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Introduction

The aim of this first chapter is to motivate why stochastic processes, probability
theory and graph theory are useful to solve problems in network science.

In any system or node in a network, there is always a non-zero probability of
failure or of error penetration. A lot of problems in quantifying the failure rate, bit
error rate or the computation of redundancy to recover from hazards are successfully
treated by probability theory. Often we deal in communications with a large variety
of signals, calls, source-destination pairs, messages, the number of customers per
region, and so on. Often, precise information at any time is not available or, if
it is available, deterministic studies or simulations are simply not feasible due to
the large number of different parameters involved. For such problems, a stochastic
approach is often a powerful vehicle, as has been demonstrated in the field of
statistical physics or thermodynamics. Failure or attacks at the network level have
reestablished the interest in network robustness analyses in relation to network
security. In spite of the intuitively easy concept, a globally accepted definition
as well as a framework to compute the robustness of a network is still lacking.
Graph and probability theory are essential to address questions like: “Which are the
vulnerable nodes?”, “Is this network robust?”, “Where do we need to add, remove
or rewire links at minimum cost in order to maximize the network robustness?”

Perhaps the first impressing result of a stochastic approach was Boltzmann’s
and Maxwell’s statistical theory. They studied the behavior of particles in an ideal
gas and described how macroscopic quantities as pressure and temperature can
be related to the microscopic motion of the huge amount of individual particles.
Boltzmann also introduced the stochastic notion of the thermodynamic concept of
entropy 9,

S =klogW

where W denotes the total number of ways in which the ensembles of particles
can be distributed in thermal equilibrium and where & = 1.380 65 10~2% J/K
is a proportionality factor, afterwards attributed to Boltzmann as the Boltzmann
constant. The pioneering work of these early physicists such as Boltzmann, Maxwell
and others was the germ of a large number of breakthroughs in science. Shortly after
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2 Introduction

their introduction of a stochastic theory in classical physics, the theory of quantum
mechanics (see e.g. Cohen-Tannoudji et al., 1977) was established. This theory
proposes that the elementary building blocks of nature, the atom and electrons,
can only be described in a probabilistic sense. The conceptually difficult notion
of a wave function whose squared modulus expresses the probability that a set of
particles is in a certain state and the Heisenberg’s uncertainty relation exclude in
a dramatic way our deterministic, macroscopic view of nature at the fine atomic
scale. The quantum computer — the successor of our current digital computer —
is looming around the corner as small quantum computing devices are currently
built and tested. The next step is quantum networking, which will require different
design rules in networking and will create new challenges for network science.

At about the same time as the theory of quantum mechanics was being created,
Erlang applied probability theory to the field of telecommunications. Erlang suc-
ceeded to determine the number of telephone input lines m of a switch in order to
serve Ng customers with a certain probability p. Perhaps his most used formula is
the Erlang B formula (14.18), derived in Section 14.2.2,

m

[Ns = m] = —at
Pr NS:m :T
Doy

where the load or traffic intensity p is the ratio of the arrival rate of calls to the
telephone local exchange or switch over the processing rate of the switch per line.
By equating the desired blocking probability p = Pr[Ng = m)], say p = 1074, the
number of input lines m can be computed for each load p. Shannon, another
pioneer in the field of communications, explored the concept of entropy S. He
introduced (see e.g. Cover and Thomas, 1991; Walrand, 1998) the notion of the
Shannon capacity of a channel, the maximum rate at which bits can be transmitted
with arbitrary small (but non-zero) probability of errors, and the concept of the
entropy rate of a source, which is the minimum average number of bits per symbol
required to encode the output of a source. Many others have extended his basic
ideas and so it is fair to say that Shannon founded the field of information theory.

An important driver in telecommunication is the concept of quality of service
(QoS). Customers can use the network to transmit different types of information,
such as pictures, files, voice, etc., by requiring a specific level of service depending on
the type of transmitted information. For example, a telephone conversation requires
that the voice packets arrive at the receiver D ms later, while a file transfer is mostly
not time critical but requires an extremely low information loss probability. The
value of the mouth-to-ear delay D is clearly related to the perceived quality of
the voice conversation. As long as D < 150 ms, the voice conversation has toll
quality, which is, roughly speaking, the quality that we are used to in classical
telephony. When D exceeds 150 ms, rapid degradation is experienced and when
D > 300 ms, most of the test persons have great difficulty in understanding the
conversation. However, perceived quality may change from person to person and
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is difficult to determine, even for telephony. Therefore, QoS is both related to the
nature of the information and to the individual’s desire and perception. In the
future, it is believed that customers may request a certain QoS for each type of
information. Depending on the level of stringency, the network may either allow or
refuse the customer. Since customers will also pay an amount related to this QoS
stringency, the network function that determines to either accept or refuse a call
for service will be of crucial interest to any network operator. Let us now state the
connection admission control (CAC) problem for a voice conversation to illustrate
the relation to stochastic analysis: “How many customers m are allowed in order to
guarantee that the ensemble of all voice packets reaches the destination within D
ms with probability p?” This problem is exceptionally difficult because it depends
on the voice codecs used, the specifics of the network topology, the capacity of
the individual network elements, the arrival process of calls from the customers,
the duration of the conversation and other details. Therefore, we will simplify the
question. Let us first assume that the delay is only caused by the waiting time
of a voice packet in the queue of a router (or switch). As we will see in Chapter
13, this waiting time 7' of voice packets in a single queueing system depends on
(a) the arrival process: the way voice packets arrive, and (b) the service process:
how they are processed. Let us assume that the arrival process specified by the
average arrival rate A and the service process specified by the average service rate p
are known. Clearly, the arrival rate A is connected to the number of customers m.
A simplified statement of the CAC problem is, “What is the maximum A allowed
such that Pr[T > D] < €?” In essence, the CAC problem consists in computing
the tail probability of a quantity that depends on parameters of interest. We have
elaborated on the CAC problem because it is a basic design problem that appears
under several disguises. A related dimensioning problem is the determination of the
buffer size in a router in order not to lose more than a certain number of packets
with probability p, given the arrival and service process. The above-mentioned
problem of Erlang is a third example. Another example treated in Chapter 19
is the server placement problem: “How many replicated servers m are needed to
guarantee that any user can access the information within k& hops with probability
Pr[hn(m) > k] < e, where € is certain level of stringency and hy(m) is the number
of hops towards the most nearby of the m servers in a network with N routers.
Network science aims at understanding and at modeling complex networks such
as the Internet, biological and brain networks, social networks and utility infrastruc-
tures for water, gas, electricity and transport (cars, trains, ships and airplanes).
Since these networks consist of a huge number of nodes N and links L, classical
and algebraic graph theory is often not suited to produce even approximate re-
sults. The beginning of probabilistic graph theory is commonly attributed to the
appearance of papers by Erdés and Rényi in the late 1940s. They investigated a
particularly simple growing model for a graph: start from N nodes and connect in
each step an arbitrary random, not yet connected pair of nodes until all L links
are used. After about N/2 steps, as shown in Section 16.9.1, they observed the
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4 Introduction

birth of a giant component that, in subsequent steps, swallows the smaller ones
at a high rate. The link density p = L/ (g ) plays a crucial role the Erdés-Rényi
random graph. Around a critical value p, ~ % (see Sections 15.7.4 and 15.7.5),
the probability of connectivity jumps sharply. This phenomenon is called a phase
transition and often occurs in nature. In physics it is studied in, for example, per-
colation theory. The Internet is best regarded as a dynamic and growing network,
whose graph is continuously changing. Yet, in order to deploy services over the
Internet, an accurate graph model that captures the relevant structural properties
is desirable. As shown in Part I11, a probabilistic approach based on random graphs
seems an efficient way to learn about the Internet’s intriguing behavior. Although
the Internet’s topology is not a simple Erdés-Rényi random graph, results such as
the hopcount of the shortest path and the size of a multicast tree deduced from the
simple random graphs provide a first-order estimate for the Internet.

The popularity of the Internet gave birth to several developments in electronic
banking, governing, publishing and other parts of society. On-line social networks,
such as Twitter and Facebook, form open laboratories to study how humans use
technology. Email forwarding and Twitter retweet times (see e.g. Doerr et al.
(2013)) are not exponential, but rather lognormal, and thus refute a Markovian
approach. Similarly as about 20 years earlier, Markovian-based design failed, when
Internet traffic was shown to be “bursty” (long-range dependent, self-similar and
even chaotic, non-Markovian (Veres and Boda, 2000)). As a consequence, new
methods are needed to compute traffic or dimension servers and networks, based
on non-Markovian human responses. Further interesting questions are: “How do we
determine communities?”, “Who are the key influential persons in a community?”,
“How does information spread, become popular and age?” or “What is the topo-
logical structure of communities and how do communities grow and change over
time?”. The social embedding of the Internet produces many more such inspiring
questions that ask for methods discussed in this book.

We hope that this brief overview motivates sufficiently to surmount the mathe-
matical barriers. Skill with probability theory is deemed necessary to understand
complex phenomena in network science. Once mastered, the power and beauty of
mathematics will be appreciated.
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Probability theory
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2

Random variables

This chapter reviews basic concepts from probability theory. A random variable
(rv) is a variable that takes certain values by chance. Throughout this book, this
imprecise and intuitive definition suffices. The precise definition involves axiomatic
probability theory (Billingsley, 1995).

Here, a distinction between discrete and continuous random variables is made,
although a unified approach including also mixed cases via the Stieltjes integral
(Hardy et al., 1999, pp. 152-157), [ g(z)df(z), is possible. In general, the distrib-
ution F'x(xz) = Pr[X < z] holds in both cases, and

/g(:r)dFX (z) = Zg(k) Pr[X = k] where X is a discrete rv
k

dFx(x
= /g(x)%dx where X is a continuous rv
x
In most practical situations, the Stieltjes integral reduces to the Riemann integral,
otherwise, Lesbesgue’s theory of integration and measure theory (Royden, 1988) is

required.

2.1 Probability theory and set theory

Pascal (1623-1662) is commonly regarded as one of the founders of probability
theory. In his days, there was much interest in games of chance! and the likelihood
of winning a game. In most of these games, there was a finite number n of possible
outcomes and each of them was equally likely. The probability of the event A of
interest was defined as

nA

Pr[A] = 7 (2.1)

I “La régle des partis”, a chapter in Pascal’s mathematical work (Pascal, 1954), consists of a
series of letters to Fermat that discuss the following problem (together with a more complex
question that is essentially a variant of the probability of gambler’s ruin treated in Section
11.2.2): Consider the game in which two dice are thrown n times. How many times n do we
have to throw the two dice to throw double six with probability p = %7

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107058606
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-05860-6 - Performance Analysis of Complex Networks and Systems
Piet Van Mieghem

Excerpt

More information

8 Random variables

where n 4 is the number of favorable outcomes (samples points of A). If the number
of outcomes of an experiment is not finite, this classical definition of probability
no longer suffices. In order to establish a coherent and precise theory, probability
theory employs concepts of group or set theory.

The set of all possible outcomes of an experiment is called the sample space ).
A possible outcome of an experiment is called a sample point w that is an element
of the sample space €). An event A consists of a set of sample points. An event A is
thus a subset of the sample space ). The complement A° of an event A consists of
all sample points of the sample space 2 that are not in (the set) A, thus A° = Q\ A.
Clearly, (A°)° = A and the complement of the sample space is the empty set, Q¢ = ()
or, vice versa, ()¢ = Q. A family F of events is a set of events and thus a subset of
the sample space () that possesses particular events as elements. More precisely, a
family F of events satisfies the three conditions that define a o-field?: (a) ) € F;
(b) if Ay, Ag,... € F, then U2, A; € F; and (c) if A € F, then A° € F. These
conditions guarantee that F is closed under countable unions and intersections of
events.

Events and the probability of these events are connected by a probability measure
Pr[.] that assigns to each event of the family F of events of a sample space ) a real
number in the interval [0,1]. As Axiom 1, we require that

Pr[0] =1 (2.2)

If Pr[A] = 0, the occurrence of the event A is not possible, while Pr [A] = 1 means
that the event A is certain to occur. If Pr[A] = p with 0 < p < 1, the event A
occurs with probability p.

If the events A and B have no sample points in common, A N B = {, the
events A and B are called mutually exclusive events. As an example, the event
and its complement are mutually exclusive because A N A° = ). Axiom 2 of a
probability measure is that, for mutually exclusive events A and B, it holds that
Pr[AU B] = Pr[A] + Pr[B]. The definition of a probability measure and the two
axioms are sufficient to build a consistent framework on which probability theory
is founded. Since Pr[@)] = 0 (which follows from Axiom 2 because A N () = () and
A = AU0), for mutually exclusive events A and B, it holds that Pr[4 N B] = 0.

As a classical example that explains the formal definitions, let us consider the
experiment of throwing a fair die. The sample space consists of all possible out-
comes: ) ={1,2,3,4,5,6}. A particular outcome of the experiment, say w = 3, is

2 A field F posseses the properties:

(i) 0eF;
(ii) if A,B € F, then AUB € F and AN B € F;
(iii) if A€ F, then A® € F.

This definition is redundant. For, we have by (ii) and (iii) that (AU B)¢ € F. Further, by De
Morgan’s law (AU B)¢ = A° N B¢, which can be deduced from Figure 2.1 and again by (iii),
the argument shows that the reduced statement (ii), if A, B € F, then AU B € F, is sufficient
to also imply that AN B € F.
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2.1 Probability theory and set theory 9

a sample point w € 2. One may be interested in the event A where the outcome is
even in which case A = {2,4,6} C Q and A° = {1, 3,5}.

If A and B are events, the union of these events A U B can be written using set
theory as

AUB=(ANB)U(A°NB)U (AN B)

because AN B, A°N B and AN B¢ are mutually exclusive events. The relation
is immediately understood by drawing a Venn diagram as in Fig. 2.1. Taking the

Q

Fig. 2.1. A Venn diagram illustrating the union AU B.

probability measure of the union yields

Pr{AUB]=Pr[(ANB)U(A°NB)U (AN B°)]
=Pr[ANB]+Pr[A°N B]+Pr[AnN B (2.3)

where the last relation follows from Axiom 2. Figure 2.1 shows that A = (AN B)U
(ANB°) and B = (AN B) U (A°N B). Since the events are mutually exclusive,
Axiom 2 states that

Pr[A] = Pr[AN B] + Pr[AN B
Pr[AN B] + Pr[A°nN B]

FU
3

=
I

Substitution into (2.3) yields the important relation

Pr[AUB] =Pr[A] 4+ Pr[B] — Pr[AN B (2.4)

Although derived for the measure Pr [.], relation (2.4) also holds for other measures,
for example, the cardinality (the number of elements) of a set.
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10 Random variables

2.1.1 The inclusion-exclusion formula
A generalization of the relation (2.4) is the inclusion-exclusion formula,

Pr Uk 1Ak Z Pr [Ak1] — Z Z PI‘ Ak1 ﬂAkz]

k1=1 k1=1ko=Fk;+1

=+ Z Z Z Pr [Ak1 N Ak2 N Ak3}
k1=1ko=k1+1 kz=ko+1

n

Fo A (DTN e YT Prni Ay (2.5)
k1=1ko=k1+1  kp=kp_1+1

The formula shows that the probability of the union consists of the sum of prob-
abilities of the individual events (first term). Since sample points can belong to
more than one event Ay, the first term possesses double countings. The second
term removes all probabilities of sample points that belong to precisely two event
sets. However, by doing so (draw a Venn diagram), we also subtract the probabili-
ties of sample points that belong to three events sets more than needed. The third
term adds these again, and so on. The inclusion-exclusion formula can be written
more compactly as

n

Pr [U£:1Ak] = Z(_l)j_l Z Z Z Pr {ﬁfnzlAm} (2-6)

i=1 kimlka=ki+1  kj=k;_1+1
or with
_ J
Sj - Z Pr |:ﬂ7n:1Akm:|
1<k <ko<--<k;<n
as
n
1
Pr(Up_, Ak] = ) (-1)'71S, (2.7)
Jj=1

Although impressive, the inclusion-exclusion formula is useful when dealing with
dependent random variables because of its general nature. In particular, if

Pr [ﬁzn=1Akw1] = a;

and not a function of the specific indices k,, the inclusion-exclusion formula (2.6)
becomes more attractive,

Pr Ui 1A = Z(—l)j_laj Z 1

i 1<k <ko<--<k;<n

Fer ()

Jj=1

<
Il
—

An application of the latter formula to multicast can be found in Chapter 18 and
many others are in Feller (1970, Chapter IV). Sometimes it is useful to reason with
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