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Preface

The aim of this book is to make the benefits of controlled-source electromagnetic

(CSEM) methods more widely appreciated by geoscientists and engineers, and to

provide an approach that has sound theoretical foundations and a clear description

of the practical aspects of CSEM data acquisition, processing and interpretation.

CSEM methods are used to explore for contrasts in subsurface electrical conduc-

tivity and are especially useful to search for subsurface fluids, including resistive

hydrocarbons and conductive saline water. For example, CSEM methods have the

potential to detect hydrocarbons before drilling. Since three out of four exploration

wells contain no hydrocarbons, it may pay to carry out CSEM exploration before

drilling to increase the likelihood of finding oil or gas. Saline water at depths of 2–4

km is usually hot enough to provide heat for buildings. In many countries, heating

consumes more energy than transport and electricity generation combined. CSEM

has the potential to find the geothermal resources that can reduce our dependence

on fossil fuels.

Theoretical work on the concept of CSEM methods and the use of loops and

antennas for exploration dates back to the 1950s. Onshore techniques were devel-

oped commercially and by the academic community. Offshore techniques were

developed initially by academics. By 1991, Misac N. Nabighian was able to bring

all this work together in the two-volume book Electromagnetic Methods in Applied

Geophysics, published by the Society of Exploration Geophysics. In the first decade

of the twenty-first century, CSEM became a tool for de-risking exploration drilling

for deep-water prospects. Compared with seismic exploration, however, CSEM is

still in its infancy and is still expensive per data point. There is clearly room for

development.

It is now well understood in seismic exploration that broad bandwidth data are

essential for good imaging of subsurface structures, whether the data are processed

in the time domain or the frequency domain. A key concept is the idea of an

impulsive source and the resulting impulse response of the earth. This concept is

ix
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x Preface

equally applicable to CSEM and is at the heart of our description of the method.

For the source time function, CSEM has a big advantage over seismic exploration

methods: it is very easy to reverse the polarity of current flow and create source time

functions that have desirable properties. Furthermore, the source time function is

easily measured and recovery of the resulting impulse responses from the measured

data by deconvolution is straightforward. The impulse responses may be processed

in the time domain or the frequency domain to determine subsurface resistivities.

There are some similarities with seismic exploration, but there are major dif-

ferences. The most important difference is, of course, the physics. Seismic data

obey the wave equation; electromagnetic (EM) data in conducting media such as

fluid-filled rocks obey the diffusion equation. Seismologists often use ray theory to

describe what happens to the waves – how they reflect, refract and diffract. Unfortu-

nately, ray theory does not apply to diffusive data. Seismologists are accustomed to

lining up seismic arrivals that have the same shape and estimating seismic velocities

as a result – the velocities are determined from the data themselves. Such techniques

cannot be used to estimate resistivities from EM data, because the shape of the wave

changes as it propagates. Instead, the resistivities are normally estimated from the

data by inversion, which is a kind of modelling. For a seismologist this can be

frustrating. This book is written partially for seismologists who would like an easy

way ‘in’ to understanding electromagnetics.

The book is written for students, researchers and practitioners. Much of the

material has been presented as courses for undergraduate and graduate geophysics

students at the University of Edinburgh and at Delft University of Technology. The

mathematical background required is partial differential equations, vector algebra,

Fourier transforms and Laplace transforms.

We have had discussions with many friends and colleagues, and thank in particu-

lar, Bruce Hobbs, Paul Stoffa, David Wright, David Taylor, Dieter Werthmüller and

our students for all their help and comments. We thank Cambridge University Press

for agreeing to publish the book. Susan Francis has been especially kind, helpful,

encouraging and patient.

Anton thanks his lovely wife Kate for constant support.
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Notation and Conventions

Symbols

Symbol Description SI units

a tortuosity factor in Archie’s law –

A area m2

B vector magnetic induction V s m−2

c propagation velocity m·s−1

cw speed of sound in water m·s−1

c0 = 299, 792, 458 electromagnetic wave propagation velocity m·s−1

D electric flux density C m−2

∇ del, or nabla, vector operator m−1

E vector electric field intensity V·m−1

ε electrical permittivity C2·N−1·m−2

ε0 ≈ 8.85 × 10−12 electrical permittivity of free space C2·N−1·m−2

δ skin depth m

δ(t) impulse function s−1

�xs distance between source electrodes m

�xr distance between receiver electrodes m

f frequency Hz

F formation factor –

G Green’s function (units depend on problem) –

γ =
√

ζσ horizontal wavenumber m−1

γv =
√

ζσv vertical wavenumber m−1

Ŵ =
√

κ2 + γ 2 vertical wavenumber m−1

Ŵv =
√

λ2κ2 + γ 2 vertical wavenumber m−1

hj thickness of jth layer (Chapter 1) m

H vector magnetic field intensity A m−1

xi
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xii Notation and Conventions

I electric current A

Im magnetic source current dipole moment V m

Ie electric source current dipole moment A m

In modified Bessel function of first kind and

order n

–

i, j, k, l indices –

J volume density of induced current vector A m−2

Je volume density of external electric current A m−2

Jm volume density of external magnetic current V m−2

Jn ordinary Bessel function of first kind and

order n

–

k = ω/c wavenumber m−1

kx, ky, kz wavenumber components m−1

K bulk modulus Pa

Kn modified Bessel function of second kind and

order n

–

κ =
√

k2
x + k2

y horizontal wavenumber m−1

l length m

L length m

λ = √
σ/σv coefficient of anisotropy –

m cementation factor in Archie’s law –

μ magnetic permeability H·m−1

μ0 = 4π × 10−7 magnetic permeability of free space H·m−1

n saturation exponent in Archie’s law –

p pressure Pa


(t) rectangle function –

φ porosity –

q fluid monopole source time function Pa·m
r distance m

R electrical resistance �

Rh electrical resistance in horizontal direction �

Rv electrical resistance in vertical direction �

ρ electrical resistivity �·m
ρ0 electrical resistivity of a rock saturated with

salt water

�·m

ρt resistivity of a rock �·m
ρw electrical resistivity of salt water �·m
̺ density kg·m−3

̺f volume density of free charge C m−3
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Notation and Conventions xiii

s = −iω Laplace variable Hz

Shc hydrocarbon saturation –

Sw water saturation –

σ electrical conductivity, horizontal conductiv-

ity

S·m−1

σv vertical conductivity S·m−1

t time s

T period s

Tg duration of impulse response s

Ts duration of source time function s

V voltage V

ω = 2π f angular frequency rad s−1

V volume m3

x, y, z Cartesian coordinates m

zs source depth m

ζ = sμ0 zeta H·m−1s−1

Cartesian Coordinates

We use a right-handed Cartesian coordinate system with the z-axis positive down-

wards and the air–earth interface at z = 0, as shown in Figure 1.

Special Functions

The ordinary Bessel function of the first kind and order n is defined as

Jn(ξ) = i−n

π

∫ π

ψ=0

exp[−iξ cos(ψ)] cos(nψ)dψ . (1)

The modified Bessel functions of the first and second kinds and order n are

given by

x

z

y

0

Figure 1 Cartesian coordinates.
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xiv Notation and Conventions

In(ξ) = 1

π

∫ π

ψ=0

exp[ξ cos(ψ)] cos(nψ)dψ , (2)

Kn(ξ) =
∫ ∞

ψ=0

exp[−ξ cosh(ψ)] cosh(nψ)dψ . (3)

The error function is defined as

erf(x) = 2√
π

∫ x

u=0

exp(−u2)du. (4)

The complementary error function is defined as

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x

exp(−u2)du. (5)

The gamma function is defined for all complex numbers except the non-positive

integers. For complex numbers with a positive real part, it is defined via a conver-

gent improper integral:

Ŵ(z) =
∫ ∞

0

xz−1e−xdx. (6)

The Heaviside function, also known as the Step function, is defined as

H(t) =

⎧

⎪

⎨

⎪

⎩

0, t < 0
1
2
, t = 0.

1, t > 0

(7)

An impulse, also known as the Dirac delta function, is an infinitely strong pulse

of unit area that can be defined as the two conditions:

δ(t) = 0, t �= 0;

∫ ∞

−∞
δ(t)dt = 1.

(8)

The rectangle function is defined as


(t) =

⎧

⎪

⎨

⎪

⎩

0, |t| > 1
2

1
2
, |t| = 1

2
.

1, |t| < 1
2

(9)

The normalised sinc function is defined as

sinc( f ) = sin(π f )

π f
. (10)
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Transforms

A wavefield may be described as a function a(x, y, z, t) that varies with both position

(x, y, z) and time (t). We define the temporal Fourier transform as

â(x, y, z, ω) =
∫ ∞

−∞
a(x, y, z, t)eiωtdt, (11)

with inverse

a(x.y, z, t) = 1

2π

∫ ∞

−∞
â(x, y, z, ω)e−iωtdω. (12)

The double spatial Fourier transform of the space–frequency domain function

â(x, y, z, ω) is defined as

ã(kx, ky, z, ω) =
∫ ∞

−∞

∫ ∞

−∞
â(x, y, z, ω)e−i(kxx+kyy)dxdy, (13)

with inverse

â(x, y, z, ω, ) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
ã(kx, ky, z, ω)ei(kxx+kyy)dkxdky, (14)

where kx and ky are the horizontal wavenumbers and the tilde ˜ indicates the further

change of domain. Here we have chosen the negative sign for the exponential for

transformation from space to wavenumber and therefore the positive sign for the

inverse transform.

The forward temporal and spatial Fourier transforms can be combined to give

the forward triple Fourier transform

ã(kx, ky, z, ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
a(x, y, z, t)ei(ωt−kxx−kyy)dxdydt. (15)

Similarly, the inverse transforms 12 and 14 can be combined to give the inverse

triple Fourier transform

a(x, y, z, t) = 1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ã(kx, ky, z, ω)e−i(ωt−kxx−kyy)dkxdkydω. (16)

The two-sided time-Laplace transform of a(x, y, z, t) is defined as

â(x, y, z, s) =
∫ ∞

−∞
a(x, y, z, t)e−stdt, (17)

and is the same as the temporal Fourier transform for the substitution s = −iω,

where s is complex. When the real part of s is zero, it becomes identical with the

Fourier transform. If a(x, y, z, t) = 0 for t < 0, only half the integral is required.
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xvi Notation and Conventions

The one-sided time-Laplace transform is defined as

â(x, y, z, s) =
∫ ∞

0+
a(x, y, z, t)e−stdt. (18)

Because s is complex, the inverse transform is a contour integration in the complex

plane

a(x, y, z, t)H(t) = 1

2π i

∫ c+i∞

c−i∞
â(x, y, z, s)estds, (19)

where c is a positive constant.

The time-Laplace and three-dimensional spatial Fourier transform of

a(x, y, z, t) is

ă(kx, ky, kz, s) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
a(x, y, z, t)e−ste−i[kxx+kyy+kzz]dxdydzdt. (20)
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