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Infinite Sequences

1.1 Introduction to Sequences

Sequences are useful in the analysis of structures and patterns that occur in

a variety of contexts and across a broad range of disciplines. Sequences occur in

mathematics, biology, chemistry, and physics as well as in finance, manufac-

turing, and computer science. A sequence can be used to represent

a mathematical structure, a manufacturing process, or the pattern of nucleotides

in a DNA molecule. Sequences can also express rules of thumb or general

properties of a system. For example, the f-stops 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, and

16 found on the aperture ring of a camera lens essentially form a geometric

sequence. This sequence represents the amount of light reaching the camera’s

film or sensor per unit area. Another example of a practical sequence is the

Mariner’s Rule of Twelfths – 1, 2, 3, 3, 2, 1 – which is a rule of thumb for

estimating water depth when navigating or anchoring a ship in shallow water.

Simply stated, a sequence is a list of elements or terms in a particular order.

The elements of a sequence can be numbers, functions, names, letters, and so

forth.

What “a particular order” means is probably best demonstrated by way of

a simple example. Consider the sequences (A, M, Y) and (M, A, Y). While the

two sequences contain the same elements, they are considered to be different

sequences, or not equal, because the ordering differs.

1.2 Notation

There are a number of ways to represent a sequence. The notation chosen

depends on the form of the sequence and what you know about it. One method

is to simply list the elements of the sequence:
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1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16 (photographic f-stops)

1, 2, 3, 3, 2, 1 (Rule of Twelfths)

1, −1, 1, −1, . . . (alternating sequence)

2, 4, 6, 8, 10, . . . (positive even integers)

3, 5, 7, 11, 13, . . . (prime numbers)

1, 1, 2, 3, 5, 8, . . . (Fibonacci sequence)

Since the sequence of photographic f-stops and the Rule of Twelfths are

examples of finite sequences, in that they only contain a finite number of

terms. The remaining sequences are examples of infinite sequences, where the

three little dots at the end indicate that the sequence continues forever.

A sequence may be represented using index notation,

a1; a2; a3;…; an;… ð1:1Þ

where a1 is referred to as the first term of the sequence, a2 the second term,

a3 the third term, and an the nth term or the general term of the sequence.

The index n indicates the position of the term in the sequence and is typically

taken from the set of natural numbers {1, 2, 3, 4, . . .}. Index notation is useful

when you recognize the pattern or rule generating the sequence, so that the nth

or general term of the sequence can be expressed as a formula or a function.

Using index notation, the sequence of photographic f-stops, the alternating

sequence, and the sequence of positive even integers can be written as

follows:

1, 1.4, 2, . . ., ð
ffiffiffi

2
p

Þ8 (photographic f-stops)

1, −1, . . ., (−1)n+1, . . . (alternating sequence)

2, 4, 6, 8, . . ., 2n, . . . (positive even integers).

Sequences may also be represented by the notation {an}, where an is the nth or

general term and it is understood that the index n runs from 1 to ∞ – for

example,

{(−1)n+1} (alternating sequence)

{2n} (positive even integers),

Since the sequence of photographic f-stops is an example of a finite sequence, it

is necessary to denote the end of this sequence. In this case it is customary to

represent the sequence as:

ð
ffiffiffi

2
p

Þn
� �8

n¼0
(photographic f-stops)

In this example, a subscript and superscript are used to define the beginning and

end of the finite sequence: the indexing begins with n = 0 and ends with n = 8.

2 Infinite Sequences
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As this example shows, indexing does not necessarily have to begin with the

number 1; it can begin and end with any possible integer. The indexing in this

example was chosen in order to simplify the expression for the nth term.

It may not always be simple or even possible to find a formula for the general

or nth term of a sequences. In such cases, the sequence cannot be represented

using index notation, and the elements of the sequence must instead be listed to

indicate the sequence. For example, note that the Rule of Twelfths, and the

sequence of prime numbers are expressed as a list of elements:

1, 2, 3, 3, 2, 1 (Rule of Twelfths)

1, 1, 2, 3, 5, 8, . . . (Fibonacci sequence)

3, 5, 7, 11, 13, . . . (prime numbers)

The Fibonacci sequence is an example of a sequence that can be defined

recursively. A recurrence relation is an expression that relates the nth ele-

ment of a sequence to a previous element or elements. The recurrence relation

for the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . is expressed as follows:

a1 ¼ a2 ¼ 1;

anþ2 ¼ an þ anþ1:

In Chapter 4, we will develop the necessary tools to find a general expression

for the terms of the Fibonacci sequence, and we will then specify the sequence

using index notation.

The sequence of prime numbers 2, 3, 5, 7, 11, . . . is intriguing because there

is no known formula capable of generating all the prime numbers. Therefore,

we are reduced to presenting the prime numbers as a list. The distribution of

prime numbers is currently an open question in mathematics for which there is

a related prize, the Clay Mathematics Institute Millennium Prize.

1.3 Example Sequences

Arithmetic, harmonic, and geometric sequences are three types of sequences

that are easily defined because there is a constant relation between consecutive

terms.

1.3.1 Arithmetic Sequences

An arithmetic sequence is a sequence in which consecutive terms differ by

a constant amount called the common difference. If the first term of the

1.3 Example Sequences 3

www.cambridge.org/9781107059825
www.cambridge.org


Cambridge University Press
978-1-107-05982-5 — A Student's Guide to Infinite Series and Sequences
Bernhard W. Bach, Jr. 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

sequence is a and the common difference is d, then the arithmetic sequence is

represented by

a; aþ d; aþ 2d; 1þ 3d;…; aþ ðn� 1Þd;… ð1:2Þ

Each term of the sequence can be obtained by adding the common difference

d to the previous term – for example,

1; 2; 3; 4;…

3; 7; 11; 15;…

10; 7; 4; 1;�2;�5;…

are arithmetic sequences with the common differences 1, 4, and −3,

respectively.

1.3.2 Harmonic Sequences

The terms of a harmonic sequence are the reciprocals of the terms of an

arithmetic sequence, so a harmonic sequence is expressed as

1

a
;

1

aþ d
;

1

aþ 2d
;

1

aþ 3d
;…;

1

aþ ðn� 1Þd ;… ð1:3Þ

Using the arithmetic sequences given above, we can form the corresponding

harmonic sequences:

1;
1

2
;
1

3
;
1

4
;…

1

3
;
1

7
;

1

11
;

1

15
;…

1

10
;
1

7
;
1

4
; 1;

1

2
;

1

15
;…

A physical example of the reciprocal relationship between arithmetic and

harmonic sequences is the reciprocal relationship between wavelength and

frequency:

λ ∝
1

f
:

As an example, consider the strings of a musical instrument. As the strings are

fixed at both ends, the longest standing wave, or the fundamental mode

supported by such a vibrating string, has a wavelength λ that is twice the length

of the string. This fundamental wavelength consists of a round trip along the

string, with a half-cycle fitting between the nodes at the ends of the string.

The other vibrational modes (or harmonics) supported by the string occur at λ/2,

4 Infinite Sequences
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λ/3, λ/4, . . . When expressed in terms of the wavelength, the vibrational modes

supported by the string form the following sequence:

λ;
λ

2
;
λ

3
;
λ

4
;…;

λ

n
;…;

which by our definition is a harmonic sequence in which the common difference

d is 1.We could also choose to characterize the vibrational modes of the string in

terms of their frequency rather than their wavelength. If the fundamental mode of

the string vibrates with frequency f, then the higher harmonic modes are found at

the frequencies 2f, 3f, 4f, . . ., which form the arithmetic sequence

f ; 2f ; 3 f ; 4f ;…; nf ;…

Note that the reciprocal of each term nf of the arithmetic sequence is 1/nf, which

can be rewritten as λ/n using the inverse relationship (λ ∝ 1/f ) between

wavelength and frequency, thereby demonstrating that the terms of

a harmonic sequence are the reciprocals of the terms of an arithmetic series.

1.3.3 Geometric Sequences

Geometric sequences occur in many different contexts and appear in problems

involving growth or decay. In biology, this may be the growth or decay of

a population; in physics, it may be the change in the number of particles due to

a chain reaction or decay; and in finance, it may be the change in the value of an

account due to interest.

A geometric sequence is a sequence in which there is a constant ratio

between consecutive terms; this ratio is referred to as the common ratio.

Each term of the sequence can be obtained by multiplying the previous term

by the common ratio. If the first term of the geometric sequence is a and the

common ratio is r, then the geometric sequence is written as

a; ar; ar2; ar3;…; arn�1
;… ð1:4Þ

– for example,

1; 1:4; 2;…; ð
ffiffiffi

2
p

Þn;… (the photographic f-stops)

6;�3;
3

2
;
�3

4
;…

2, 6, 18, 54, . . .

are geometric sequences with common ratios of
ffiffiffi

2
p

, −1/2, and 3, respectively.

The common ratio of a geometric sequence is found by taking the ratio of

consecutive terms:
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r ¼ a2

a1
¼ a3

a2
¼ … ¼ anþ1

an
¼ … ð1:5Þ

A simple physical example of a geometric sequence is the decreasing height of

successive bounces of a ball. Consider an experiment in which a ball is dropped

onto a hard surface [1]. The ball is initially dropped from the heightH0 = 40.5 cm,

and the maximum height of each successive bounce is recorded: H0 = 40.5 cm,

H1 = 37.0 cm,H2 = 34.5 cm,H3 = 32.3 cm,H4 = 30.24 cm,H5 = 28.2 cm, andH6 =

26.4 cm. The heights of successive bounces thus form the following sequence:

40:5; 37:0; 34:5; 32:3; 30:2; 28:2; 26:4:

To recognize that this sequence of successive heights is a geometric sequence,

you need to recognize that there is a common ratio between consecutive terms.

Recall that for a geometric sequence, the common ratio between consecutive

terms is given by

r ¼ anþ1

an
:

Using the ratios of consecutive heights, we would find that

H1

H0

¼ H2

H1

¼ H3

H2

¼ H4

H3

¼ H5

H4

¼ H6

H5

¼ constant ¼ r:

A few strokes on a calculator will confirm that a common ratio exists: r ≅ 0.9

(to the first decimal place). Therefore, the nth or general term of the sequence of

bounce heights is given by

Hn ¼ H0ð0:9Þn:

Another example of a geometric sequence is as follows. A chemistry instruc-

tor once told me that 99% of an unwanted solution can be rinsed from

a container if the container is filled with water and emptied out three times in

a row. Is this statement reasonable? If we let a represent the original amount of

unwanted solution in the container and let r represent the percentage of fluid

that is retained in the container when it is emptied out (i.e., the percentage of

fluid that is left clinging to the interior of the container), we find that

ar0 = a = original amount of unwanted solution,

ar = amount of solution remaining in container after filling with water and

emptying,

ar2 = amount of solution remaining in container after second rinsing, and

ar3 = amount of solution remaining in container after third rinsing.

6 Infinite Sequences
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Notice that the consecutive terms a, ar, ar2, ar3 form a geometric sequence.

If the container is to be 99% clean, as claimed by the chemistry instructor, this

implies that only 1% of the original solution remains in the container after three

rinses. Expressed in terms of the geometric progression, the statement implies

that

ar3

a
¼ 1% ¼ 0:01:

Solving for r, we find that

r3 ¼ 0:01

and thus that

r ¼ 0:215 ¼ 21:5%:

So even if the container isn’t completely emptied out during each rinse but

retains some amount of the unwanted solution (up to 21.5% in this case), the

amount of unwanted fluid remaining in the container is given by

an ¼ a0ð0:215Þn;

and the amount of unwanted solution that has been removed will approach 99%

after three rinses.

1.4 Limits and Convergence

If the consecutive terms of a sequence approach a constant or limiting value, the

sequence is said to converge (or be convergent). If a sequence does not

converge, then it is said to diverge (or be divergent). In many applications,

it is necessary to determine whether a particular infinite sequence is convergent

or divergent. It may also be necessary to determine the limiting value of

a convergent sequence. In this section, we will develop the concept of conver-

gence and introduce methods for identifying convergence and for determining

the limiting value of a convergent sequence.

Put simply, a convergent sequence is one in which the consecutive elements

of the sequence get arbitrarily close to some value. For example, the terms of

the sequence

0:9; 0:99; 0:999; 0:9999;…

1.4 Limits and Convergence 7
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can be observed to approach one (the limit of the sequence), so this sequence is

convergent. More formally, an infinite sequence has a limit if the nth or general

term an converges to some constant L as n becomes very large:

lim
n→∞

an ¼ L:

If L is a real number, the sequence is said to converge to L.

If the successive terms of a sequence do not approach a limit, the sequence is

divergent. A straightforward example of a divergent sequence would be

a sequence whose nth term becomes arbitrarily large in magnitude as

n approaches infinity:

lim
n→∞

an ¼ �∞:

For example, the sequence of positive integers

1; 2; 3; 4…

diverges. A more subtle example of divergence appears in the infinite sequence

f1;�1; 1;�1; 1…g:

The general expression for the sequence is an = (−1)n. Taking the limit of the

general expression as n gets large, we find that the nth term does not approach

a constant value; rather, the sequence oscillates between positive and negative 1.

By definition, a convergent sequence has only one limit, but the sequence {1, −1,

1, −1, 1 . . .} does not approach a single limit and is therefore divergent. We will

revisit this example momentarily, after we develop a more precise definition of

convergence.

The more precise, definition of convergence is as follows: an infinite

sequence {an} converges to a limit L if for every ε > 0, no matter how

small, there exists a positive number N > 0 such that for all n > N, an
remains arbitrarily close to L (i.e., |an − L| < ε). If the limit L does not exist,

then the sequence diverges. Figure 1.1 illustrates this definition of

convergence.

For a divergent sequence, the condition |an − L| < ε cannot be fulfilled, even

for very large n. Consider the previous example: {1, −1, 1, −1, . . .}. For very

large n, the general term an is ±1, and the condition |±1 − L| < ε cannot be

fulfilled for an arbitrarily small ε. Because the consecutive terms of the

sequence do not approach a single value, a limit does not exist, and the

sequence is divergent.
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To establish the convergence of a sequence, we need to be able to prove

convergence by either resorting to the definition of convergence or being able

to take the limit of the nth term or general term of the sequence. In many cases,

taking the limit of the nth term will be a straightforward process. For example,

consider the harmonic and arithmetic sequences representing the vibrational

modes of a fixed string. Recall that we developed two sequences in

Sections 1.3.1 and 1.3.2:

λ;
λ

2
;
λ

3
;
λ

4
;…;

λ

n
;… ¼ λ

n

� �

(sequence of allowed wavelengths)

and

f ; 2f ; 3f ; 4f ;…nf ;… ¼ fnf g (sequence of allowed frequencies).

Taking the limit of the nth term of the harmonic sequence of allowed wave-

lengths, we find that

lim
n→∞

λ

n
→

λ

∞

→0:

So the sequence of allowed wavelengths is convergent, and it converges to

zero. Taking the limit of the general term of the sequence of allowed frequen-

cies, we find that

n

V
a
lu

e
 o

f 
th

e
 n

th
 T

e
rm y = L + ε

y = L − ε

L

y

Figure 1.1 Illustration of the convergence of a sequence to the limit L.
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lim
n→∞

nf→∞f→∞;

and therefore the sequence diverges. In both of these examples, the limit was

very easy to evaluate, as no algebraic manipulation was required. Let us now

consider a slightly more complicated example, namely, the infinite sequence

5n3

n3 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ n6
p

� �

:

To test this sequence for convergence, we simply need to take the limit of the

general term:

lim
n→∞

5n3

n3 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ n6
p :

Dividing the numerator and denominator by n3 and taking the limit, we find that

lim
n→∞

5

1þ 3

ffiffiffiffiffiffiffiffiffiffiffiffi

4
n6
þ 1

q →

5

1þ 3
¼ 5

4
;

and so the sequence converges to the limit 5/4.

Occasionally, there are situations where it may be necessary to resort to the

definition of convergence in order to establish the convergence of a sequence.

As an example, we will use the definition of convergence to prove that the

geometric sequence {rn} converges to the limit for constant r, where |r| < 1 [2].

Using the definition of convergence, we need to show that for every ε > 0, no

matter how small, there exists a positive number N > 0 such that for all n >N, rn

remains arbitrarily close to zero (i.e., |rn − 0| < ε). For r = 0, it is obvious that the

sequence {rn} is constant (0, 0, 0, . . .); the limit is therefore 0, and the sequence

converges. For the case where 0 < |r| <1, we need to show that there exists

a positive numberN such that for all n >N, |rn − 0| < ε, no matter how small ε is.

We can rewrite the inequality

jrn � 0j < ε

as

jrjn < ε:

Taking the logarithm of the inequality, we find that

nlnjrj < ln ε:
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