
Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 0

Introduction

Combinatorial problems and arguments have a long history in mathematics,

but only in the last half of the 20th century did they become a coherent sub-

ject. The discipline was long viewed as a collection of isolated tricks, but now the

methods are more systematic, and the connections and applications between com-

binatorics and other areas of mathematics (in both directions) are being studied.

In this book we explore some of these connections and many fundamental re-

sults of combinatorics. We do not assume any prior exposure to combinatorics,

but we assume mathematical maturity and basic undergraduate mathematics,

including elementary set theory, induction, equivalence relations, limits, calcu-

lus, linear algebra, etc.

One can classify mathematical problems by the type of question, the object

being studied, the method used, etc. These various aspects make it hopeless to

impose a linear order of development in the study of mathematics. We emphasize

different aspects at different times.

Our questions are of three general types. Given constraints specified for an

object, does it exist? If such objects exist, how many are there? With respect

to some criterion, which one is the best? These are the problems of Existence,

Enumeration, and Extremality. We emphasize enumerative problems in Part I

and problems of existence and extremality in most of the rest of the text.

We study objects that are discrete structures of various types. The simplest

is a set. More complicated structures arise by imposing constraints or relations

on sets or families of sets. We study various arrangements in Part I and graphs

in Part II. In Part III we study structures such as hypergraphs, partially ordered

sets, combinatorial designs, and matroids.

Finally, we also study methods of combinatorics. Many techniques arise in

conjunction with particular structures, but some are used in many contexts and

are worthy of study in their own right. Our focus on techniques is clearest in

Part IV, where we discuss the probabilistic method, algebraic methods, and con-

nections with geometry, but many other methods appear in earlier parts.

In this brief introduction, we review definitions from elementary mathemat-

ics, introduce elementary concepts about graphs for use in Part I, introduce ele-

mentary notions of probability as background for questions throughout the text,

describe some additional discrete structures, and mention the basic notions of

complexity. This is background material to be consulted as needed.

1

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Chapter 0: Introduction

SETS, FUNCTIONS, AND RELATIONS

Our most fundamental object is a set. We build other structures from sets and

relations. We use �0 for the set of nonnegative integers and � for the set of pos-

itive integers, also called the natural numbers. We let [n] (pronounced “bracket

n”)denote the set {1 , . . . , n} of the first n natural numbers, with [0] = ∅. We take

as given the number systems � ,� ,� ,� ,� (natural numbers, integers, rational

numbers, real numbers, complex numbers) and their elementary arithmetic and

order properties. Similarly we assume the elementary operations and notation

of sets, such as membership, containment, union, intersection, complement, and

difference. We write the difference of sets A and B as A− B, not A \ B.

A function � from a set A to a set B, written � : A→ B, assigns each x ∈ A

an element �(x) ∈ B. The set A is the domain; � is defined on A. The image of

x ∈ A is �(x), and {�(x): x ∈ A} is the image of � . The function is injective if

each y ∈ B is the image of at most one element of A. It is surjective if each y ∈ B

is the image of at least one element of A. It is a bijection if it is injective and

surjective, and then it provides a one-to-one correspondence between A and B.

A set S is finite if a bijection from S to [n] exists for some n ∈ �0 ; the value n

is then the size of S, written |S|. Counting a finite set means computing its size.

Two sets (finite or infinite) have the same cardinality if there is a bijection from

one to the other. For finite sets, “cardinality” is a synonym for “size”. A set with

the same cardinality as � is countable.

A sequence is a function with domain � (or �0); we write an for the im-

age of n, the nth term of the sequence. Usually one letter (such as �) denotes a

function; similarly we use ⟨a⟩ to denote the sequence with terms of the form an.

A list is a function defined on [n] for some n ∈ �0 ; this is the finite analogue

of a sequence. We write a list a of length n as an n-tuple (a1 , . . . , an). (Many au-

thors use “sequence” for an n-tuple; we try to use “sequence” only for functions

on �.) A binary n-tuple or 0 , 1-list is a list with entries in {0 , 1}. Similarly,

a 0 , 1-matrix or binary matrix has entries in {0 , 1}. A ternary list has en-

tries in {0 , 1 , 2}. An n-ary list takes values from a specified set of size n. An

arithmetic progression is a list of equally spaced integers.

In contrast to a set, the order of elements in a list matters, and elements in

lists may repeat. A multiset differs from a set by allowing repeated elements,

but order remains unimportant. We can specify a multiset by specifying the set

of distinct elements and their multiplicities. Since the order is unimportant but

repetition is allowed, some authors refer to multisets as “unordered lists”.

A permutation of a finite set S is a bijection from S to itself. Since a func-

tion on [n] is a list, we may view a permutation � of [n] as a function from [n] to
[n] or as a listing of [n] in some order a1 , . . . , an, with ai denoting �(i). The latter

is the word form of the permutation. Both viewpoints will be useful.

We often discuss sets whose elements are also sets. To avoid confusion, we

use class and family as synonyms for “set”. Instead of saying “a set in a set of

sets”, we say “a member of a family of sets”.

The cartesian product of sets S and T is the set S × T of ordered pairs
{(s , t): s ∈ S, t ∈ T}. A (binary) relation between S and T is a subset of the

cartesian product S × T . When S = T , we call this a relation on S. We say that

the pairs in a relation satisfy the relation.

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Background Definitions 3

When S is a family of sets, the containment relation on S is the set of pairs
(A , B) ∈ S × S such that A ⊆ B. The pair (A , B) satisfies the disjointness rela-

tion when A∩ B = ∅. As a relation, disjointness is a property of pairs. Hence “a

family of disjoint sets” technically has no meaning; nevertheless, by convention

the word “disjoint” means “pairwise disjoint” when applied to sets in a family.

An equivalence relation on S is a relation R with these properties:

1) reflexive — (x , x) ∈ R for all x ∈ S.

2) symmetric — (x , y) ∈ R if and only if (y, x) ∈ R.

3) transitive — if (x , y) ,(y, �) ∈ R, then (x , �) ∈ R.

Containment is reflexive and transitive but not symmetric and hence not an equiv-

alence relation. “Having the same cardinality” defines an equivalence relation,

since the identity function is a bijection from a set to itself, the inverse of a bi-

jection is a bijection, and the composition of bijections is a bijection.

An equivalence class of an equivalence relation R on S is a maximal sub-

set T of S such that all pairs of elements of T satisfy R. Elements x and y are

in the same equivalence class if and only if (x , y) ∈ R, and each element of S be-

longs to exactly one such class. Hence the equivalence classes of an equivalence

relation on S form a partition of S, where a partition of a set S is a family of

disjoint nonempty sets whose union is S. The sets in a partition are its blocks.

Conversely, given a partition of S, putting (x , y) ∈ R if x and y are in the same

block yields an equivalence relation R on S. Hence partitions of S and equivalence

relations on S are essentially the same notion.

0.1. Example. Examples of equivalence relations.

Congruence modulo n. Integers x and y are congruent modulo n if x − y

is a multiple of n. The equivalence classes are the subsets of � having a fixed

remainder upon division by n. These are the congruence classes modulo n, and

the family of congruence classes modulo n is denoted by �n.

Orbits under a permutation. Viewing a permutation � of [n] as a bijection

from [n] to [n], we use � � to denote the bijection obtained by applying � succes-

sively � times. The relation R on [n] that puts (i , j) ∈ R if � �(i) = j for some

� ∈ �0 is reflexive and transitive. Since bijections have inverses, also R is sym-

metric. The equivalence class containing i in this equivalence relation is the set

of elements obtained as � is repeatedly applied, called its orbit.

0.2. Example. When S is a family of subsets of a “ground set” X , the incidence

relation between X and S is the relation R consisting of the ordered pairs(x , A) ∈
X × S such that x ∈ A. When X = {x1 , . . . , xn} and S = {S1 , . . . , Sm}, we encode

R as a 0 , 1-matrix with position (i , j) being 1 if xi ∈ Sj and 0 otherwise. This is

the incidence matrix for R (with respect to the given indexing of X and S). The

jth column of the incidence matrix is the incidence vector of the set Sj ; this

0 , 1-vector records for each element of X whether it belongs to Sj .

GRAPHS

Many natural relations are symmetric and irreflexive, where irreflexive

means that for each x the pair (x , x) does not satisfy the relation (disjointness on

a family of nonempty sets, for example). Such relations are modeled by “graphs”.

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Chapter 0: Introduction

A graph G is a pair consisting of a set V(G) of vertices and a set E(G) of

edges, where each edge is a set of two vertices. The order of G is |V(G)|, and its

size is |E(G)|. Vertices u and v forming an edge are adjacent , and the neighbors

of v are the vertices adjacent to it. Note that the adjacency relation is symmetric

and irreflexive. The two vertices in an edge are its endpoints, and we say that

the edge joins its endpoints.

An edge and its endpoints are incident. The incidence relation of a graph

G is the set of pairs (v, e) in V(G)× E(G) such that v and e are incident to each

other (v is an endpoint of e). When discussing graphs we drop set brackets for

edges and write the edge {u , v} as uv (or vu). To display a graph, we represent

each vertex by a point in the plane and each edge by a curve whose endpoints are

the points assigned to the vertices of the edge; this is a drawing of the graph.

Structural properties of graphs do not depend on the names of the vertices.

An isomorphism from a graph G to a graph H is a bijection � : V(G)→ V(H)
that preserves the adjacency relation: uv ∈ E(G) if and only if �(u)�(v) ∈ E(H).
The resulting isomorphism relation is an equivalence relation on any set of

graphs. Every graph isomorphic to G has the same structural properties as G ,

so we treat isomorphic graphs as “equal” when not given explicit vertex names.

Containment and union for graphs follow those notions for sets. A graph H

is a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G). Similarly, the

union of graphs G and H is the graph G ∪ H with vertex set V(G)∪ V(H) and

edge set E(G)∪ E(H).

Many interesting enumerative questions can be asked about graphs. To per-

mit discussion of such enumerative questions in Part I, we develop some elemen-

tary examples and properties of graphs here.

Many useful graphs are defined by their structural properties. A path is a

graph whose vertices can be linearly ordered so that two vertices are adjacent if

and only if they are consecutive in the ordering; the endpoints of the path are

the first and last vertices in such an order. A cycle is a graph with an equal

number of vertices and edges whose vertices can be placed around a circle so that

two vertices are adjacent if and only if they appear consecutively along the circle.

A graph G is connected if for all u , v ∈ V(G), it contains a path with end-

points u and v. A component of G is a maximal connected subgraph of G , where

a maximal object of a given type is one that is not contained in another object of

that type (minimal is defined similarly). The graph below has three components.

•

•

•

• ••• s

t

u

v wr

•

•

•

x

y

�

A u , v-path is a path with endpoints u and v. We say that u and v are con-

nected in G if G contains a u , v-path. The connection relation on V(G) is the set

of pairs (u , v) such that G has a u , v-path; it is reflexive and symmetric. Our first

proposition implies that it also is transitive and hence is an equivalence relation.

The point is that although a u , v-path and a v, w-path together need not form a

u , w-path, their union contains one. The equivalence classes of the connection

relation are the vertex sets of the components of G.

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Background Definitions 5

The technique of extremality involves choosing an object that is extremal in

some respect (a maximal connected subgraph, for example). This often requires

finiteness, and our structures will be finite unless explicitly stated otherwise.

0.3. Proposition. If P is a u , v-path and P′ is a v, w-path, then P ∪ P′ contains

a u , w-path.

Proof: We use extremality. Let x be the first vertex along P from u to v that also

lies in P′ (x exists, since both sets contain v). The union of the u , x-path in P and

the x , w-path in P′ is a u , w-path, since these subgraphs share only x.

A spanning subgraph of G is a subgraph of G with vertex set V(G). A tree

is a graph that is connected and contains no cycles. A spanning tree in G is a

spanning subgraph of G that is a tree.

0.4. Proposition. Every connected graph contains a spanning tree.

Proof: Since every vertex is itself a tree, every connected graph G contains at

least one tree. Let T be a maximal tree contained in G.

If V(T)
= V(G), then a path from a vertex outside V(T) to a vertex in V(T)
yields an edge e with endpoints in V(T) and V(G) − V(T). Let T ′ be the sub-

graph of G obtained from T by adding edge e and its endpoint v outside T . By

the transitivity of the connection relation, T ′ is connected.

Also every cycle in T ′ appears in T , since v is in only one edge in T ′. Thus T ′

has no cycle and is a tree. This contradicts our extremal choice of T . We conclude

that V(T) = V(G), and T is a spanning tree.

The degree of a vertex in a graph is the number of edges incident to it. A

leaf is a vertex of degree 1. A vertex of degree 0 is an isolated vertex.

A maximal path in a graph G is a path in G that is not a subgraph of another

path in G. Thus every vertex of G adjacent to an endpoint of a maximal path in

G must belong to the path.

0.5. Proposition. If all vertices in a finite graph G have degree at least 2, then

G contains a cycle.

Proof: Since V(G) is finite, G has a maximal path P. Let v be an endpoint of P.

Since d(v) ≥ 2, there is an edge vu not in P. Since P is maximal, u lies on P , and

vu completes a cycle with the u , v-path in P.

0.6. Proposition. Every tree with at least two vertices has at least two leaves.

Deleting a leaf from a tree yields a tree with one less vertex.

Proof: A connected graph with at least two vertices has no isolated vertices. A

tree has no cycle, so the endpoints of a maximal path in a tree with at least two

vertices have degree 1.

Given a leaf x in a tree G , obtain G′ from G by deleting x and its incident

edge. Since deleting a vertex creates no new subgraphs, G′ has no cycles. Hence

it suffices to show that G′ is connected. For distinct vertices u , v ∈ V(G′), there

a u , v-path P in G. Since internal vertices along a path have degree at least 2, P

does not contain x. Hence P is also a u , v-path in G′.

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Chapter 0: Introduction

0.7. Proposition. Every tree with n vertices has n− 1 edges. Furthermore, ev-

ery graph with n− 1 edges that arises from n isolated vertices by iteratively

adding an edge joining two components is a tree.

Proof: For the first statement, use induction on n. A 1-vertex tree has no edges.

For n > 1, Proposition 0.6 provides a leaf whose deletion yields a tree with n− 1

vertices. Since it has n− 2 edges, the original tree has n− 1 edges.

For the second statement, note first that each such edge addition creates no

cycles. Such a cycle would contain the new edge uv and another u , v-path from the

previous graph, which does not exist since u and v were in different components

in that graph. Also, each such edge addition reduces the number of components

by 1. Hence n − 1 additions reduce the number of components to 1. Thus the

resulting graph is acyclic and connected and is a tree.

We assume familiarity with these results in order to study counting problems

about trees in Part I. We discuss the structure of graphs more fully in Part II.

DISCRETE PROBABILITY

Many enumerative questions are easily motivated using discrete probability.

In such questions, there is a set U (the “universe”) of possible outcomes of some

process. These outcomes are assumed to be equally likely; this is the meaning of

phrases like “a random element” and “chosen uniformly at random”. The proba-

bility of a desired property is then defined to be |A|/|U|, where A is the subset of

U consisting of all outcomes having the desired property.

In Part III we will also consider countable spaces, where an outcome may be

any natural number. Here we review the definitions of probability spaces.

0.8. Definition. A discrete probability space is a finite or countable set S

with a function � defined on the subsets of S (called events) such that

a) If A ⊆ S, then 0 ≤ �(A)≤ 1,

b) �(S) = 1, and

c) If A1 , A2 , . . . are pairwise disjoint subsets of S, then

�(⋃ Ai) =∑
∞

i=1 �
(Ai).

0.9. Remark. For a finite probability space, assuming �(A ∪ B) = �(A)+ �(B)

when A ∩ B = ∅ and applying induction on � yields �(A) = ∑
�

i=1 �(Bi) when

B1 , . . . , B� is a partition of A. This follows from (c) above but does not imply it,

so we require the more general condition.

More generaldefinitions of probability space allow the probability function to

be defined only on subsets of S with certain properties, but the simple definition

above suffices for our purposes. On the rare occasions where we mention continu-

ous probability spaces, we will be informal (that is, non-rigorous). For example,

when choosing a point at random from a region in the plane, we adopt the intu-

itive notion that the probability it lies in a particular subregion is proportional

to the area, with “regions” simple enough not to worry about measurability.

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Background Definitions 7

Immediate consequences of Definition 0.8 include

a) �(∅) = 0,

b) �(A) = 1 −�(A), and

c) �(A∪ B) = �(A)+�(B)−�(A∩ B).
Furthermore, �(A) = ∑a∈A�

(a), writing �(a) for �({a}) when a ∈ S. Elements

of a probability space S are sample points or outcomes (of an “experiment”).

0.10. Definition. Events A and B in a probability space are independent if

�(A ∩ B) = �(A)�(B). For events A and B with �(B)
= 0, the conditional

probability of A given B, written �(A | B), is defined to be �(A∩ B)/�(B).

0.11. Remark. Saying that a probability space is generated by making choices

“independently” means that the space is a cartesian product. The probability of

an outcome is the product of the probabilities of its coordinates in the factors. For

example, when flipping a coin n times independently, each flip has outcome head

or tail, each with probability 1/2. The probability of a given list is 2−n.

Making a choice uniformly at random means that the possible outcomes are

equally likely. When flipping a coin, the flips are generated uniformly at random
(probability 1/2 of each outcome) and independently.

Studying conditional probability has the effect of normalizing or restricting

the space to the points within the event B. The intuitive idea is that the condi-

tional probability (given that B occurs) is the fraction of B where A also occurs.

The probability of a joint event can be computed as a product of conditional

probabilities. For example,

�(⋂
n
�=1 Ai) = �(An | ⋂

n−1
�=1 Ai) �(An−1 |⋂

n−2
�=1 Ai) · · ·�(A2 | A1) �(A1).

In the last half of the 20th century, advanced techniques for studying prob-

ability spaces found many applications to difficult combinatorial problems. Com-

binatorial techniques show that a “good enough” object exists by constructing it,

but probabilistic methods are nonconstructive. An object with a desired property

must exist when the probability of that property is nonzero in an appropriate

probability space. Similarly, one can show the existence of an object with a large

value of a parameter X by showing that the expected value of X is that large

when the objects are randomly generated.

0.12. Definition. A random variable on a discrete probability space S is a func-

tion X : S→ �. It is discrete when the range is finite or countable, often�0.

Let X = � denote the event {a ∈ S: X(a) = �}, and write�(X = �) for its prob-

ability. The expectation or expected value �(X) of X is ∑a∈S X(a)�(a),
when this sum converges. When X is a discrete random variable, we write

this as �(X) = ∑
∞

�=0 � · �(X = �). The pigeonhole property of the expec-

tation is the statement that there is an element of the probability space for

which the value of X is as large as (or as small as) �(X).

Using the pigeonhole property requires a value or bound for �(X). Often

the computation applies the “linearity of expectation” to an expression for X as

a sum of simpler random variables. We restrict our attention to sums of finitely

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Chapter 0: Introduction

many random variables on discrete probability spaces. Analogous results hold in

continuous probability spaces.

0.13. Lemma. (Linearity of Expectation) If X and X1 , . . . , X� are random

variables on the same space such that X =∑ Xi , then �(X) =∑�(Xi). Also

�(cX) = c�(X) for any constant c.

Proof: In a discrete probability space, each sample point contributes the same

amount to each side of each of these equations.

One reason for the influence of probabilistic methods is that exact counts are

both too difficult and unnecessary in large structures. Somehow the probabilistic

methods capture the most important aspects or most dominant terms. Probabilis-

tic methods are especially effective for extremal problems when it turns out that

“most” instances are near the optimum.

OTHER DISCRETE STRUCTURES

In addition to subsets, permutations, and graphs, many other structures are

used to model combinatorial problems. We briefly describe several studied in this

book in order to suggest the scope of the text. The reader should treat this section

lightly; precise definitions and examples will be given later.

0.14. Example. Digraphs and multigraphs. General binary relations are mod-

eled using directed graphs (digraphs); these differ from graphs in that the

edges are ordered pairs of vertices. In an edge from x to y, the first vertex is the

tail and the second is the head. We illustrate directed graphs by drawings that

use arrows (curves with direction) for the edges.

We sometimes allow edges in digraphs to be pairs of the form (x , x), called

loops. For example, the functional digraph of a function � : A→ A has vertex

set A; its edges are the pairs (x , �(x)) for x ∈ A. The fixed points of � become loops

in the functional digraph. A permutation is a bijection � : A→ A; its functional

digraph consists of disjoint (directed) cycles corresponding to its orbits.

We may modify a graph or digraph both by allowing loops (one-vertex edges)
and by allowing more than one edge with the same endpoints. Here E(G) becomes

a multiset. The resulting model is a multigraph or multidigraph.

0.15. Example. Order relations. The containment relation on a family of sets

is a reflexive relation that is transitive but not symmetric and hence is not an

equivalence relation. It is a fundamental example of another important type of

relation. A relation R is antisymmetric if (x , y) ∈ R and (y , x) ∈ R imply x = y.

A relation is an order relation if it is reflexive, antisymmetric, and transitive.

Besides containment, other order relations include the divisibility relation

on the set of positive integers and the componentwise order on�n, which contains

the pair (u , v) when ui ≤ vi for all i. Other examples arise in scheduling: events

occupy some interval in time, and we say that A “precedes” B if A ends before

B begins. This defines an order relation on any set of intervals. We study order

relations in Part III.

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Background Definitions 9

0.16. Example. Hypergraphs. Another generalization of graphs allows edges of

arbitrary size. A hypergraph G consists of a set V(G) of vertices and a set E(G)
of edges, where an edge can be any subset of V(G). A �-uniform hypergraph

is a hypergraph whose edges all have size � ; graphs are simply 2-uniform hyper-

graphs. A hypergraph is regular if every vertex is in the same number of edges.

Since the edgeset of a hypergraph with vertex set X is a family of subsets of X , hy-

pergraphs can be studied from set-theoretic, order-theoretic, and graph-theoretic

viewpoints. They will be helpful in Parts III and IV.

0.17. Example. Designs and projective planes. In Chapter 13 we study a special

type of regular uniform hypergraph that has applications to design of experi-

ments and to extremal combinatorial problems. A block design is a regular uni-

form hypergraph in which any two points (vertices) appear together in the same

number of blocks (edges). Equivalently, any two rows in the incidence matrix for

the membership relation of elements in blocks have the same dot product.

When any two points lie in exactly one common block, we may request also

that any two blocks have exactly one common point. The resulting configurations

are projective planes, in which the blocks are called lines. Projective planes can

be obtained from finite fields and correspond to special families of latin squares. A

Latin square of order n is an arrangement of symbols of n types in an n-by-n ma-

trix so that each symbol appears exactly once in each row and in each column. A

classical application is the assignment of types of fertilizers and seeds to regions

in an agricultural plot to reduce the effect of soil differences.

0.18. Example. Matroids. In Chapter 11 we study another special structure.

Matroids can be viewed as special families of subsets of a set. This interprets

them as a special type of hypergraph. We postpone the precise definition and

observe merely that the matroid context permits common generalizations of fun-

damental results in graph theory, linear algebra, and the theory of ordered sets.

For example, matroids permit a natural generalization of the result that a span-

ning tree of minimum total weight in a connected graph with weighted edges

can be found by iteratively including the cheapest edge that does not form a cycle

with edges already chosen. Much of the elementary theory of dimension in linear

algebra also arises as a special case of matroid properties.

COMPLEXITY

The growth of combinatorics has been stimulated by computer science, which

studies the computational aspects of discrete mathematics. We will comment oc-

casionally on the computational complexity of problems. A simple measure of the

performance of an algorithm is its worst-case running time, as a function of the

size of the input. A problem is efficiently solved if it has a solution algorithm whose

running time is bounded by a polynomial in the size of the input.

The size of the input is its length in bits in some encoding of the problem. For

our purposes, natural parameters such as the order of a matrix or the number of

vertices suffice to measure size. A polynomial in n is bounded by a polynomial in

www.cambridge.org/9781107058583
www.cambridge.org

Cambridge University Press
978-1-107-05858-3 — Combinatorial Mathematics
Douglas B. West
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Chapter 0: Introduction

n2 or n3 , so the manner of encoding input is unimportant unless the problem has

exponentially large numbers as input data.

Complexity considers asymptotic growth rates. The set of functions whose

magnitude is bounded above by a constant multiple of � (for sufficiently large ar-

guments) is called O(�). Several pertinent sets of functions arise when comparing

growth rates to � , as listed below.

o(�) = {� : |�(x)|/|�(x)| → 0}
O(�) = {� : ∃c , a ∈ � such that |�(x)| ≤ |c�(x)| for x > a}
�(�) = {� : ∃c , a ∈ � such that |�(x)| ≥ |c�(x)| for x > a}
�(�) = {� : |�(x)|/|�(x)| →∞}
�(�) = O(�)∩ �(�)

Derbyshire [2003] attributed “Big Oh notation” to Landau [1909], but Landau
[1909, p. 883] borrowed it from Bachmann [1894].

Properly speaking, o(�), O(�), �(�), �(�), and �(�) are sets, and it is cor-

rect to write � ∈ O(�)when describing the growth rate of � . Mathematicians and

computer scientists routinely write �(n) = O(�(n)) to mean � ∈ O(�) (see Knuth
[1976a]). Some avoid this by writing “�(n) is O(�(n))”, treating O(�) as an adjec-

tive. We can compute with members of O(�) somewhat as we do with congruence

classes, but we have no symbol like “≡” for doing this. Thus in this book we

sometimes use expressions like �(n) = n2
+ O(n3/2) (meaning �(n)− n2 ∈ O(n3/2)),

but where the grammar is appropriate we use the membership symbol. The ex-

pression �(n) ∼ �(n) means that � is asymptotic to � , which can be written as

limn→∞
�(n)
�(n)
= 1 or �(n) = �(n)(1 + o(1)).

Complexity classes are studied using decision problems that have yes/no

answers, such as “does the input graph have a spanning cycle?” Optimization

problems (such as “what is the maximum length of a cycle in this graph?”) can be

solved using successive decision problems, such as “does this graph have a cycle

of length at least �?”, where � is part of the input. The class of decision problems

solvable by a worst-case polynomial-time algorithm (polynomial in the size of the

input) is called “P”.

Many decision problems have no known polynomial-time solution algorithm

but have a polynomial-time algorithm for verifying a YES answer. For example,

existence of a spanning path can be verified by giving the order of vertices on such

a path and checking that successive vertices are adjacent. When checking all pos-

sible permutations in parallel, each computation path is short. It is verifying a

NO answer that is difficult.

A deterministic algorithm follows only one computation path on a given in-

put. A nondeterministic algorithm follows multiple computation paths simul-

taneously. In the example above, given an input graph, such an algorithm checks

all possible vertex orderings simultaneously to seek a spanning path; each order-

ing can be checked in polynomial time. A nondeterministic polynomial-time

algorithm follows one computation path for each way of specifying a polynomial-

length stream of bits, with each such computation running in polynomial time.

The bit stream is not the input to the problem; the bits specify an option to con-

sider, which in the example here is a vertex ordering.

A nondeterministic algorithm solves a decision problem if for every input I ,

the answer to the problem on I is YES if and only if the algorithm applied to I has

www.cambridge.org/9781107058583
www.cambridge.org

