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Introduction

1.1 Primitive notions

The word ‘definition’ has come to have a dangerously reassuring
sound, owing no doubt to its frequent occurrence in logical and math-
ematical writings.

– Willard van Orman Quine
1

1.1.1 Definitions – avoiding circularity

Some elementary observations have profound corollaries. Here is an example.
Suppose finitely many points are distributed in some space and each point is
joined to a number of other points by arrows, forming a complex directed net-
work. We choose a point at random and trace a path, following the direction
of the arrows, spoilt for choice at each turn. No matter how skillfully we tra-
verse the network, and no matter how large the network is, we are forced at
some stage to return to a point we have already visited. Every road eventually
becomes part of a loop, in fact many loops.

A dictionary is a familiar example of such a network. Represent each word
by a point and connect it via outwardly pointing arrows to each of the words
used in its definition. We see that a dictionary is a dense minefield of circular
definitions. In practice it is desirable to make these loops as large as possible,
but this is a tactic knowingly founded on denial. The union of all such loops
forms the core of the artificial language world of the dictionary, every word
therein definable in terms of the loop members. So not only does this language
core contain circular definitions, it is made of them! (In an appropriate tribute
to the problem, the dictionary on my desk has some very short loops in the
region containing the words meaning and sense.)

Any idealistic attempt to populate a dictionary with a finite number of
words defined finitely and exclusively in terms of one another leads either to

1‘Two dogmas of Empiricism’, in Quine [172].
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2 Introduction

the humiliation and dissatisfaction of circularity or, what is the better of the
two options, to the nomination of some notions as ‘primitive’. These primitive
elements by nature cannot be defined in terms of other words, yet they form
the building blocks of all other entries in the dictionary.

No dictionary of natural language is organized in this way, and nor should we
expect it to be. Lexicographers skillfully try to evade circularity by using certain
observable phenomena, the sensory and emotional meat of daily existence, and
abstractions thereof, as their primitive reference points. As the observables are
given fairly crude finitistic word descriptions such efforts will always fail for
the reason just given, but the points at which a definition struggles to avoid
circularity signpost those areas where the dictionary begins to step outside the
boundaries of its original function; it has never pretended to be, and never
will be, a self-contained account of the meaning of all things, and it is not
a philosophical text. Perhaps it is not surprising that extremist philosophies
adopting the position that ‘all is language’ tend to fall into a curious form of
nihilism, turning all philosophical discussion into petty exercises in obscurantist
creative writing.

By a long process of generalization and analogy, natural language reaches for
high concepts far removed from the concrete stuff that lies at its foothills. This
process is intuitive – new concepts are described as and when they are needed.
Of course our dictionary example is just a convenient somewhat artificial one –
however, the same finitistic obstruction applies to any attempt to chase meaning.
How is it that a finite universe can harbour sense?

Most accounts of mathematics rely on an intuitive base of instantly recog-
nizable Platonic objects, for example the classical number systems and various
geometric notions. That these are ‘instantly recognizable’ (however this may be
interpreted) is perhaps surprising given that none of them exactly match the
comparatively crude real worldly things that helped to inspire them; but this
act of abstraction, an effortless ability to simplify by assigning an ideal object
to a large number of perceived objects is, to our great benefit, the way we have
evolved to ‘make sense of what we sense’ – we simply couldn’t think without it.
However if we want to describe these familiar structures without deferring to
vague and unreliable intuitions we have no choice but to embrace the ‘primitive
element’ approach. An unworkable alternative which is only marginally better
than circularity is to admit an infinite regress of definitions – a bottomless pit
where each notion is defined in terms of lower notions.

Stretching the analogy to breaking point, by fixing a set of primitive elements
we create an artificial platform spanning a cross-section of the bottomless pit.
From this base we can look up (what properties follow from our basic assump-
tions?) and we can look down (what, at a deeper level, is capable of describing
all of the properties we have chosen?). In a sense the two directions represent
different aspects of mathematical versus logical enquiry, although we mustn’t
take this naive picture too seriously.

The crucial question is: what should we take to be the primitive elements
of all of mathematics? As nineteenth century ideas moved into the twentieth,
it was generally agreed that the primitive notions should be axioms governing
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1.1 Primitive notions 3

‘aggregates’ together with a means of describing or isolating objects within such
aggregates (sets/classes and the idea of membership). This was the birth of set
theory.

Remarks

1. There is a natural way to modify directed networks which relieves them of all
loops. The basic idea is in essence to repeatedly contract each minimal loop
to a single vertex. However, in order not to lose too much information, we
have to be careful not to combine two adjacent loops in one operation. To this
end we repeat the following simple process. Suppose our directed network
has labelled vertices. To each loop of minimal size we associate a new vertex
whose label is the set of all labels of the vertices of the loop it represents. We
then delete all vertices belonging to these minimal loops (which means we
also delete any edges that are deprived of one or two end vertices). Next we
connect the newly created vertices to the rest of the network in the natural
way: the outgoing edges are the outgoing edges of the original loop vertices
(in the case where minimal cycles are joined to one another by an edge, or
share edges or vertices, some of these edges will be joined to one of the new
vertices); and the incoming edges are the incoming edges of the original loop
vertices. We then repeat the construction on the new network. Eventually all
loops will vanish and we will be left with a tree with some set-labelled vertices.
In extreme cases we might end up with just one vertex with a complicated
label of nested sets. Performing this construction on the network associated
with a good sized dictionary would create an amusing toy model for what
might be called a lexicographic universe; one gets something of a burning
curiosity to see this process in action (at least to determine the first few
stages – what are the initial few minimal cycles?).

2. The common practice of mathematical abstraction is this: Take some intu-
itive object. Determine some properties of this object (express these proper-
ties in set theoretic/algebraic terms). Then consider the class of all objects
satisfying these properties. Of course this class will include a model of the
intuitive object you started with, but it might include a host of other objects
too, possibly some surprises. The extremal objects in this set might reveal
something new about the original object. To what extent can the original
object be isolated within this larger class of models; is there a further set
of properties which completely characterizes it among its cousins? This is a
simple idea, but it is remarkable how powerful it can be. We will see some
examples of this later.
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4 Introduction

A chain of definitions must be an infinite regress, an eventual cycle or it must
terminate in an undefined primitive notion. Rejecting the first two options we
must choose the primitive notions of the language of mathematics. Can all of
mathematics be described in terms of a theory of aggregates?

1.1.2 Intuition and its dangers

Fed by constant sensory bombardment from the outset, and through total im-
mersion in our environment, we develop an intuitive, albeit often misguided,
grasp of some fundamental notions. Exposed to a tidal wave of examples we
build soft conceptual structures on softer foundations and form a picture of the
physical and logical universe that is childishly simplistic yet, provided we don’t
question our ideas too closely, free from alarms and surprises. Such a thin grasp
of the world about us is adequate for the vast majority of human activities.
Once the sensory parameters are shifted, perhaps by space (the weirdness of the
subatomic world, or at the other extreme of magnification, clusters of galaxies
mere specks of dust) or by time (superslow motion, all living creatures now at
a geological pace, or superfast where we watch continents drift and observe the
evolution of species) we are immediately alienated, the intuitions moulded by
our mesoscopic upbringing of little use.

Without the ability to quickly construct a rough understanding of some
notions we would be helpless. This basic intelligence is essential in order to gain
a foothold in any subject; whether it is by forming a vague picture or by drawing
a rough analogy, we need some foundation on which to hang our thoughts. Later
enquiry may change the initial picture, sometimes drastically, but nevertheless
the ability to concoct an immediate (fuzzy) impression when presented with a
new concept is crucial.

The reality is that we, short-lived impatient biological beasts, work on un-
familiar complicated stimuli from the ‘top down’, dissecting pieces as required.
We tend to stop further scrutiny when we feel satisfied that the new entity
has been explained in terms of ideas we think we already understand. What
qualifies as ‘satisfaction’ is a matter of taste and experience. If, on the other
hand, we are working from the bottom up, building the foundations of a subject,
we are most content when the primitive assumptions are few in number, self-
evident and consistent to the best of our knowledge. A system of assumptions
is consistent if from it we cannot deduce both a statement and its negation.
The qualification ‘to the best of our knowledge’ may seem like an unsatisfactory
appeal to the arbitrary limits of human mathematical ability, however, as Gödel
famously demonstrated (see Appendix C), there are many systems for which it
is impossible to prove consistency without appealing to principles outside the
system.

It can be very rewarding to analyze notions that we take for granted. Such
analysis often uncovers surprises and we realize what little we understood in
the first place. Sometimes what we pretend to be obvious is far from clear, and
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1.1 Primitive notions 5

through the microscope we perceive magnificent strangeness. It is partly the
apparent surreal quality of some results in mathematics which initially draws
many people to it. These exotic ideas, when they first appear, seem to live far
from the utilitarian regions of science, yet they have a curious habit of barging
their way to the forefront of physics.

Many are drawn to mathematics simply for the pleasure of total immersion
in a consistent but otherworldly universe. Stanis�law Ulam acknowledges this
escapist aspect of the subject in his autobiography Adventures of a Mathemati-
cian.1

Eventually, in the mature stages of such critical investigation, we come to
regard the newly uncovered world as normal. All too often, mimicking the
progress of science itself, we must abandon or more often demote to crude ap-
proximations and special cases our preconceptions and gradually develop a new
intuition based on a more refined point of view. The ability, and more impor-
tantly, the willingness, to constantly question one’s beliefs and understanding
seems essential for any sort of intellectual progress.

Remarks

1. On reflection it is quite alarming how many of our intuitions are based on
pure guesswork, or even prejudice, founded on almost nothing at all. Even
the most elementary facts about the physical world can be counterintuitive
at first; here I am especially thinking of the pre-Galilean misconception that
heavier bodies fall faster than lighter bodies. Of course a well designed ex-
periment will swiftly correct this (simply ensure that both objects experience
the same air resistance). But there is no need to climb the steps of the Tower
of Pisa; a moment’s thought can help to shatter the false belief: imagine two
bodies falling and joining one another, or the reverse, a single body breaking
up into two smaller pieces as it falls. The notion of a body momentarily
changing its rate of acceleration as it splits or coalesces is clearly unnatural.
In particular consider the moment when two large bodies touch at a point;
are we to believe that the united body will suddenly start to plummet even
faster owing to this tiny point of contact, and then equally suddenly deceler-
ate as the contact is broken? Alternatively consider connecting a light and
heavy body together with a length of string. Is the lighter body somehow
expected to reduce the speed of descent of the heavier body, as if it were
a parachute, even though their combined weight exceeds the weight of each
component part? From these considerations alone one would conjecture that
all bodies experiencing the same air resistance, and in particular all bodies
in a vacuum, fall at the same rate, and experiment verifies this. Finding the
right way to think about something is the difficult part.

1Ulam [217], p. 120. Ulam compares some mathematical practices with drug use, or with
absorption in a game of chess, which some mathematicians embrace as a means of avoiding
the events of a world from which they wish to escape!
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6 Introduction

2. From a certain extremely reductionist viewpoint, what Eugene Wigner fa-
mously described as ‘the unreasonable effectiveness of mathematics in the
natural sciences’1 is not quite as unreasonable as it might seem at first glance.
That is to say, if one imagines a bottom-up description of the physical Uni-
verse, starting with some primitive elements governed by some simple rela-
tions, then there is no surprise at all that the emergent macroscopic world
that grows out of this will be a mathematical one. From this point of view
every mathematical result, no matter how esoteric, that is describable in
the underlying ‘logic’ of the Universe has the potential to describe some-
thing physical. There is perhaps still some room for mystery in that many
of the macroscopic mathematical relations in the Universe are so surpris-
ingly tractable (inverse square laws, beautiful symmetry and so forth) and
so elegantly related to one another. It is remarkable that the symbolically
expressed imaginative fantasies of mathematics can have such concrete ap-
plications. If the Universe is not mathematical, what else could it possibly
be?2

Intuition is reliable only in the limited environment in which it has evolved.
Unable to abandon its prejudices completely, we must constantly question what
appears to be obvious, often revealing conceptual problems and hidden paradoxes.
One intuitive notion which is ultimately paradoxical is that of arbitrary collec-
tions.

1.1.3 Arbitrary collections

One notion that we take for granted, to the point of blissful ignorance, has
been mentioned already: finiteness. To give a sound definition of finiteness is
a surprisingly sticky problem, but it is not intractable. We shall come to its
formal definition later, but for now we will have to settle for the intuitive idea
and take on trust that it can be formalized.

Finiteness is a property of certain arbitrary collections of objects. Without
reference to the sophisticated notion of ‘number’ or ‘counting’ how might we
compare such aggregates? We shall give an answer to this shortly. The objects
we have in mind, in this naive introduction at least, are free to be anything we
care to imagine, physical objects or, most often, abstract notions. We deliber-
ately delay mentioning ‘numbers’ for reasons which will soon become clear; we
will model numbers as certain specific sets of objects. By an element of a given
collection we mean one of the objects in the collection.

1Communications on Pure and Applied Mathematics, 13, 1–14 (1960). A copy of the
article is easily found online.

2There is of course a huge literature on this subject. For an interesting take on the rela-
tionship between mathematics and the empirical sciences from a fictionalist point of view, see
Leng [137].
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1.1 Primitive notions 7

It would be liberating to have at our disposal a list of synonyms for the word
‘collection’. However, as is often the case in mathematics, the most attractive
possible labels have very particular meanings attached to them already (‘group’,
‘category’, ‘set’ and ‘class’, for example, are all taken). One can be fairly con-
fident that any alternative to ‘aggregate’ has acquired a technical definition in
some branch of mathematics. This can cause interpretative difficulties in certain
expositions, but in practice context dictates meaning.

We will be seeing much talk of ‘sets’ and ‘classes’. Roughly speaking, a set
is a ‘well-behaved’ collection formed from other sets according to certain rules.
Each finite collection is a set, as are many infinite collections, including the basic
number systems we are about to introduce, with the exception of the collection of
all ordinal numbers and the collection of all cardinal numbers.1 Most set theories
include an axiom stating that a collection modelling the natural numbers is a
set, or one can prove this from more general axioms, and further axioms give
rise to infinitely many other infinite sets. A set theory with no infinite sets is
obviously possible, but such a setting is clearly not the right environment for
the subject of this book, and to adopt such an unnecessarily restrictive theory
would also mean having to reject vast amounts of beautiful (and very useful)
mathematics.

We can think of classes as collections of objects which share a common
property. All sets are classes, but there are classes which are not sets. These
sprawling monsters, called proper classes, are banished from the safer world of
sets because their presence gives rise to unpleasant consequences: the paradoxes.
If we were to allow proper classes to be sets then the theory would face an
internal contradiction and come crashing down, collapsing under the weight of
its own ambition. In fact, because of this delicate divide between sets and proper
classes, the notion of ‘set’ is rather subtle and deserves more discussion; ‘set’ is
treated as a primitive term in set theory, just as ‘line’ and ‘point’ are primitive
terms in axiomatic geometry. Exactly what is meant by a set – that is, its
principal interpretation; how it differs from the intuitive notion of a collection –
is very difficult to answer briefly, and it is this difficulty that makes the subject
of set theory peculiar at its outset. Most other branches of mathematics can
define their central concepts early in the development and with relative ease;
group theory begins (along with motivating examples) with the definition of a
group; topology begins (again with motivating examples) with the definition of
a topological space; measure theory soon gives the definition of a measure and
so on. Set theory, on the other hand, starts with ‘set variables’, ‘set’ being a
primitive term loaded with intuitive interpretation, the naive theory of which
turns out to be fundamentally flawed. In more explicit terms, which will be
clarified later, most mathematical theories grow from a plethora of examples,
the common features of which dictate the axioms of the underlying theory (each
example comprising a model of the theory). The historical development of set
theory did not fully conform to this familiar pattern; the axioms came before

1When such statements are made I am tacitly making reference to the set theory known
as Zermelo–Fraenkel set theory (ZF), which we will meet later, and which is the main theory
considered in this book.
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8 Introduction

all genuine models, only the successes and failures of naive set theory serving as
a guide. Every abstract theory begins, like set theory, with a set of constants
together with variables, relation symbols and axioms (see Section 2.3), but it
is quite rare to establish such a system without having a collection of models,
even vague intuitive ones, in mind.

It was the twentieth century clarification of the notions of theory and model
which was to bring the question ‘what is a set?’ into sharper focus. Any mean-
ingful answer to the question must be postponed until an explicit model of the
theory has been exhibited, and once this is done the answer is fairly banal (a
set, in a given model, is simply a member of the model).1 Prior to the construc-
tion of concrete models of set theory, at the theory-building stage, the question
should instead be ‘what properties do we want sets to have?’. Our answer to
this question is to present a short list of properties (the non-logical axioms)
which correspond to the properties we imagine intuitive sets – mathematical
aggregates – to have, based on our prior experience with mathematics.

Much of the early development of set theory concerns itself with the task
of determining when a class is and when it is not a set, or at least in which
ways sets can be combined to form other sets. I will use ‘set’ and ‘class’ quite
casually in this introduction with the hope that the reader understands that not
all classes are sets, and that the scope of some notions such as size (i.e. ‘number
of elements’) is restricted to sets and has no meaning for proper classes. At
the centre of set theory is the powerful idea of regarding as a single entity any
collection of objects.

We exhibit small finite sets by listing their elements inside braces, e.g.
{a, b, 4, 7}. Larger finite sets with an easily discernible pattern are listed in
the informal manner {0, 2, 4, . . . , 96, 98, 100}, and a similar conceit can be used
for some infinite sets. We can be more precise and write {n : n is an even integer
no less than 0 and no greater than 100} for the latter set. More generally we
use {x : φ}, meaning ‘the class of all x satisfying the property φ’, where φ is
some statement. A casual use of this simple device leads to profound difficulties
which will be discussed later.

In the presentation of a set the order in which its elements are displayed is of
no consequence, and any repetition of an element is redundant. It is important
to understand the distinction between a and {a}; the latter is a set comprising
a single element, namely the set a, while the former is the set a itself, which
may have many elements.

1Analogously it is meaningless to ask, when presented with the theory of groups (see
Subsection 2.4.1), ‘what is an element of a group?’. This is a question for an individual model
of group theory, i.e. a particular group, to answer, and the answer, depending on the model,
could be that it is a permutation, a rotation or translation in space, an invertible matrix,
an integer, a function, or indeed any other set theoretically describable mathematical object.
In axiomatic theories of geometry we postulate the properties of objects suggestively called
‘points’ and ‘lines’, but in describing models of the theory one needn’t take these elements to
be the familiar points and lines as they are understood in the conventional sense. It can be
advantageous to depart from the usual intuitive objects which motivated the axioms. Indeed,
this kind of imaginative departure was the conceptual leap required to produce concrete models
of non-Euclidean geometries (see Subsection 2.4.2).
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1.1 Primitive notions 9

Remarks

1. Jumping ahead of ourselves a little, we can give a precise set theoretic defi-
nition of a natural number, and so we can collect all such numbers together
to form a class. Do we want this collection to be a set, or should it remain a
proper class? After a century of very close scrutiny no contradiction has been
shown to follow from the assumption that the class of all natural numbers is
a set, so it would seem to be needlessly restrictive not to allow it to be a set.
We shall come back to this later.

2. It should be stressed that ZF is just one among many approaches to set
theory. Some alternatives closely resemble ZF, others are wildly different.
Indeed, there are approaches to the foundations of mathematics that are not
‘set theoretic’ at all. However, I think ZF is perhaps the most natural place to
begin; and once its ideas have been absorbed it is easy to consider variations
and deviations from the norm.

It is surprisingly difficult to rigorously define finiteness. In studying this problem
we begin to ask what it means for two sets to have the same number of objects.
What is ‘number’?

1.1.4 Equipollence

What do we mean when we say that two sets are of the same ‘size’? If these
sets are finite then the notion is something we seem to be able to cope with at
a very early stage in our cognitive development. We might proceed as follows.
Let us assume that we have been presented with two finite sets of objects. We
then simultaneously take one object from each set, continuing to remove pairs
until at least one of the sets has been exhausted. If at this terminal stage there
still remain objects in front of us then the pair of sets we started with clearly
had a different ‘number of elements’. Essentially we have just paired off objects,
that is, we say that two sets are of the same size if we can pair off the elements
of the first set with the elements of the second set in a one-to-one fashion.

As this is such a crucial concept we need to introduce a little terminology in
order to make the notion precise.1 A function between two sets A and B is a
mapping associating each element of A with some element of B. If we call the
function f then the statement that f maps the element a of A to the element b

1At this stage we are denoting arbitrary sets by upper case roman letters. Later we adopt
the convention that sets are to be denoted by lower case letters and classes by upper case
letters.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-05831-6 - The Logic of Infinity
Barnaby Sheppard
Excerpt
More information

http://www.cambridge.org/9781107058316
http://www.cambridge.org
http://www.cambridge.org


10 Introduction

a

b

1

2

α

3

19

A B

Figure 1.1 A simple-minded depiction of a function mapping the finite set A = {a, b, 1, 2}
to the finite set B = {α, 3, 19}, the details of the mapping illustrated by a collection of arrows
indicating which elements of B are associated with each element of A.

of B is denoted f(a) = b. One might regard, and in fact later define, a function
f from A to B as a collection F of ordered pairs (x, f(x)) where each element
of the set A appears as the first entry of exactly one of the ordered pairs in
F and where f(x) is in B for all x in A. The notation f : A → B is used as
a shorthand for the statement ‘f is a function from A to B’. We call A the
domain of f and B the codomain of f . The notion of function is one of the most
basic and widespread in mathematics.

It is commonplace to picture a function between arbitrary finite sets of ob-
jects as a collection of arrows joining elements of the domain to their targets in
the codomain (as in Figure 1.1). If the function maps x to y and we wish to
suppress the name of the function itself we often use the notation x �→ y.

We need to consider certain types of function. A function f : A → B is
injective (or one-to-one) if no two different elements of A are mapped to the
same element of B, that is to say f(x) = f(y) implies x = y. The function
illustrated in Figure 1.1 is not injective because both elements a and 1 of A
map to the same element of B, namely α. A function is surjective (or onto) if
each element of B is the image of at least one element of A, that is for every
b in B there exists an a in A such that f(a) = b. The function illustrated in
Figure 1.1 is not surjective because no element of A maps to the element 19 of
B. A function is bijective, or is a bijection, if it is both injective and surjective.

In the case when A and B are finite sets the intuitive statement that A
and B have the same number of elements is perfectly captured by the rigorous
statement that there exists a bijection A → B. We extend this particular
manifestation of number to all sets, finite or otherwise, and say that sets C and
D have the same cardinality if there exists a bijection C → D. We interpret this
correspondence as meaning that C and D have the same ‘number’ of elements,
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