

Dynamic Power Supply Transmitters

Learn how envelope tracking, polar modulation, and hybrid designs using these techniques really work. The first physically based and coherent book to bring together a complete overview of such circuit techniques, this is an invaluable resource for practicing engineers, researchers, and graduate students working on RF power amplifiers and transmitters.

Create more succesful designs:

- Step-by-step design guidelines and real-world case studies show you how to put these techniques into practice
- A survey of various transistor technologies will help you to choose which type of transistor to use for best results
- Details on testing and measurement of all aspects of these designs explain how to measure what the circuit is actually doing and how to interpret measurement results

Earl McCune is a practicing engineer and Silicon Valley entrepreneur. A graduate of UC Berkeley, Stanford University, and UC Davis, he has over 35 years of post-graduate industry experience in wireless communications circuits and systems and more than 70 issued US patents. Now semi-retired, he has founded two successful start-up companies in addition to working in medium and very large corporations. He is also the author of *Practical Digital Wireless Signals* (Cambridge University Press).

THE CAMBRIDGE RF AND MICROWAVE ENGINEERING SERIES

Series Editor

Steve C. Cripps, Professor, University of Cardiff and Hywave Associates

Peter Aaen, Jaime Plá and John Wood, Modeling and Characterization of RF and Microwave Power FETs

Dominique Schreurs, Máirtín O'Droma, Anthony A. Goacher and Michael Gadringer, RF Amplifier Behavioral Modeling

Fan Yang and Yahya Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering

Enrico Rubiola, Phase Noise and Frequency Stability in Oscillators

Earl McCune, Practical Digital Wireless Signals

Stepan Lucyszyn, Advanced RF MEMS

Patrick Roblin, Nonlinear RF Circuits and the Large-Signal Network Analyzer

Matthias Rudolph, Christian Fager and David E. Root, Nonlinear Transistor Model Parameter Extraction Techniques

John L. B. Walker, Handbook of RF and Microwave Solid-State Power Amplifiers

Anh-Vu H. Pham, Morgan J. Chen and Kunia Aihara, LCP for Microwave Packages and Modules

Sorin Voinigescu, High-Frequency Integrated Circuits

Richard Collier, Transmission Lines

Valeria Teppati, Andrea Ferrero and Mohamed Sayed, Modern RF and Microwave Measurement Techniques

Nuno Borges Carvalho and Dominique Schreurs, *Microwave and Wireless Measurement Techniques*

David E. Root, Jason Horn, Jan Verspecht and Mihai Marcu, X-Parameters

Earl McCune, Dynamic Power Supply Transmitters

Forthcoming

Richard Carter, Theory and Design of Microwave Tubes

Hossein Hashemi and Sanjay Raman, Silicon mm-Wave Power Amplifiers and Transmitters

Isar Mostafanezad, Olga Boric-Lubecke and Jenshan Lin, Medical and Biological Microwave Sensors

Dynamic Power Supply Transmitters

Envelope Tracking, Direct Polar, and Hybrid Combinations

EARL McCUNE

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107059177

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printing in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

McCune, Earl.

Dynamic power supply transmitters: envelope tracking, direct polar, and hybrid combinations / Earl McCune.

pages cm. – (The Cambridge RF and microwave engineering series) ISBN 978-1-107-05917-7 (hardback)

- 1. Power amplifiers. 2. Amplifiers, Radio frequency Power supply.
- Radio Transmitters and transmission.
 Electric power supplies to apparatus.
 TK7871.58.P6M38
 2015

621 2941/21 Ja22

621.3841′31–dc23

2014048900

ISBN 978-1-107-05917-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to the outstanding teams I have worked with while learning these details

Contents

	Preja List o	page xvii xx	
Part I	Motivati	ions, definitions, and principles	1
1	Motivations		3
	1.1	Linearity and linearization	5
	1.2	Reliability improvement	6
	1.3	High peak-to-average power signal types	6
	1.4	Energy efficiency	7
	1.5	Efficiency improvement vs. signal PAPR	9
	1.6	References	11
2	Defii	nitions	12
	2.1	Physical foundations	12
		2.1.1 Maxwell's equations	12
		2.1.2 Ohm's Law	13
	2.2	Supply vs. bias definitions	15
	2.3	Linear vs. polar circuitry	16
	2.4	Gain when in compression	17
		2.4.1 Slope gain	18
		2.4.2 Ratiometric gain	19
		2.4.3 Power transfer function and RF waveforms	20
	2.5	Power supply rejection	21
	2.6	Dynamic range	21
		2.6.1 Signal envelope	22
		2.6.2 Power control	25
		2.6.3 Total dynamic range	27
	2.7	Bandwidth expansion	29
	2.8	References	30

viii Contents

3	Dyna	mic power supply common principles	32
	3.1	Top principle: PA efficiency visibility to top supply	32
	3.2	General (shared) architecture	33
	3.3	Power dissipations	34
		3.3.1 Conservation of energy (CoE) relationship	35
		3.3.2 Temperature vs. heat	37
		3.3.3 Thermal paths vs. signal paths	37
	3.4	DPST node voltages and currents	38
	3.5	Cost and architectures	39
	3.6	DPS bandwidth	42
	3.7	Reference	43
4	Linea	r power amplifiers	44
	4.1	Overview	44
		4.1.1 Bias classes and their waveforms	47
		4.1.2 Linearity goals	51
		4.1.3 IV curve model (load line)	54
		4.1.4 Power series models	55
		4.1.5 Four gain definitions	55
		4.1.6 Variable supply behaviors	61
	4.2	Linearity/energy efficiency trade-off	68
	4.3	Stability	71
		4.3.1 Circuit stability	71
		4.3.2 Thermal stability	72
		4.3.3 Manufacturing stability	73
	4.4	Major distortion mechanisms	73
		4.4.1 AM-AM	74
		4.4.2 AM-PM	74
	4.5	Gain and linearization principles	75
	4.6	Supply noise suppression	76
	4.7	References	77
5	Envel	ope tracking principles	79
	5.1	History of the technique	79
	5.2	Power supply value tolerance	80
		5.2.1 Ideal case	81
		5.2.2 Finite output conductance case	82
		5.2.3 Measuring the supply variation to sideband conversion	84
	5.3	Broadband output noise	88
		5.3.1 Noise figure x gain	89
		5.3.2 Present whenever gain is active	89
	5.4	Supply accuracy tolerance	90

		Contents	ix
		5.4.1 Finite transistor output conductance	91
		5.4.2 Supply voltage profile vs. envelope value	92
		5.4.3 Minimum power supply value	95
	5.5	DPS time alignment	96
	5.6	Envelope waveform characteristics	98
	5.7	Circuit model: CCS	101
	5.8	Bias conditions	101
		5.8.1 Easy: variable class with modulation	101
	5.0	5.8.2 Harder: constant class with modulation	102
	5.9	Low frequency stability	103
	5.10 5.11	Load presented to the DPS by the ET PA	104 107
	5.11	Energy efficiency effects/power dissipations 5.11.1 Referenced at the RF PA	107
		5.11.1 Referenced at the KF FA 5.11.2 Referenced at the power supply	107
		5.11.2 Referenced at the power suppry 5.11.3 Limit on maximum available efficiency	108
	5.12	Achieving envelope zero values	110
	5.12	TDM burst control	110
	5.14	Reverse intermodulation	111
	5.15	Output mismatch	112
	5.16	Envelope tracking property summary	113
	5.17	References	114
6	Polar	transmitter principles	115
	6.1	History of the technique	115
		6.1.1 Plate modulation (predates 1920)	115
		6.1.2 EER by Kahn in 1952–1957	116
		6.1.3 Resurgence in 1990s	117
	6.2	Magnitude control mechanism	118
		6.2.1 Measuring the supply-variation-to-sideband transfer	
		function	122
		6.2.2 Stage dynamic range	122
		6.2.3 Transistor transconductance reduction	124
		6.2.4 DPS output noise requirements	125
	6.3	Broadband output noise characteristics	126
		6.3.1 Phase noise dominates	126
	6.4	6.3.2 Noise figure effect is suppressed	127
	6.4	Supply accuracy requirements	127
	6.5	DPS time alignment	128
	6.6	Signal waveform characteristics	129
	6.7	Circuit model: "switch"	132
		6.7.1 Port "impedances"	132
		6.7.2 Restricted ability to use s-parameters 6.7.3 Switch based amplifier classes: D. F. F.	132
		6.7.3 Switch-based amplifier classes: D, E, F	133

x Contents

	6.7.4	P-mode: not a switch, but not linear (L-mode) either	133
	6.7.5	Different design rules	133
6.8	Bias co	nditions	135
	6.8.1	CCS modes: class A, B, C	135
	6.8.2	Class PFS	135
	6.8.3	Dynamic bias with envelope variations	136
	6.8.4	Drive with rectangular waveforms	139
	6.8.5	Differences between bipolar and FET operation	139
6.9	Load p	resented to the DPS	141
	6.9.1	Single stage polar operation	142
	6.9.2	Multiple stage polar operation	143
	6.9.3	Impact from output mismatch	144
6.10	Energy	efficiency effects/power dissipations	145
	6.10.1	Referenced at the RF PA	145
	6.10.2	Overall power dissipation	146
	6.10.3	Temperature rise	147
6.11	Cross n	nodulation	149
	6.11.1	DPS-AM distortion	149
	6.11.2	DPS-PM mechanism	151
	6.11.3	Desired input magnitude variations	154
	6.11.4	Reverse intermodulation	155
6.12	RF out	put power control	155
	6.12.1	High output powers	156
	6.12.2	Low output powers	156
	6.12.3	Very low output powers	157
	6.12.4	Automatic low battery compensation (ALBC)	159
6.13	Handlii	ng a zero output (IQ origin crossing)	160
	6.13.1	Forced zero output	161
	6.13.2	Opposing phase offset	163
	6.13.3	Opposing phase summing	164
	6.13.4	High-level polar/low-level LINC (HLP/LLL)	166
	6.13.5	Envelope flooring	169
	6.13.6	Flooring and filling	171
	6.13.7	Load impedance manipulation combining outphasing with	
		polar (LIMOP)	172
	6.13.8	Stop the AM	173
6.14	TDM b	purst control	174
6.15	Stabilit	y performance	175
	6.15.1	Circuit stability	176
	6.15.2	Inherent low frequency stability	176
	6.15.3	Thermal stability	176
	6.15.4	Manufacturing stability	177
	6.15.5	Operating stability (ageing)	178
6.16	Limiter	'S	179

		Conte	ents xi
	6.17	Summary table (cumulative)	181
	6.18	References	181
Part II	DPST circ	cuit issues	185
7	Speci	ial linear PA circuit considerations for ET	187
	7.1	Core principle: power supply value independence	187
	7.2		192
		7.2.1 Problems with usual practice	192
		7.2.2 DPS output impedance requirements	195
		7.2.3 Alternative method to eliminate low frequency	
		oscillation	196
	7.3	Matching network complexity	197
		7.3.1 $C_{in}(V)$: a problem for input and interstage matching	
		networks	198
		7.3.2 $C_{out}(V)$: a problem for output matching networks (OM	N) 199
	7.4	Gain flatness and control	200
		7.4.1 Across frequency	201
		7.4.2 Across P_{in} and V_{DPS}	202
		7.4.3 Gain control	203
	7.5	Bias network dynamics – or not	205
		7.5.1 Bias impedance	206
		7.5.2 Impact on PA stability	208
	7.6	Optimum DPS profiles for ET	209
	7.7	PA operating voltage and energy efficiency	212
	7.8	Noise figure and wideband PA noise	215
	7.9	Alternative PA circuit architectures	216
		7.9.1 Cascode	216
		7.9.2 Stacked transistors	217
		7.9.3 Transformer combining	219
	7.10	Output mismatch consequences	220
	7.11	References	223
8	Inten	tional circuit compression	224
	8.1	C-mode operating requirements	224
		8.1.1 Bias vs. power supply variation	225
		8.1.2 Drive into resistive operation	226
		8.1.3 FET or bipolar: behavior differences	231
	8.2	_	235
	8.3	_	236
		8.3.1 R_{ON} vs. R_L ratio	236
		8.3.2 Operation at high voltage is preferred	236
		8.3.3 Special dissipations in bipolar transistors	237

xii Contents

	8.4	Device spe	ed considerations	240
	8.5	_	nodulation accuracy	244
	0.0	-	se when $V_{AMO} = 0$	244
			Efferences when $V_{AMO} > 0$	245
	8.6		ification and model validation	247
			st strategy to validate C-mode operation	247
			wer saturation	247
		8.6.3 Sq	uare-law power relationship	248
		-	ge series resistance	249
			wer supply noise susceptibility	249
			termining V_{AMO}	250
		8.6.7 Tes	st strategy to validate P-mode operation	251
	8.7	Impedance	matching considerations	251
		8.7.1 Ou	tput matching networks (OMN)	252
		8.7.2 Inp	out matching network (IMN)	256
		8.7.3 Tra	insistor impact of output mismatch (VSWR)	257
		8.7.4 Mu	ultiband output capability	259
	8.8	Circuit stab	vility demonstrations	261
		8.8.1 Re	duce the slope gain	261
		8.8.2 Re	verse intermodulation	262
	8.9	Multistage		262
	8.10	References		263
0	_	_	nnlies	265
9	Dynan	ic power su	opiico	265
9	Dynan 9.1	ic power sup Power obje		265 265
9	_	Power obje		
9	_	Power obje 9.1.1 Re	ctives	265
9	_	Power obje 9.1.1 Re 9.1.2 Re	ctives sistive current	265 266
9	_	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle	ctives sistive current active current	265 266 267
9	_	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po	ctives sistive current active current w rate	265 266 267 269
9	9.1	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Por DPS applic	ctives sistive current active current w rate wer conversion	265 266 267 269 270
9	9.1	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Por DPS applic	ctives sistive current active current we rate wer conversion ation classes obile devices	265 266 267 269 270 271
9	9.1	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mo 9.2.2 Inf	ctives sistive current active current we rate wer conversion ation classes obile devices	265 266 267 269 270 271 271
9	9.1	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Por DPS applic 9.2.1 Mo 9.2.2 Inf 9.2.3 Co	ctives sistive current active current we rate wer conversion ation classes obile devices irastructure	265 266 267 269 270 271 271 272 272
9	9.1	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mc 9.2.2 Inf 9.2.3 Co Linear dyna 9.3.1 LD	ctives sistive current active current were rate wer conversion ation classes obile devices frastructure mmon DPS architectures amic voltage regulators (LDVR): the simplest DPS	265 266 267 269 270 271 271 272
9	9.1	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mc 9.2.2 Inf 9.2.3 Co Linear dyna 9.3.1 LD 9.3.2 Eff	ctives sistive current active current we rate wer conversion ation classes obile devices frastructure mmon DPS architectures amic voltage regulators (LDVR): the simplest DPS DVR design principles ficiency effects	265 266 267 269 270 271 271 272 272 275 276 277
9	9.1 9.2 9.3	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mc 9.2.2 Inf 9.2.3 Co Linear dyna 9.3.1 LE 9.3.2 Eff 9.3.3 Ou	ctives sistive current active curren	265 266 267 269 270 271 271 272 272 275 276 277 278
9	9.1	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mc 9.2.2 Inf 9.2.3 Co Linear dyna 9.3.1 LD 9.3.2 Eff 9.3.3 Ou Switching in	ctives sistive current active current were rate were conversion ation classes obile devices frastructure mmon DPS architectures amic voltage regulators (LDVR): the simplest DPS oVR design principles ficiency effects tput impedance regulators	265 266 267 269 270 271 271 272 272 275 276 277 278 281
9	9.1 9.2 9.3	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mc 9.2.2 Inf 9.2.3 Co Linear dyna 9.3.1 LD 9.3.2 Eff 9.3.3 Ou Switching 1 9.4.1 Sw	ctives sistive current active current were rate wer conversion ation classes obile devices frastructure mmon DPS architectures amic voltage regulators (LDVR): the simplest DPS oVR design principles friciency effects tput impedance regulators itching transistor characterization	265 266 267 269 270 271 271 272 272 275 276 277 278 281 282
9	9.1 9.2 9.3	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mc 9.2.2 Inf 9.2.3 Co Linear dyn: 9.3.1 LD 9.3.2 Eff 9.3.3 Ou Switching 1 9.4.1 Sw 9.4.2 DC	ctives sistive current active curren	265 266 267 269 270 271 271 272 272 275 276 277 278 281 282 284
ש	9.1 9.2 9.3	Power obje 9.1.1 Re 9.1.2 Re 9.1.3 Sle 9.1.4 Po DPS applic 9.2.1 Mc 9.2.2 Inf 9.2.3 Co Linear dyna 9.3.1 LE 9.3.2 Eff 9.3.3 Ou Switching 1 9.4.1 Sw 9.4.2 DC 9.4.3 Eff	ctives sistive current active current were rate wer conversion ation classes obile devices frastructure mmon DPS architectures amic voltage regulators (LDVR): the simplest DPS oVR design principles friciency effects tput impedance regulators itching transistor characterization	265 266 267 269 270 271 271 272 272 275 276 277 278 281 282

			Contents	xiii
		9.4.5 Combined Si–non-Si		288
	9.5	Combined regulators within one DPS		289
		9.5.1 Series combination		291
		9.5.2 Shunt combination		292
		9.5.3 Hysteretic switching		293
	9.6	DPS bandwidth		294
		9.6.1 Relation to signal bandwidth		295
		9.6.2 Signal slew rate: a brief survey		296
	9.7	Conversion efficiency characteristics		298
	9.8	DPS output noise		299
	9.9	DPS output impedance		300
	9.10	Output stability		300
		9.10.1 Load can be negative dynamic resis	stance	300
		9.10.2 Load impedance is widely varying	for ET	301
	9.11	Automatic low battery compensation operati	on	302
	9.12	VSWR management (DP only)		304
	9.13	Power control		306
	9.14	References		306
10	Device	technologies: special issues for DPS use		308
	10.1	What do we really want?		309
		10.1.1 IV characteristic curves		309
		10.1.2 Transfer characteristic and g_m		312
		10.1.3 Parasitic and installed capacitance)	313
		10.1.4 FET-action regions		314
	10.2	Linearity and noise suppression for envelop	e tracking	315
		10.2.1 Transconductance (or β) uniforming	ty	315
		10.2.2 Extent of the CCS region		316
		10.2.3 Transition between resistive and C	CCS regions	316
	10.3	Switching characteristics for DP		317
		10.3.1 Resistive characteristics		317
		10.3.2 Voltage offset		317
		10.3.3 Comparisons across switching tra	nsistor	
		technologies		318
	10.4	Transistor technology survey		319
	10.5	Silicon technologies		320
		10.5.1 Si bipolar		321
		10.5.2 CMOS		330
		10.5.3 LDMOS		334
		10.5.4 SiGe HBT		337
		10.5.5 Si MESFET		343
	10.6	(III/V) gallium arsenide technologies		348
		10.6.1 GaAs MESFET		348

xiv	Contents

		10.6.2 GaAs HBT	351
		10.6.3 GaAs pHEMT	356
		10.6.4 GaAs EpHEMT	361
	10.7	Gallium nitride (GaN) technologies	365
		10.7.1 GaN HEMT	365
		10.7.2 GaN E-HEMT	371
	10.8	Backgating/output lag	371
	10.9	Comparison discussion	372
		10.9.1 Preferred characteristics for envelope tracking	373
		10.9.2 Preferred characteristics for DP modulation	374
	10.10	Reference	376
11	Hybrid	system combinations	377
	11.1	Hybrid operation overview	377
	11.2	Polar at signal peaks, ET, or linear in signal valleys	380
		11.2.1 Power supply profile	381
		11.2.2 Gain variation	382
		11.2.3 Stability issues	383
		11.2.4 Load variation to the DPS	384
		11.2.5 Energy efficiency profile	385
	11.3	Constant joint transfer function	387
		11.3.1 Intrinsic output magnitude accuracy	388
		11.3.2 Power supply profile	389
		11.3.3 Energy efficiency profile	391
		11.3.4 Load to the DPS	392
	11.4	Maximum efficiency strategy	393
		11.4.1 Intrinsic magnitude accuracy	394
		11.4.2 Power supply profile	395
		11.4.3 Energy efficiency profile	397
		11.4.4 Load to the DPS	397
	11.5	Comparisons	398
	11.6	References	401
12	Multist	tage modulation	402
	12.1	Interstage signal magnitude management	402
		12.1.1 Dynamic range extension	404
		12.1.2 Distortion reduction	405
		12.1.3 Joint operation	405
	12.2	DPS applied at driver stages	406
		12.2.1 Independent supplies	406
		12.2.2 Common supply connection	406
		12.2.3 Negative dynamic resistance DPS load effect	408
	12.3	Domino operation	410

			C	Contents	XV
	12.4	Power q	uadrature modulation (power-QM)		411
		12.4.1	Envelope tracking in each arm		412
		12.4.2	Direct polar in each arm		412
	12.5	Higher o	output power		413
		12.5.1	Parallel polar modulation		414
		12.5.2	Series stacking for power		416
	12.6	Referenc	ees		417
Part III	Testing and	l manufa	acturability		419
13	Testing	and calil	bration techniques		421
	13.1	Characte	erization planning		421
	13.2	DPS ch	aracterization		422
		13.2.1	List of DPS tests		422
		13.2.2	Conditions and sample results		425
	13.3		olifier characterization		426
		13.3.1	1		426
		13.3.2			427
		13.3.3	Additional set of PA tests		440
	13.4	-	ver transistor characterization		444
		13.4.1			444
		13.4.2	IV curve set		445
	10.5	13.4.3	Additional set of transistor tests		451
	13.5		supply interface characterization		453
	13.6		full-up characterization		454
		13.6.1	Assurance of the operating mode(s) desired ACLR and EVM metrics		455
		13.6.2			455
		13.6.3 13.6.4	DPS accuracy DPS time alignment		455 456
		13.6.5	Use of adaptive digital pre-distortion		456
		13.6.6	Wideband noise		457
	13.7		tion principles		457
	13.7		tion at design		459
	13.0	13.8.1	L-mode PA operation		459
		13.8.2	C-mode PA operation		460
	13.9		tion floor calibration		460
	13.10		libration		461
	13.11	Referen			462
	Appendix	Switch	hing transistor evaluation metrics across technolo	gies	463
	Index				467

Preface

Energy efficiency in all aspects of modern society is now a widespread desire and an active goal. Whether it manifests as driving a high mileage automobile or using a highly rated energy-efficient refrigerator, there is no aspect of modern life that does not benefit from improvement in the energy efficiency used.

Wireless communications are now one of the ubiquitous technological underpinnings of modern society. Mobile communications devices and smart-phones are always at hand and reliably work for the user. As such, it is particularly important for everything involved in wireless communications to be energy efficient. As communication speeds have increased over recent decades, the unfortunate by-product is that the energy efficiency of wireless communications has actually decreased significantly. It is now overdue and important that this gets fixed.

Standards committees have placed the data rate performance of the wireless signals they adopt ahead of any other concern. This means that the energy efficiency of the wireless communication system has not been part of deliberations during the standardization process. The signals adopted years ago are still with us, and there are no plans to change them anytime soon. It is now therefore important to change how these communications devices are made, and to adopt new architectures that will provide the needed energy efficiency while still generating these old signals that are present within the deployed communications standards.

To get full value from this book, the reader should already have a basic familiarity with electrical engineering and wireless communication concepts, including the Fourier transform relationship between time-domain and frequency-domain operations. It is not necessary to have familiarity with the present communications standards.

The contents of this book are drawn from the nearly 20 years of experience I have with dynamic power supply transmitter technology. Being more of a physics-based person than a mathematician, over the decades considerable effort has been given to developing a thorough understanding of the mathematics that underlie the physical relationships being described. Through these pages, I share the results of my efforts with you.

This book is carefully planned so that readers will have a clear understanding of what is being discussed as they work their way through the chapters. This means that the foundations of any topic discussed will as much as possible have already been laid. There are three major parts:

xviii

Preface

- principles of the dynamic power supply transmitter techniques,
- circuit implementation and special topics for these designs, and
- new issues for testing and calibration of these designs.

The first two major parts start with the 3-port extensions to linear amplifier operation, and then extend the results first to envelope tracking and then to polar modulation. Hybrid designs that use all of the possible techniques in one product have their own chapter. The extensions needed to explain some unusual results experienced when these techniques are applied at multiple stages in the same transmitter also has its own chapter. Unique contributions in this book include:

- unification of all dynamic power supply operating modes with the inherent characteristics of transistors of any type;
- a specific definition of knee voltage and how this is measured and used;
- direct calculation of what the optimum envelope tracking profile must be for any RF power transistor and selected load line;
- outline of how the concept of matching network design changes significantly when amplifiers are operated in deep compression for polar modulation;
- investigation of the energy efficiency of the various architectures available to implement the dynamic power supply;
- detailed examination of the new interface: connecting the dynamic power supply to the RF PA;
- description of the inherent instabilities in this new interface and what can be done about them;
- clear, unambiguous, and testable definitions of envelope tracking and polar operation, and how these relate to conventional linear operation;
- description of the new transistor specifications needed for polar operation;
- proof that polar operation has higher PA energy efficiency than envelope tracking, and why this must be;
- details of how the concept of amplifier gain must expand into four separate measures that each provide important and different insights;
- identification of the new circuit design rules needed for successful design of polar operation;
- identification of the P-mode amplifier operating region, why this must be avoided by envelope tracking transmitters, and how it can be successfully used by polar operation;
- description of the dynamic power supply feature extensions, including independent automatic compensation at the PA for low battery voltage and/or output impedance mismatch.

Any technology that is involved in multibillion dollar industries, such as wireless communications, is often first published not at a conference or in a technical journal, but rather through the appropriate government patent office. This is certainly true for dynamic power supply transmitter technology. Knowing this fact is particularly important to graduate students who plan on getting doctorate degrees in this technology area, because an idea not seen in the technical journals is not a guarantee that any particular

Preface

XİX

idea is really a new contribution to the technical arts. References in the following chapters do include representative patents that are already published, to aid in accessing that library for further searching.

I gratefully acknowledge help with my ability to access transistors and amplifiers using the many semiconductor technologies through the support of Skyworks, Freescale, TriQuint Semiconductor, RF Microdevices, ST Microelectronics, RF Micropower, NXP, Avago Technologies, and Cree. All of these companies have been a huge help in making this story complete. For his particular help, I salute Gray Wong of the RF distributor Richardson RFPD (now Arrow) who tirelessly made good things happen for this project when they needed to.

I want to particularly acknowledge the tremendous help provided by National Instruments, mainly through Haydn Nelson and Takao Inoue, in providing the automated measurement system and software support that allowed me to collect all of the data used for the technology survey in Chapter 10 and in validating the testing requirements presented in Chapter 13. Without this support, the completeness of the technology survey would not have been possible.

The patience of my wife Barbara to the seemingly endless hours spent writing, drawing, rewriting, and editing needed for the preparation of this book is beyond measure. My gratitude to you again is boundless!

I fervently hope that all who read this book, and who may use it as an additional reference, will enjoy the information and approach as much as I have enjoyed writing it.

Earl McCune

Abbreviations

3G Third generation cellular, standardized by the Third Generation

Partnership Project (3GPP)

AC alternating current

ACLR adjacent channel leakage ratio
ACP adjacent channel power

ALBC automatic low battery compensation

AM amplitude modulation

AMO AM offset

AMPR average to minimum power ratio

APT average power tracking β bipolar transistor current ratio BJT bipolar junction transistor

Bluetooth EDR extended data rate mode for BluetoothTM

BPSK binary phase-shift keying

BW bandwidth
BW3 3 dB bandwidth
BWn n dB bandwidth

CCDF complementary cumulative distribution function

CCS controlled current source

CDF cumulative distribution function CDMA code division multiple access

CE constant envelope CFR crest factor reduction

CJTF constant joint transfer function

CMOS complementary metal oxide semiconductor

CoE conservation of energy dBm decibels relative to 1 mW

DC direct current

DC-DC direct current in to direct current out
D-FET depletion mode field effect transistor

DP direct polar

DPS dynamic power supply

DPST dynamic power supply transmitter

List of abbreviations

ххі

DQPSK difference quadrature phase-shift keying DSB-SC double sideband with suppressed carrier

DWC digital wireless communications
EDGE enhanced data rate for GSM evolution

EDR envelope dynamic range

EER envelope elimination and restoration

EF emitter follower

E-FET enhancement mode field effect transistor

EFF envelope flooring and filling ENB equivalent noise bandwith

EpHEMT enhancement mode pseudomorphic high electron mobility

transistor

ET envelope tracking
EVM error vector magnitude
FET field effect transistor
FM frequency modulation
FSK frequency-shift keying
GaAs gallium arsenide
GaN gallium nitride

GMSK Gaussian minimum-shift keying GPRS generalized packet radio service

GSM global system for mobile communications

HBT heterojunction bipolar transistor

HD harmonic distortion

HEMT high electron mobility transistor
HSDPA high-speed downlink packet access

HSPA high-speed packet access

HTOL high temperature operating life test

IMN input matching network
InMN interstage matching network
IQ in-phase/quadrature phase

IV current-voltage

KCL Kirchhoff's Current Law

LDMOS lateral diffused metal oxide semiconductor

LDO low dropout voltage regulator LDVR linear dynamic voltage regulator

LINC linear amplification with nonlinear components

LOS line of sight
LPF lowpass filter
LTE long-term evolution

MESFET metal semiconductor field effect transistor

MOSFET metal oxide semiconductor field effect transistor

NADC North American digital cellular

xxii List of abbreviations

NF noise figure
NLOS non line of sight
OBO output back-off

OFDM orthogonal frequency division modulation

OMN output matching network

O-QPSK offset quaternary phase-shift keying

P1dB —1 dB compression point

PA power amplifier

papr peak-to-average-power ratio (linear)
PAPR peak-to-average power ratio (dB)
PCDR power control dynamic range
PDF probability density function
PEP peak envelope power

pHEMT pseudomorphic high electron mobility transistor

PM phase modulation

PMPR peak-to-minimum power ratio

PSD power spectral density
PSR power supply rejection
PSRR power supply rejection ratio
pss power supply sensitivity (linear)
PSS power supply sensitivity (dB)
QAM quadrature amplitude modulation

QM quadrature modulation QPSK quaternary phase-shift keying

R resistance

RBW resolution bandwidth
RC resistor-capacitor
RF radio frequency
rms root-mean-square

RX receiver

SF source follower SiGe silicon germanium

SMPS switch-mode power supply

SR slew rate

SRC spectral raised-cosine SSB single sideband

SSB-SC single sideband with suppressed carrier

SSR stage series resistance
TDM time division multiplex
TETRA terrestrial trunked radio
TRC time raised-cosine
TX transmitter

UMTS universal mobile telephone service

List of abbreviations

XXIII

UTB uniform transfer boundary VSWR voltage standing wave ratio

WCDMA wideband code-division multiple access

X reactance Z impedance