INTRODUCTION TO CONTROLLED-SOURCE ELECTROMAGNETIC METHODS

This volume describes how controlled-source electromagnetic methods are used to determine the electrical conductivity and hydrocarbon content of the upper few kilometres of the earth, on land and at sea. The authors show how the signalto-noise ratio of the measured data may be maximised via suitable choice of acquisition and processing parameters and selection of subsequent data analysis procedures. Complete impulse responses for every electric and magnetic source and receiver configuration are derived, providing a guide to the expected response for real data. One-, two- and three-dimensional modelling and inversion procedures for recovery of earth conductivity are presented, emphasising the importance of updating model parameters using complementary geophysical data and rock physics relations. Requiring no specialist prior knowledge of electromagnetic theory, and providing a step-by-step guide through the necessary mathematics, this book provides an accessible introduction for advanced students, researchers and industry practitioners in exploration geoscience and petroleum engineering.

ANTON ZIOLKOWSKI is Professor of Petroleum Geoscience at the University of Edinburgh. He co-invented the multichannel transient electromagnetic (MTEM) surveying method for hydrocarbon reservoir detection and co-led the technology spin-out. He is a member of the Institute of Electrical and Electronics Engineers and the American Geophysical Union, an honorary member of the Society of Exploration Geophysicists, a Fellow of the Royal Academy of Engineering and a fellow of the Royal Society of Edinburgh. He has received the Conrad Schlumberger and Desiderius Erasmus awards of the European Association of Geoscientists and Engineers.

EVERT SLOB is Professor of Geophysical Electromagnetic Methods at the Delft University of Technology, where he teaches undergraduate and graduate classes. He was Editor-in-Chief of the journal *Geophysics* and on the board of directors of the Society of Exploration Geophysicists from 2013 to 2015, of which he remains a member. He is also a member of the European Association of Geoscientists and Engineers and the American Geophysical Union.

INTRODUCTION TO CONTROLLED-SOURCE ELECTROMAGNETIC METHODS

Detecting Subsurface Fluids

ANTON ZIOLKOWSKI The University of Edinburgh

> EVERT SLOB Delft University of Technology

Cambridge University Press 978-1-107-05862-0 — Introduction to Controlled-Source Electromagnetic Methods Anton Ziolkowski , Evert Slob Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107058620 DOI: 10.1017/9781107415904

© Anton Ziolkowski and Evert Slob 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Ziolkowski, Anton, 1946– author. | Slob, Evert C. (Evert Cornelis), 1962– author. Title: Introduction to controlled-source electromagnetic methods : detecting subsurface fluids / Anton Ziolkowski (The University of Edinburgh), Evert Slob (Delft University of Technology). Description: Cambridge ; New York, NY : Cambridge University Press, 2019. | Includes bibliographical references and index. Identifiers: LCCN 2018034518 | ISBN 9781107058620 (hardback) | ISBN 9781107634855 (pbk.) Subjects: LCSH: Earth (Planet)–Electric properties. | Earth (Planet)–Magnetic properties. | Earth (Planet)–Crust. | Electromagnetic fields. | Electric prospecting. Classification: LCC QE501.3. Z56 2019 | DDC 551–dc23 LC record available at https://lccn.loc.gov/2018034518 ISBN 978-1-107-05862-0 Hardback

Additional resources for this publication at www.cambridge.org/csem.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Notation and		<i>page</i> ix
	Notation and	l Conventions	xi
1	Introduction		1
	1.1 Ohm's	Law and Resistivity	1
	1.2 Resisti	vity of Rocks	2
	1.3 Resisti	vity Anisotropy	3
	1.4 Effect	of Hydrocarbons on Resistivity: Archie's Law	3
	1.5 Examp	le Well Logs: P-Wave Velocity and Resistivity	5
	1.6 Contro	lled-Source Electromagnetic Surveys	7
	1.7 Seismi	c and Electromagnetic Propagation	8
	1.8 One-D	imensional Example of a Buried Resistive Layer	11
	1.9 One-di	mensional Example of a Buried More-Conducting Layer	13
	1.10 Extract	ion of Resistivities from CSEM Data: The Problem of	
	Inversi	on	15
	1.11 Outline	e of the Book	16
2	Sources, Rec	eivers, Acquisition Configurations and Source	
	Time Function	ons	18
	2.1 The Cu	rrent Dipole Source	18
	2.2 Receiv	ers	20
	2.3 Source	-Receiver Configurations	22
	2.4 The Ai	r Wave Problem	27
	2.5 Source	s of EM Noise	28
	2.6 Source	Time Functions	30
3	Fourier Anal	ysis and Linear Filters	34
	3.1 Tempo	ral and Spatial Fourier Transformation	34
	3.2 Examp	le of a Plane Wave	36

v

Cambridge University Press 978-1-107-05862-0 — Introduction to Controlled-Source Electromagnetic Methods Anton Ziolkowski , Evert Slob Frontmatter <u>More Information</u>

vi	Contents	
	3.3 Resolution and Bandwidth	36
	3.4 Similarity Theorem	38
	3.5 Impulse Function (δ)	38
	3.6 The Sifting Property	39
	3.7 Parseval's Theorem and the Energy in a Signal	41
	3.8 Convolution and the Convolution Theorem	43
	3.9 Linear Filters and Impulse Response	44
	3.10 Earth as a Linear Filter	47
	3.11 Cross-Correlation, Autocorrelation and Time-Reverse	49
	3.12 Derivative Theorem	50
	3.13 Wavefield Transformation	51
	3.14 Sampling and Aliasing	52
	3.15 Sampling Theorem	53
	3.16 Discrete Fourier Transform (DFT)	55
	3.17 Filtering of Sampled Signals: Discrete Convolution	58
	3.18 Frequency Domain Deconvolution	59
	3.19 The Wiener Filter	60
	3.20 Time Domain Deconvolution	63
	3.21 Laplace Transform	63
4	Electromagnetic Fields in a Horizontally Layered VTI Medium	65
	4.1 Basic Equations	66
	4.2 The Electromagnetic Field for a Source in a VTI Whole Space	77
	4.3 The Electromagnetic Field of a Source in a VTI Half-Space	86
	4.4 The Electromagnetic Field for Marine CSEM	97
	4.5 The Electromagnetic Field for Land CSEM	105
5	Numerical Examples	107
-	5.1 The Electric Field in a VTI Whole Space	108
	5.2 The Electric Field in a Homogeneous Half-Space	113
	5.3 The Electric Field in a Marine CSEM Setting	121
	5.4 The Electric Field in a Land CSEM Setting	149
6	Source Control	168
	6.1 The Convolutional Model in CSEM	169
	6.2 Pseudo-Random Binary Sequence	170
	6.3 Convolution and Deconvolution with a PRBS	172
	6.4 Effect of Noise and Deconvolution Gain	173
	6.5 Heaviside Function, or Step Function	177
	6.6 Square Wave Function	183
	6.7 Special Periodic Functions	184
	2	

Cambridge University Press
978-1-107-05862-0 — Introduction to Controlled-Source Electromagnetic Methods
Anton Ziolkowski , Evert Slob
Frontmatter
More Information

	Contents	vii
7 De 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	ep Water CSEM Introduction Attenuation of Electromagnetic Signals in Sea Water Acoustic Positioning Deep-Towed Current Dipole Source Ocean-Bottom Receiver Node In-line and Broadside Responses Receiver Orientation Acquisition Geometries	189 189 190 191 192 194 194 194 196 198 198
7.1	 Amplitude versus Offset Example CSEM with a Transient Source Signal Introduction Acquisition of 2D and 3D CSEM Data Deconvolution and Removal of the Air Wave Isotropic Half-Space Response Signal-to-Noise Ratio of MTEM Data Attenuation of Cultural Noise CSEM Survey Over an Underground Gas Storage Site in France Apparent Resistivities from Time to Peak of Impulse Response 	199 202 202 203 205 207 211 212 216 218 218
 9 Shi 9.1 9.2 9.3 9.4 9.5 10 For 10. 	allow Water CSEM with a Transient Source Signal 2D Data Acquisition with an OBC Examples of OBC Data Removal of Spatially Correlated Noise Time-Lapse Marine OBC Data Repeatability	213 221 223 223 227 229 235 237 241
11 Re 11. 11. 11. 11. 11. 11.	 covery of Resistivities from CSEM Data 1 Effect of Offset 2 Attenuation and Model Parameterisation 3 Resistivities from Seismic Velocities 4 Example from North Sea Harding Field 5 Test of Methodology Using Real CSEM Data 6 Implications for Electromagnetic Survey Planning 7 Example Inversion of Deep Water 3D CSEM Data 	244 244 245 246 250 251 253 253

Cambridge University Press
978-1-107-05862-0 — Introduction to Controlled-Source Electromagnetic Methods
Anton Ziolkowski , Evert Slob
Frontmatter
More Information

viii	Contents		
12 Efficient	2 Efficient CSEM		
12.1 Ger	neral Considerations	259	
12.2 Lar	ıd	260	
12.3 Sha	12.3 Shallow Water Marine		
12.4 Dec	ep Water Marine	263	
12.5 Sou	12.5 Source Time Function		
12.6 Co	nclusions	264	
Appendix A	The Electric Field in a VTI Whole Space	265	
Appendix B	The Electromagnetic Field in a VTI Layered Medium	268	
Appendix C	Green's Functions and Their Derivatives	284	
Appendix D	The Final Value Theorem	289	
References		291	
Index		299	
Colour p	late section found between pages 176 and 177		

Preface

The aim of this book is to make the benefits of controlled-source electromagnetic (CSEM) methods more widely appreciated by geoscientists and engineers, and to provide an approach that has sound theoretical foundations and a clear description of the practical aspects of CSEM data acquisition, processing and interpretation.

CSEM methods are used to explore for contrasts in subsurface electrical conductivity and are especially useful to search for subsurface fluids, including resistive hydrocarbons and conductive saline water. For example, CSEM methods have the potential to detect hydrocarbons before drilling. Since three out of four exploration wells contain no hydrocarbons, it may pay to carry out CSEM exploration before drilling to increase the likelihood of finding oil or gas. Saline water at depths of 2–4 km is usually hot enough to provide heat for buildings. In many countries, heating consumes more energy than transport and electricity generation combined. CSEM has the potential to find the geothermal resources that can reduce our dependence on fossil fuels.

Theoretical work on the concept of CSEM methods and the use of loops and antennas for exploration dates back to the 1950s. Onshore techniques were developed commercially and by the academic community. Offshore techniques were developed initially by academics. By 1991, Misac N. Nabighian was able to bring all this work together in the two-volume book *Electromagnetic Methods in Applied Geophysics*, published by the Society of Exploration Geophysics. In the first decade of the twenty-first century, CSEM became a tool for de-risking exploration drilling for deep-water prospects. Compared with seismic exploration, however, CSEM is still in its infancy and is still expensive per data point. There is clearly room for development.

It is now well understood in seismic exploration that broad bandwidth data are essential for good imaging of subsurface structures, whether the data are processed in the time domain or the frequency domain. A key concept is the idea of an impulsive source and the resulting impulse response of the earth. This concept is

ix

Cambridge University Press 978-1-107-05862-0 — Introduction to Controlled-Source Electromagnetic Methods Anton Ziolkowski , Evert Slob Frontmatter <u>More Information</u>

х

Preface

equally applicable to CSEM and is at the heart of our description of the method. For the source time function, CSEM has a big advantage over seismic exploration methods: it is very easy to reverse the polarity of current flow and create source time functions that have desirable properties. Furthermore, the source time function is easily measured and recovery of the resulting impulse responses from the measured data by deconvolution is straightforward. The impulse responses may be processed in the time domain or the frequency domain to determine subsurface resistivities.

There are some similarities with seismic exploration, but there are major differences. The most important difference is, of course, the physics. Seismic data obey the wave equation; electromagnetic (EM) data in conducting media such as fluid-filled rocks obey the diffusion equation. Seismologists often use ray theory to describe what happens to the waves – how they reflect, refract and diffract. Unfortunately, ray theory does not apply to diffusive data. Seismologists are accustomed to lining up seismic arrivals that have the same shape and estimating seismic velocities as a result – the velocities are determined from the data themselves. Such techniques cannot be used to estimate resistivities from EM data, because the shape of the wave changes as it propagates. Instead, the resistivities are normally estimated from the data by inversion, which is a kind of modelling. For a seismologist this can be frustrating. This book is written partially for seismologists who would like an easy way 'in' to understanding electromagnetics.

The book is written for students, researchers and practitioners. Much of the material has been presented as courses for undergraduate and graduate geophysics students at the University of Edinburgh and at Delft University of Technology. The mathematical background required is partial differential equations, vector algebra, Fourier transforms and Laplace transforms.

We have had discussions with many friends and colleagues, and thank in particular, Bruce Hobbs, Paul Stoffa, David Wright, David Taylor, Dieter Werthmüller and our students for all their help and comments. We thank Cambridge University Press for agreeing to publish the book. Susan Francis has been especially kind, helpful, encouraging and patient.

Anton thanks his lovely wife Kate for constant support.

Notation and Conventions

Symbols

Symbol	Description	SI units
a	tortuosity factor in Archie's law	_
A	area	m^2
В	vector magnetic induction	$V \ s \ m^{-2}$
С	propagation velocity	$m \cdot s^{-1}$
C_W	speed of sound in water	$m \cdot s^{-1}$
$c_0 = 299,792,458$	electromagnetic wave propagation velocity	$m \cdot s^{-1}$
D	electric flux density	${\rm C}~{\rm m}^{-2}$
∇	del, or nabla, vector operator	m^{-1}
E	vector electric field intensity	$V \cdot m^{-1}$
ε	electrical permittivity	$C^2 \cdot N^{-1} \cdot m^{-2}$
$arepsilon_0pprox 8.85 imes 10^{-12}$	electrical permittivity of free space	$\mathrm{C}^2{\cdot}\mathrm{N}^{-1}{\cdot}\mathrm{m}^{-2}$
δ	skin depth	m
$\delta(t)$	impulse function	s^{-1}
Δx_s	distance between source electrodes	m
Δx_r	distance between receiver electrodes	m
f	frequency	Hz
F	formation factor	_
G	Green's function (units depend on problem)	_
$\gamma = \sqrt{\zeta \sigma}$	horizontal wavenumber	m^{-1}
$\gamma_v = \sqrt{\zeta \sigma_v}$	vertical wavenumber	m^{-1}
$\Gamma = \sqrt{\kappa^2 + \gamma^2}$	vertical wavenumber	m^{-1}
$\Gamma_{\nu} = \sqrt{\lambda^2 \kappa^2 + \gamma^2}$	vertical wavenumber	m^{-1}
h_i	thickness of <i>j</i> th layer (Chapter 1)	m
Ĥ	vector magnetic field intensity	$\mathrm{A}~\mathrm{m}^{-1}$

xi

Cambridge University Press 978-1-107-05862-0 — Introduction to Controlled-Source Electromagnetic Methods Anton Ziolkowski , Evert Slob Frontmatter <u>More Information</u>

xii	Notation and Conventions	
Ι	electric current	А
I ^m	magnetic source current dipole moment	V m
I ^e	electric source current dipole moment	A m
I _n	modified Bessel function of first kind and	_
	order <i>n</i>	
i, j, k, l	indices	_
J	volume density of induced current vector	${\rm A}~{\rm m}^{-2}$
J ^e	volume density of external electric current	${ m A}~{ m m}^{-2}$
$\mathbf{J}^{\mathbf{m}}$	volume density of external magnetic current	$V m^{-2}$
\mathbf{J}_n	ordinary Bessel function of first kind and	_
	order <i>n</i>	
$k = \omega/c$	wavenumber	m^{-1}
k_x, k_y, k_z	wavenumber components	m^{-1}
Κ	bulk modulus	Pa
\mathbf{K}_n	modified Bessel function of second kind and	_
	order <i>n</i>	
$\kappa = \sqrt{k_x^2 + k_y^2}$	horizontal wavenumber	m^{-1}
l	length	m
L	length	m
$\lambda = \sqrt{\sigma/\sigma_v}$	coefficient of anisotropy	_
m	cementation factor in Archie's law	_
μ	magnetic permeability	$H \cdot m^{-1}$
$\mu_0 = 4\pi \times 10^{-7}$	magnetic permeability of free space	$H \cdot m^{-1}$
n	saturation exponent in Archie's law	_
р	pressure	Pa
$\Pi(t)$	rectangle function	—
ϕ	porosity	—
q	fluid monopole source time function	Pa∙m
r	distance	m
R	electrical resistance	Ω
R_h	electrical resistance in horizontal direction	Ω
R_{ν}	electrical resistance in vertical direction	Ω
ρ	electrical resistivity	Ω·m
$ ho_0$	electrical resistivity of a rock saturated with salt water	Ω·m
$ ho_t$	resistivity of a rock	Ω·m
ρ_w	electrical resistivity of salt water	Ω·m
Q	density	$kg \cdot m^{-3}$
Q _f	volume density of free charge	$C m^{-3}$
$\neg J$		

	Notation and Conventions	xiii
$s = -i\omega$	Laplace variable	Hz
S_{hc}	hydrocarbon saturation	_
S_w	water saturation	_
σ	electrical conductivity, horizontal conductiv-	$S \cdot m^{-1}$
	ity	
σ_v	vertical conductivity	$S \cdot m^{-1}$
t	time	S
Т	period	S
T_g	duration of impulse response	S
T_s	duration of source time function	S
V	voltage	V
$\omega = 2\pi f$	angular frequency	rad s^{-1}
\mathcal{V}	volume	m ³
<i>x</i> , <i>y</i> , <i>z</i>	Cartesian coordinates	m
Z_S	source depth	m
$\zeta = s\mu_0$	zeta	$H \cdot m^{-1} s^{-1}$

Cartesian Coordinates

We use a right-handed Cartesian coordinate system with the *z*-axis positive downwards and the air–earth interface at z = 0, as shown in Figure 1.

Special Functions

The ordinary Bessel function of the first kind and order *n* is defined as

$$J_n(\xi) = \frac{i^{-n}}{\pi} \int_{\psi=0}^{\pi} \exp[-i\xi\cos(\psi)]\cos(n\psi)d\psi.$$
(1)

The modified Bessel functions of the first and second kinds and order n are given by

Figure 1 Cartesian coordinates.

xiv

Notation and Conventions

$$I_n(\xi) = \frac{1}{\pi} \int_{\psi=0}^{\pi} \exp[\xi \cos(\psi)] \cos(n\psi) d\psi, \qquad (2)$$

$$K_n(\xi) = \int_{\psi=0}^{\infty} \exp[-\xi \cosh(\psi)] \cosh(n\psi) d\psi.$$
(3)

The error function is defined as

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{u=0}^{x} \exp(-u^2) du.$$
 (4)

The complementary error function is defined as

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-u^{2}) du.$$
 (5)

The **gamma function** is defined for all complex numbers except the non-positive integers. For complex numbers with a positive real part, it is defined via a convergent improper integral:

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx.$$
 (6)

The Heaviside function, also known as the Step function, is defined as

$$H(t) = \begin{cases} 0, & t < 0\\ \frac{1}{2}, & t = 0.\\ 1, & t > 0 \end{cases}$$
(7)

An **impulse**, also known as the **Dirac delta function**, is an infinitely strong pulse of unit area that can be defined as the two conditions:

$$\delta(t) = 0, t \neq 0;$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1.$$
(8)

The rectangle function is defined as

$$\Pi(t) = \begin{cases} 0, & |t| > \frac{1}{2} \\ \frac{1}{2}, & |t| = \frac{1}{2}. \\ 1, & |t| < \frac{1}{2} \end{cases}$$
(9)

The normalised sinc function is defined as

$$\operatorname{sinc}(f) = \frac{\sin(\pi f)}{\pi f}.$$
(10)

Notation and Conventions

xv

Transforms

A wavefield may be described as a function a(x, y, z, t) that varies with both position (x, y, z) and time (t). We define the **temporal Fourier transform** as

$$\hat{a}(x, y, z, \omega) = \int_{-\infty}^{\infty} a(x, y, z, t) e^{i\omega t} dt,$$
(11)

with inverse

$$a(x.y,z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{a}(x,y,z,\omega) e^{-i\omega t} d\omega.$$
 (12)

The **double spatial Fourier transform** of the space–frequency domain function $\hat{a}(x, y, z, \omega)$ is defined as

$$\tilde{a}(k_x, k_y, z, \omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{a}(x, y, z, \omega) e^{-i(k_x x + k_y y)} dx dy,$$
(13)

with inverse

$$\hat{a}(x,y,z,\omega,) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{a}(k_x,k_y,z,\omega) e^{i(k_x x + k_y y)} dk_x dk_y,$$
(14)

where k_x and k_y are the *horizontal wavenumbers* and the tilde ~ indicates the further change of domain. Here we have chosen the negative sign for the exponential for transformation from space to wavenumber and therefore the positive sign for the inverse transform.

The forward temporal and spatial Fourier transforms can be combined to give the **forward triple Fourier transform**

$$\tilde{a}(k_x, k_y, z, \omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(x, y, z, t) e^{i(\omega t - k_x x - k_y y)} dx dy dt.$$
(15)

Similarly, the inverse transforms 12 and 14 can be combined to give the **inverse** triple Fourier transform

$$a(x, y, z, t) = \frac{1}{8\pi^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{a}(k_x, k_y, z, \omega) e^{-i(\omega t - k_x x - k_y y)} dk_x dk_y d\omega.$$
(16)

The **two-sided time-Laplace transform** of a(x, y, z, t) is defined as

$$\hat{a}(x,y,z,s) = \int_{-\infty}^{\infty} a(x,y,z,t)e^{-st}dt,$$
(17)

and is the same as the temporal Fourier transform for the substitution $s = -i\omega$, where *s* is complex. When the real part of *s* is zero, it becomes identical with the Fourier transform. If a(x, y, z, t) = 0 for t < 0, only half the integral is required.

xvi

Notation and Conventions

The one-sided time-Laplace transform is defined as

$$\hat{a}(x, y, z, s) = \int_{0^+}^{\infty} a(x, y, z, t) e^{-st} dt.$$
 (18)

Because *s* is complex, the inverse transform is a contour integration in the complex plane

$$a(x, y, z, t)H(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \hat{a}(x, y, z, s) e^{st} ds,$$
 (19)

where c is a positive constant.

The time-Laplace and three-dimensional spatial Fourier transform of a(x, y, z, t) is

$$\breve{a}(k_x,k_y,k_z,s) = \int_0^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty a(x,y,z,t)e^{-st}e^{-i[k_xx+k_yy+k_zz]}dxdydzdt.$$
 (20)