanks to Accumulated	
		Evidence	352
9	Mor	e Accurate Theory and Better Public Policies: the Contributions of	
		erimental Economics	361
	9.1	Testing Theory: Drawing General Lessons from (Causal) Experimental	
		Evidence	362

	Contents	vii
9.2	Case study: Rational Behaviour, Irrational Thinking: K-level Models	369
9.3	Test-Bedding Public Policies in the Laboratory: The Example of	
	Matching Markets	380
9.4	Whispering in the Ear of Princes: Behavioural Public Policy	385
Refe	erences	398
Inde	ex	431
Inde	ex of Authors	441

Figures

1.1	Trends in academic publishing in experimental economics	page 5
1.2	Market equilibrium in the Chamberlin (1948) experiment	7
1.3	Observed behaviour in the Chamberlin (1948) experiment	8
1.4	Predicted and observed behaviour in the Smith (1962) replication	9
1.5	Table of payoffs in a non-cooperative game	13
1.6	Empirical behaviour in prisoners' dilemma games	15
1.7	A simple four-moves sequential game	16
1.8	A six-moves centipede game	16
1.9	Payoff matrices of two zero-sum games	18
1.10	Empirical value functions	20
1.11	The actual use of information: informed players' behaviour	21
2.1	Consent form	28
2.2	First screen: resale value in the first round	32
2.3	Second screen: bid in the first round of play	32
2.4	Third screen: results of the first round	33
2.5	The sixth round of the experiment: screen captures	34
3.1	The challenge of data analysis	54
3.2	The econometric approach to data analysis	56
3.3	Incentive effects of tournaments	81
3.4	Dispersion of efforts in tournaments	82
4.1	Meta-analysis results: the dictator game	97
4.2	The effect of social distance on dictators' decisions	98
4.3	Offers in the dictator game with earned money	100
4.4	Donations from dictators who earned their position	101
4.5	Generous decisions by dictators are taken slowly	103
4.6	Cooperation in repeated games with different termination rules	108
4.7	Reciprocity in the field	114
5.1	Empirical free riding in VCM games	129
5.2	A typical display for an experimental quadratic scoring rule	176
5.3	A typical display for eliciting matching probabilities	183
6.1	Typical implementation of an experimental lab	192
6.2	An experimental lab: what it looks like	194
6.3	A basic experimental algorithm based on the dictator game	198

	List of Figures	ix
6.4	A typical experimental session	206
6.5	An example of a time trade-off curve	228
7.1	Visual representations of data	234
7.2	Box plots for different distributions	235
7.3	Normal probability plots	236
7.4	A scatter plot	237
7.5	Anscombe's quartet	239
7.6	Transformation functions and normality	243
7.7	An illustration of the central limit theorem	246
7.8	Confidence intervals on samples from a population with parameter θ	249
7.9	Critical values for common distributions: normal, t and χ^2	250
7.10	Critical values and rejection regions	259
7.11	Hypothesis testing	260
7.12	Power under different alternative hypotheses	262
7.13	The bracketing procedure used in L'Haridon and Vieider (2015)	296
7.14	The Binswanger (1980) method in Carpenter and Cadernas (2013)	298
7.15	Trade-off sequences and elicited utility under risk and uncertainty	307
8.1	The identification of heterogeneous treatment effects	332
8.2	Many very heterogeneous treatment effects	333
8.3	Social preferences when the monetary stakes are (very) high	343
8.4	Other-regarding behaviour in non-WEIRD populations	349
9.1	The chosen numbers in the Nagel (1995) guessing games	371
9.2	The distribution of behaviour over time in the guessing game	373
9.3	Early matches in the Kagel and Roth (2000) experiment	384
9.4	Matches by productivity type in the Kagel and Roth (2000) experiment	384
9.5	401(k) participation by tenure in Company A in Choi et al. (2004)	390
9.6	Individual welfare optima and consistent arbitrariness	394

Tables

1.1	The choice sequence of the Allais paradox	page 10
1.2	Observed continuation decisions in centipede games	17
1.3	Theoretical predictions in the non-revealing and fully revealing games	19
2.1	Empirical revelation properties of a second-price auction	39
3.1	Individuals, treatments and observations	63
4.1	Gift exchange in the field: donation patterns	114
5.1	Voluntary contributions without altruism	132
5.2	Smith (1982) precepts: three incentive-compatibility criteria	133
5.3	Outcome-based social preferences in the prisoners' dilemma game	144
5.4	Multiple treatment variables: a 2×2 factorial design	158
5.5	A quadratic scoring rule	175
5.6	Examples of binary scoring rules	176
5.7	The constant-sum game in Nyarko and Schotter (2002)	188
6.1	Example of binary choices used by Tanaka et al. (2010)	209
6.2	The price list in Coller and Williams (1999)	216
6.3	The treatments in Coller and Williams	217
6.4	Four procedures to elicit indifference in choice over time	218
6.5	The convex time-budget method	224
6.6	The choice list in the direct-method elicitation	226
7.1	An example of experimental data based on second-price auctions	230
7.2	Descriptive statistics	238
7.3	Correlation measures and the Anscombe quartet	240
7.4	True data-generating process and decisions	258
7.5	Frequently used statistical tests	266
7.6	The ANOVA decomposition	280
7.7	A 2×2 table for independent samples	285
7.8	A 2×2 table for paired samples	289
7.9	Elicitation methods	291
7.10	An example of the bisection procedure	295
7.11	The bracketing procedure in Tversky and Kahneman (1992)	295
7.12	The payoffs and risk classification in Binswanger (1980)	297
7.13	The payoffs and risk classification in Eckel and Grossman (2008)	297
7.14	The ten paired lottery-choice decisions in Holt and Laury (2002)	299

	List of Tables	xi
7.15	Lottery-choice decisions and the CRRA index	299
7.16	The ten paired lottery-choice decisions in Drichoutis and Lusk (2016)	302
8.1	In-lab versus online experiments: overview of experimental	
	comparisons	339
8.2	Calculation of the false-positive report probability	354
8.3	Replication versus robustness: a classification	357
9.1	Level classification in the control, graduate and computer treatments	379
9.2	The distribution of behaviour in the 11–20 Game	380
9.3	The Newcastle algorithm: a fictional example	383

Illustrations

2.1	Second-price auctions as a preference reveration mechanism.	
	home-grown and induced values	page 42
2.2	An experimental comparison of correction methods	46
3.1	Labour market effects of the minimum wage: a natural experiment	52
3.2	Incentives and performance: a 'natural' experiment	61
3.3	The need for assumptions on the data-generating process to achieve	
	inference (even) from experimental evidence	67
3.4	Incentives and performance: selection and incentive effects	73
3.5	Gender differences in competitiveness: experimental evidence from	
	exogenously chosen composition of groups	76
3.6	Piece rate: a field experiment	77
4.1	Whispering in the ears of antitrust authorities	91
4.2	Models as a reduction of reality: firms' behaviour in collusion theory	93
4.3	Reciprocity at work: the fair-wage-effort hypothesis	104
4.4	Experimental evidence on the fair-wage-effort hypothesis	105
4.5	Trust: evidence from the lab	111
5.1	Endowment effects in market behaviour	123
5.2	Identified failures of internal validity: misconceptions about the	
	endowment effect	125
5.3	Saliency and coordination: experimental evidence based on the stag	
	hunt game	135
5.4	Evidence from non-incentivised behaviour: the status quo effect	137
5.5	The effect of incentives on experimental outcomes	138
5.6	Social preferences and strategic uncertainty: the ultimatum-bargaining	
	game	142
5.7	Altruism in the prisoners' dilemma game	145
5.8	Outcome versus intention: an experiment on the nature of social	
	preferences	146
5.9	The effect of roles on behaviour: the Stanford prison (aborted)	
	experiment	148
5.10	Controlling for closeness: the inclusion-of-the-other-in-the-self scale	150
5.11	Individual consistency of social preferences: a within-subject design	154
5.12	Evidence of order effects: rationality spillovers	155

	List of Illustrations	xii
5.13	VCM: a 4×2 factorial design	157
5.14	Identified failures of internal validity: confusion in VCM games	160
5.15	Identified failures of internal validity: game form recognition in beauty	
	contest games	164
5.16	Belief elicitation and outcome behaviour in a VCM game	167
5.17	The effect of closeness and the ability to coordinate	168
5.18	The accuracy of self-reported expectation measures	172
6.1	Experimental instructions for a simple dictator game	197
6.2	Information provided to prospective participants in economic	
	experiments	202
6.3	Information provided to prospective participants in economic	
	experiments (continued)	203
6.4	Instructions for a time-preference-elicitation experiment	212
6.5	Eliciting indifferences via bisection	214
8.1	Reversed external validity: experimental evidence on the winner's	
	curse in real auction markets	324
8.2	The measure of corruption from laboratory bribery behaviour	328
8.3	The external validity of gift exchange at work	330
8.4	Laboratory evidence of the external validity of declarative surveys	337
8.5	The predictive power of experimental time-preference measures	341
8.6	External validity of free riding in voluntary-contribution mechanisms	345
8.7	Overcoming coordination failures thanks to complexity	347
8.8	Self-selection in laboratory experiments	350
8.9	The winner's curse with experienced bidders	352
9.1	Market size and collusion: 'two are few and four are many'	363
9.2	The hidden cost of incentives: motivation crowding out	364
9.3	The informational content of incentives: an experimental test	366
9.4	Preference reversal in a market situation	368
9.5	The market-entry game	374
9.6	Strategic thinking in the centipede game	376
	- · · · · · · · · · · · · · · · · · · ·	

Focuses

2.1	Preference elicitation and policy-making: the hypothetical bias	page 31
2.2	Preference elicitation: auctions, referenda and BDM mechanisms	44
3.1	Causal effects in theoretical analysis and empirical works	62
3.2	The programme evaluation approach and the structural approach	66
3.3	Incentives and performance: the confounding effect of self-selection	70
3.4	Two additional difference estimators and their identifying assumptions	74
4.1	On the use of response times to interpret observed behaviour in	
	experiments	102
5.1	Cold versus hot: available measures of outcome behaviour	121
5.2	Loss aversion: a behavioural foundation for the endowment effect	124
5.3	Equilibrium analysis of the VCM game	130
5.4	Incentive-compatible compensation of repeated choices: the random	
	incentive system	140
5.5	Intention-based social-preference models	143
5.6	Economics and psychology: an overview of the main methodological	
	disagreements	165
5.7	Prediction markets	174
5.8	Measuring beliefs over a continuous random variable	177
5.9	The binarised scoring rule	178
5.10	Risk aversion and hedging in experimental games	179
5.11	Using matching probabilities to test complex ambiguity models	182
5.12	Comparing elicitation methods	185
5.13	Experimental designs for ambiguity	186
6.1	The discounted-utility model	210
6.2	Behavioural foundations of the discounted-utility model	211
6.3	Accounting for non-linear utility	215
7.1	Censored and truncated data	232
7.2	Distance correlation as a measure of the degree of association	241
7.3	The exploratory analysis of treatment effects with odds ratios	242
7.4	Bayesian parameter estimation	247
7.5	Sample size and confidence intervals	252
7.6	Prediction intervals for a single observation	253
7.7	A five-step approach to hypothesis testing	257

	List of Focuses	XV
7.8	Multiple test procedures	261
7.9	Sample-size determination	263
7.10	Bayes factors	265
7.11	The likelihood-ratio test	267
7.12	Testing for outliers	269
7.13	Goodness-of-fit tests and the normality hypothesis	274
7.14	Testing for randomness: the run test	275
7.15	Two-way and multi-way ANOVA	282
7.16	The balloon analogue risk task (BART)	292
7.17	Portfolio choice and the elicitation of risk attitudes	293
7.18	Incentives and repeated choice	300
7.19	Comparing standard-gamble methods	303
7.20	Survey questions and the measurement of risk attitudes	304
7.21	Comparing standard-gamble and value-equivalence methods	308
7.22	The basic prospect-theory model	310
7.23	Measuring loss aversion	311
7.24	Prospect theory with uncertainty and ambiguity	312
7.25	Probability weighting in choice under risk	313
7.26	Stochastic choice	315
8.1	The many different meanings of external validity in experimental	
	psychology	326
9.1	The cognitive-hierarchy model	375
9.2	An alternative theoretical model of strategic thinking: quantal-response	
	equilibrium	377
9.3	Designing a liberal and paternalistic choice architecture	388
9.4	Opt-in/opt-out versus active decisions: a non-liberal-paternalistic tool	
	to enhance enrolment in 401(k) without default	392
9.5	The malleability of consumer preferences: anchoring and consistent	
	arbitrariness	395

Abbreviations and Symbols

Abbreviations

AD Aggregate Demand

ATE Average Treatment Effect

ATT Average Treatment on the Treated
BART Balloon Risk Analogue Task
BDM Becker-De Groot-Marschak

BMI Body Max Index

CADI Constant Absolute Decreasing Impatience

CDF Cumulative Distribution Function

CE Certainty Equivalence CHM Cognitive-Hierarchy Model

CRDI Constant Relative Decreasing Impatience

CRRA Constant Relative Risk Aversion
DARA Decreasing Absolute Risk Aversion
DA Deferred Acceptance algorithm

DGP Data Generating Process
 DM Dissonance Minimization
 ECU Experimental Currency Unit
 FPRP False Positive Report Probability

FR Fully-revealing game
FTC Federal Trade Commission

FW Fixed wage

HSD Honestly Significant DifferenceIEC Institutional Ethics CommitteeIOS Inclusion of the Other in the Self

IQR Interquartile Range

IRB Institutional Review Board

IV Induced Value LHS Left-Hand Side

LSD Least Significant Difference

MARS Meta-Analysis Reporting Standards

MD Mean absolute DeviationMLE Maximum Likelihood Estimator

MOOSE Meta-analysis of Observational Studies in Epidemiology

Abbreviations and Symbols

χVİİ

MPCR Marginal per Capita Return MSE Mean Squared Error MT Amazon's Mechanical Turk MT Mechanical Turk Western Educated, Industrialized, Rich, and Democratic MT NR Non-revealing game **OLS Ordinary Least Squares PEEM** Portable Extensions of Existing Models PE Probability Equivalence **PGG** Public Good Game Preferred Reporting Items for Systematic Reviews and Meta-Analyses **PRISMA** PR Piece-rate Q-Q Quantile-Quantile **QRE** Quantal-Response Equilibrium RDU Rank-Dependent Utility **RHS** Righ-Hand Side RIS Random Incentive System **UBG** Ultimatum Bargaining Game **VCM** Voluntary Contribution Mechanism Western Educated, Industrialised, Rich, and Democratic WEIRD

Symbols

WTA

WTP

WVS

WVS

Willingness to Accept

Willingness to Pay

World Value Survey

World Values Survey

•	
\bar{y}	sample average
Δ	variation
δ	exponential discount factor, parameter
ℓ	effort
η	decision error
$\hat{ heta}$	estimator
λ, γ	parameters
\mathbb{E}	expectation
В	bias
T	test statistic
X	matrix of individual observations, e.g observable characteristics
\mathbf{y}	vector of the observations on the outcome variable
${\mathcal I}$	beliefs in bayesian estimation
$\mathcal L$	sampling distribution
\mathcal{N}	normal distribution
${\mathcal S}$	state space
\mathcal{T}	treatment

xviii Abbreviations and Symbols

\mathcal{X}	inputs
\mathcal{Y}	outputs
μ	mean
Ω	variance-covariance matrix
$\omega()$	probability weighting function
В	Binomial distribution
dCor	distance correlation
dCov	distance covariance
F_l, F_u	critical values of the Fisher distribution
Φ	standard normal cumulative distribution
ϕ	standard normal density
π	profit
ε	vector of error terms
ho	Pearson correlation coefficient
σ, ψ	standard deviations
Θ	parameter space
\mathbb{V}	variance
$arepsilon_i$	individual error terms
a, b, A, B	general purpose parameters (actions, prizes, bids)
b_L	lower bound of confidence interval
b_U	upper bound of confidence interval
c	threshold in hypothesis testing
$c_e()$	cost of effort
d_0, d_1	decisions in hypothesis testing
DR	decision rule
e	endowment
F(),f()	functions
G()	cumulative distribution function
g()	density
h, i, j, k, s, t	
H_0, H_1, H_a	statistical hypothesis
K	number of samples, treatments, classes
L()	likelihood
LL()	log-likelihood
m	number of observable characteristics, median
N	population size
n	number of observations, sample size, number of modeling features
$n_{\mathcal{X}}$	number of inputs
$n_{\mathcal{Y}}$	number of outputs
p, \Pr	probability
$p_{(k)}$	rank-ordered p-value
q,Q	price, returns
	1-

rate of return

Abbreviations and Symbols

xix

S^2	sample variance
SS	sum of squares
T	time, date, period
t_{lpha}	critical value of the Student t distribution
U(),V()	preference functionals
<i>u</i> (), <i>v</i> ()	utility functions
w	wage
X, Y	random variables
x, y	realization of random variables
$Y_{(h)}$	ordered value of Y (with order h)
Z	dummy variable
z_{α}	critical value of the normal distribution
α	Type I error
$oldsymbol{eta}$	Type II error
θ	parameter(s)
E	event
$p_{ au}$	tremble
R	rejection region in hypothesis testing
W()	event weighting function
x_{ij}	observation for subject i and variable j
y_i	observation on the outcome variable for subject i

Preface

There is an experimental-economics paradox. Inside the community of researchers carrying out laboratory experiments, these latter are seen as no more and no less than a tool for empirical research. From the outside, however, the method is often perceived as part of a particular sub-field, behavioural economics, which applies insights from both economics and psychology for the better understanding of economic behaviour. Experimental economics is also usually taught this way in most programmes, as part of behavioural-economics classes.

It has, however, long been recognised that experimental and behavioural economics are not the same. Behavioural economics is a research programme with a clear ambition and a well-defined objective: improving economic analysis using realistic psychological assumptions about human behaviour. Experimental economics, on the contrary, is not, per se, a research programme. Rather, it is a research method based on experimental control, applied to the typical topics in economic analysis.

The aim of this textbook is to help close the gap between the perception and reality of experimental methods in economics. We cover experimental economics, i.e. controlled experiments used as a tool to provide empirical evidence that is relevant for economic research. The structure of the textbook thus mimics the way many econometrics textbooks have been written for decades: the coverage focuses on applied statistical methods, the use of which is illustrated with economic results.

There are, however, a number of (good) reasons for this confusion between behavioural and experimental economics, which is at the heart of the experimental–economics paradox. First, behavioural economics emerged partly from the use of experiments – although the contribution of early experiments (such as the Allais paradox and the Chamberlin and Smith market experiments, described in Chapter 1) was to both behavioural economics and mainstream economics (for instance, neoclassical market analysis). Second, the experimental economics method is particularly suited for the study of the phenomena of interest to behavioural economics. In a nutshell, control offers researchers a way of identifying departures from the neoclassical explanation of behaviour. Third, not only behavioural economics but also experimental economics owe a great deal to the accumulated knowledge in experimental psychology: controlled experiments have been used for a long time in this field, and most methodological discussions took place before they even appeared in economics. In addition, the

xxii Preface

experimental method is taken as part of the psychology research toolkit across the whole community of researchers.

The scope of this book has been greatly influenced by the place that experimental economics occupies between neoclassical economics, behavioural economics, psychology and statistics. First, our methodological discussion mainly focuses on the use of experiments to understand economic behaviour. We complement this fairly standard view in applied economics by regularly devoting space to insights from, and some discrepancies with, psychology. We also cover a number of standard experimental results that are generally seen as part of behavioural economics.

Second, we mainly focus on laboratory experiments rather than field experiments or randomised controlled trials (see Chapter 3, Section 3.5 for the definition of these). This restriction reflects at least three factors. First, one textbook cannot suffice to embrace the large literature on methods for both laboratory experiments and randomised controlled trials. Second, this restriction also comes from our own limitations in expertise. Last, but not least, laboratory experiments are a convenient step in the study of controlled experiments in economics. Laboratory experiments can be seen as an extreme case of controlled experiments; they allow the accurate identification of behavioural phenomena, but at the cost of a highly artificial environment. Due to this artificiality, laboratory experiments provide answers that are sometimes hard to interpret – and are often challenged by non-experimentalists. Other kinds of experiment offer a way of loosening these limitations by implementing the same empirical method in less artificial contexts. We thus believe that laboratory experiments are a good starting point for anyone who wants to learn about controlled experiments in economics. Many of the discussions in this textbook aim to clarify the most appropriate cases for each type of empirical method; for example, whether observational or experimental data are required and, if it is experimental data, how close to the field the experiment should be.

Structure of the book

This textbook is not the first experimental-economics book by a long way, with respect to both methods and applications. Our predecessors can be split into two groups. First, textbooks/handbooks written for students and academics provide extensive surveys of experimental results. This applies to the textbook of Friedman and Sunder (1994) and the two seminal handbooks edited by Plott and Smith (2008) and Kagel and Roth (1995). In the same spirit, a number of books propose reviews of existing results from laboratory experiments with more specialised perspectives: Camerer (2003) contrasts behaviour in the lab with predictions from game theory, Cartwright (2011) and Chaudhuri (2009) mainly focus on social preferences and behavioural economics, and Angner (2012) provides a detailed overview of laboratory experiments regarding decision problems. These are all required reading for anyone wanting to learn more about experimental results. On the other hand, a few advanced books on the methodology of experiments have recently appeared. These are state-of-the-art collections of papers, written mainly for

Preface

xxiii

academics working in the field. This is the case for Guala (2005), Bardsley et al. (2009) and Fréchette and Schotter (2015).

This textbook is an attempt to build a bridge between these two kinds of reference: it provides a detailed presentation of the methodological aspects of economic experiments for readers (students, academics and professionals) who want to enter the field. To this end the book inverses the usual way of presenting the material, as the experimental results are used to illustrate methodological issues – rather than spreading out the methodological discussions over the presentation of various experimental designs. The content of the book is set out at the end of Chapter 1. We are aware that 'Methodology, like sex, is better demonstrated than discussed, though often better anticipated than experienced' (Leamer, 1983, p. 40). Mimicking the approach in applied economics and econometrics textbooks, the concrete applications of the method that constitute the core material in existing textbooks are here introduced as illustrations of the main material. To this end, the book contains three types of side material describing particular experiments, results or designs: case studies, illustrations and focuses.

- Case studies are sections devoted to the detailed presentation of a particular strand of experiments. They seek to illustrate the methodological discussions provided in the corresponding chapter identified as such in the table of contents.
- **Illustrations** are boxes providing a presentation of one particular experiment or result, to illustrate the point discussed in the text. Illustrations are often provided in sequences, showing how the literature has evolved according to the different dimensions discussed in the text.
- Focuses are boxes providing a more detailed and/or formal presentation of a point discussed in the text.

These together provide examples of most of the applications or results that are generally seen as essential in the field – as described in Section 1.4. To help readers bring together all of the information on one particular topic, they appear as specific index headers (see p. 431).

Audience

There are three natural audiences for this book. Its first purpose is as part of a graduate course, describing methods in experimental economics. The organisation of the book closely follows the typical outline of an 8×3 -hour course. Chapters 1–4 cover the material that would serve as an introductory lecture to laboratory experiments. These chapters describe the main objectives of laboratory experiments and provide examples. Chapters 5 and 8 provide core methodological insights that would best be split in two lectures each. Longer classes could include a discussion of the statistical analysis of experimental data based on Chapter 7 and a discussion of the insights drawn from behavioural economics in Chapter 9, and/or use case studies to devote some lectures to applications that illustrate the main material. In particular, a thorough methodological

xxiv Preface

course would probably feature some lectures devoted to risk preferences (Section 7.4), time preferences (Section 6.6) and belief-elicitation methods (Section 5.6).

Second, the book more generally seeks to provide future experimental practitioners with a broad picture of the toolkit that they will need. By providing the rationale for the general method and setting out in detail each particular choice of design feature, we hope that readers will be able to construct experiments that fit their research question well. A good understanding of the methodological challenges is also an important requirement for becoming an informed reader: this book may help to interpret the results from laboratory experiments or the writing of referee reports on papers using the experimental method. Third, we hope the community of academics who are new to this literature will find it a useful summary of the current state of the art about what experimental economics can tell us, and under which conditions it provides valuable answers to research questions in economics.

Acknowledgements

The book was written using the course material for PhD/master 2 courses in a number of different places, and in particular at our home institutions. We are more than grateful to the students who attended these classes for their commitment, remarks, scepticism and enthusiasm. We gratefully acknowledge the support from the Institut Universitaire de France

It is likely that the book would never have reached its final stage without the encouragement, help and remarks from, and discussions with, Jay Shogren. The writing process took such a long time that we will certainly omit many people whose contributions at earlier stages were much appreciated. This also meant that we have worked with many research assistants, whose help very often exceeded what was expected. Our thanks to Lisa Simon and Solene Delecourt for their work on early drafts of some of the chapters; Sophie Cottet for producing the graphs and figures; and Alberto Prati, Guillaume Royer and Shaden Shabayek for their work on some of the boxes. Last, an incredible number of PhD students and colleagues spent a great deal of time reading the first drafts of different parts of the book and provided us with invaluable feedback. We gratefully thank Arthur Attema, Aurélien Baillon, Han Bleichrodt, Aurélie Bonein, Elias Bouacida, Béatrice Boulu-Reshef, Arthur Charpentier, Paolo Crosetto, Laurent Denant-Boémont, Antoine Hémon, Justine Jouxtel, Antoine Malézieux, Elven Priour, Kirsten Rohde, Angelo Secchi, Benoit Tarroux and Adam Zylbersztejn.

While the field of behavioural and experimental economics is sometimes described as over-competitive, it is also one in which researchers from all over the world cooperate on methodological and bibliographic issues, thanks to the ESA discussion group: the discussions there provided us many insights and ideas for which we gratefully thank all contributors. Our gratitude also goes to Sandra Freeland and Andrew Clark for their thorough proofreading of the manuscript, and the editorial team at Cambridge University Press, Phil Good, Neil Ryan and Chris Harrison, for their continuous support and outstanding work.