978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field Excerpt

Regional Context

21.1. Introduction

This chapter serves as an introduction to Part B of this volume. It provides context for an assessment of regional aspects of climate change in different parts of the world, which are presented in the following nine chapters. While the main focus of those chapters is on the regional dimensions of impacts, adaptation, and vulnerability (IAV), this chapter also offers links to regional aspects of the physical climate reported by Working Group I (WGI) and of mitigation analysis reported by Working Group II (WGII). The chapter frames the discussion of both global and regional issues in a decision-making context. This context identifies different scales of decisions that are made (e.g., global, international, regional, national, subnational, local) and the different economic or impact sectors that are often the objects of decision making (e.g., agriculture, water resources, energy).

Within this framing, the chapter then provides three levels of synthesis. First there is an evaluation of the state of knowledge of changes in the physical climate system, and associated impacts and vulnerabilities, and the degree of confidence that we have in understanding those on a regional basis as relevant to decision making. Second, the regional context of the sectoral findings presented in Part A of this volume is discussed. Third, there is an analysis of the regional variation revealed in subsequent chapters of Part B. In so doing, the goal is to examine how the chapters reflect differences or similarities in how decision making is being addressed by policy and informed by research in different regions

of the world, and whether there is commonality of experience among regions that could be useful for enhancing decisions in the future.

Chapter 21

Having analyzed similarities and differences among IPCC regions, the chapter then discusses trans-regional and cross-regional issues that affect both human systems (e.g., trade and financial flows) and natural systems (e.g., ecosystem migration). Finally, the chapter evaluates methods of assessing regional vulnerabilities and adaptation, impact analyses, and the development and application of baselines and scenarios of the future. These evaluations provide guidance for understanding how such methods might ultimately be enhanced, so that the confidence in research about possible future conditions and consequences might ultimately improve.

21.2. Defining Regional Context

The climate system may be global in extent, but its manifestations through atmospheric processes, ocean circulation, bioclimatic zones, daily weather, and longer-term climate trends—are regional or local in their occurrence, character, and implications. Moreover, the decisions that are or could be taken on the basis of climate change science play out on a range of scales, and the relevance and limitations of information on both biophysical impacts and social vulnerability differ strongly from global to local scale, and from one region to another. Explicit recognition of geographical diversity is therefore important for any scientific

Table 21-1 | Dimensions of the institutions and actors involved in climate change decision making, including example entries referred to in chapters of this volume. Vertical integration can occur within as well as between levels. Decision-making domains are illustrative. Modified and extended from Mickwitz et al. (2009).

Level	Coherent policies and decision making across domains					
	Economy	Energy	Food/fiber	Technology	Environment	
Global	International Monetary Fund World Bank World Trade Organization Millennium Development Goals NGOs	International Energy Agency NGOs	 UN Food and Agriculture Organization World Trade Organization UN Convention on the Law of the Sea (fisheries) NGOs 	World Intellectual Property Organization NGOs	UN Framework Convention on Climate Change Convention on Biological Diversity Montreal Protocol NGOs	
Transnational National Subnational	Multilateral Financial Institutions/Multilateral Development Banks Bilateral Financial Institutions Organisation for Economic Cooperation and Development EU UN Convention on the Law of the Sea (transport)	 Organization of the Petroleum Exporting Countries Electric grid operators Oil/gas distributors 	 Association of Southeast Asian Nations Free Trade Area Common Market for Eastern and Southern Africa Mercado Común del Sur (Southern Common Market) EU Common Agricultural/Fisheries Policies 	 Multi-nationals' research and development EU Innovation Union 	Convention on Long-range Transboundary Air Pollution (Europe, North America, Central Asia) Mekong River Commission for Sustainable Development Lake Victoria Basin Commission EU Directives	
National	Ministries/governments Departments/agencies Banks Taxation	Ministries/governments Departments/agencies Energy providers Energy regulators	Ministries/governments Departments/agencies Tariffs, quotas, regulations	Ministries/governments Departments/agencies Education Innovation Research and development	Ministries/governments Departments/agencies Environmental law	
Subnational	States/provinces/counties/ clties Taxation	 States/provinces/counties/ cities Public/private energy providers 	States/provinces/counties/ cities Extension services Land use planning	States/provinces/counties/ cities Incentives Science parks	States/provinces/counties/ cities Protected areas Regional offices	
Local	Microfinance Cooperatives Employers Voters Consumers	Renewables Producers Voters Consumers	Farmers Foresters Fishers Landowners Voters Consumers	Entrepreneurs Investors Voters Consumers	Environmentalists Landowners Voters Consumers	

Notes: EU = European Union; NGO = Non-governmental Organization; UN = United Nations.

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field Excerpt

More information

Chapter 21

assessment of anthropogenic climate change. The following sections emphasize some of the crucial regional issues to be pursued in Part B of this report.

21.2.1. Decision-Making Context

A good understanding of decision-making contexts is essential to define the type and resolution and characteristics of information on climate change-related risks required from physical climate science and impacts, adaptation, and vulnerability assessments (IAV; e.g., IPCC, 2012). This is a general issue for all IAV assessments (cf. the chapters in Part A), but is especially important in the context of regional issues. Many studies still rely on global data sets, models, and assessment methods to inform regional decisions. However, tailored regional approaches are often more effective in accounting for variations in transnational, national, and local decision-making contexts, as well as across different groups of stakeholders and sectors. There is a growing body of literature offering guidance on how to provide the most relevant climate risk information to suit specific decision-making scales and processes (e.g., Willows and Connell, 2003; ADB, 2005; Kandlikar et al., 2011).

Table 21-1 illustrates the range of actors involved in decision making to be informed by climate information at different scales in different sectors, ranging from international policymakers and agencies, to national and local government departments, to civil society organizations and the private sector at all levels, all the way to communities and individual households. The table illustrates how policymakers face a dual challenge in achieving policy integration—vertically, through multiple levels of governance, and horizontally, across different sectors (policy coherence).

Many climate change risk assessments have traditionally been undertaken either in the context of international climate policy making (especially United Nations Framework Convention on Climate Change (UNFCCC)), or by (or for) national governments (e.g., Roshydromet, 2008; SEI, 2009; Watkiss et al., 2011; DEFRA, 2012). In those cases, climate risk information commonly assumes a central role in the decision making, for instance to inform mitigation policy, or for plans or projects designed specifically to adapt to a changing climate. In recent years, increasing attention has been paid to more sector- or project-specific risk assessments, intended to guide planning and practice by a range of actors (e.g., Liu et al., 2008; Rosenzweig et al., 2011). In those contexts, climate may often be considered as only one contributor among a much wider set of considerations for a particular decision. In such cases, there is uncertainty about not only the future climate, but also many other aspects of the system at risk. Moreover, while analysts will seek the best available climate risk information to inform the relative costs and benefits of the options available to manage that risk, they will also need to consider the various constraints to action faced by the actors involved.

Some of these decision-making contexts, such as the design of large infrastructure projects, may require rigorous quantitative information to feed formal evaluations, often including cost-benefit analysis (e.g., PriceWaterHouseCoopers, 2010; see also Chapter 17). Others, especially at the local level, such as decision making in traditional communities, are often made more intuitively, with a much greater role for a wide range of social and cultural aspects. These may benefit much more from

1140

Regional Context

experience-based approaches, participatory risk assessments, or storytelling to evaluate future implications of possible decisions (e.g., van Aalst et al., 2008; World Bank, 2010a). Multi-criteria analysis, scenario planning, and flexible decision paths offer options for taking action when faced with large uncertainties or incomplete information, and can help bridge adaptation strategies across scales (in particular between the national and local levels). In most cases, an understanding of the context in which the risk plays out, and the alternative options that may be considered to manage it, are not an afterthought, but a defining feature of an appropriate climate risk analysis, which requires a much closer interplay between decision makers and providers of climate risk information than often occurs in practice (e.g., Hellmuth et al., 2011; Cardona et al., 2012; Mendler de Suarez et al., 2012).

The different decision-making contexts also determine the types of climate information required, including the climate variables of interest and the geographic and time scales on which they need to be provided. Many climate change impact assessments have traditionally focused on changes over longer time horizons (often out to 2100, though recently studies have begun to concentrate more on mid-century or earlier). In contrast, most decisions taken today have a planning horizon ranging from a few months to about 2 decades (e.g., Wilby et al., 2009). For many such shorter term decisions, recent climate variability and observed trends are commonly regarded as sufficient to inform adaptation (e.g., Hallegatte, 2009). However, in so doing, there is often scope to make better use of observed climatological information as well as seasonal and maybe also decadal climate forecasts (e.g., Wang et al., 2009; Ziervogel et al., 2010; HLT, 2011; Mehta et al., 2011; Kirtman et al., 2014). For longer term decisions, such as decisions with irreversible long-term implications and investments with a long investment horizon and substantial vulnerability to changing climate conditions, longer term climate risk information is needed (e.g., Reeder and Ranger, 2010). However, while that longer term information is often used simply to plan for a best-guess scenario to optimize for most probable conditions, there is increasing attention for informing concerns about maladaptation (Barnett and O'Neill, 2010) and sequencing of potential adaptation options in a wider range of possible outcomes, requiring a stronger focus on ranges of possible outcomes and guidance on managing uncertainties, especially at regional, national, and sub-national levels (Hall et al., 2012; Gersonius et al., 2013).

Section 21.3 summarizes different approaches that have been applied at different scales, looking at IAV and climate science in a regional context and paying special attention to information contained in the regional chapters.

21.2.2. Defining Regions

There has been an evolution in the treatment of regional aspects of climate change in IPCC reports (Table 21-2) from a patchwork of case examples in the First Assessment Report (FAR) and its supplements, through to attempts at a more systematic coverage of regional issues following a request from governments, beginning with the *Special Report* on the Regional Impacts of Climate Change in 1998. That report distilled information from the Second Assessment Report (SAR) for 10 continental scale regions, and the subsequent Third (TAR) and Fourth (AR4)

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field Excerpt

More information

Regional Context

Chapter 21

assessments each contained comparable chapters on IAV in the WGII volumes. WGI and WGIII reports have also addressed regional issues in various chapters, using different methods of mapping, statistical aggregation, and spatial averaging to provide regional information.

Part B of this WGII contribution to the Fifth Assessment Report (AR5) is the first to address regional issues treated in all three WGs. It consists of chapters on the six major continental land regions, polar regions, small islands, and the ocean. These are depicted in Figure 21-1.

 Table 21-2
 Selected examples of regional treatment in previous IPCC Assessment Reports and Special Reports (SRs). Major assessments are subdivided into three Working Group reports, each described by generic titles.

IPCC report	Treatment of regions		
First Assessment Report (IPCC, 1990a–c)	Climate: Climate projections for 2030 in 5 subcontinental regions; observations averaged for Northern/Southern Hemisphere, by selected regions, and by 20° latitude × 60° longitude grid boxes		
	Impacts: Agriculture by continent (7 regions); ecosystem impacts for 4 biomes; water resources for case study regions; oceans and coastal zones treated separately		
	Responses: Emissions scenarios by 5 economic groupings; energy and industry by 9 regions; coastal zone and wetlands by 20 world regions		
Supplements to First Assessment	Climate: IS92 emissions scenarios by 7 world regions		
Report (IPCC, 1992a–b)	Impacts: Agriculture by continent (6 regions); ocean ecology by 3 latitude zones; questionnaire to governments on current activities on impacts by 6 World Meteorological Organization regions		
SR: Climate Change 1994 (IPCC, 1994a)	Evaluation of IS92 emissions scenarios by 4 world regions: OECD, USSR/Eastern Europe, China/Centrally Planned Asia, and Other		
Second Assessment Report (IPCC,	Climate: Gridded proportional circle maps for observed climate trends (5° latitude/longitude); climate projections for 7 subcontinental regions		
1996a—c)	Impacts, Adaptations, and Mitigation: Energy production statistics by 10 world regions; forests, wood production and management by three zones (tropical, temperate, boreal); separate chapters by physiographic types (deserts, mountain regions, wetlands, cryosphere, oceans, and coastal zones and small islands); country case studies, agriculture by 8 continental-scale regions; energy supply by 8 world regions		
	Economic and social dimensions: Social costs and response options by 6 economic regions		
SR: Regional Impacts (IPCC, 1998)	10 continental-scale regions: Africa, Arctic and Antarctic, Australasia, Europe, Latin America, Middle East and Arid Asia, North America, Small Island States, Temperate Asia, Tropical Asia. Subdivisions applied in some regions; vegetation shifts mapped by 9 biomes; reference socioeconomic data for 1 provided by country and for all regions except polar		
SR: Land-Use Change and Forestry (IPCC, 1998a)	9 biomes; 15 land use categories; national and regional case studies		
SR: Aviation (IPCC, 1999)	Observed and projected emissions by 22 regional air routes; inventories by 5 economic regions		
SR: Technology Transfer (IPCC, 2000b)	Country case studies; indicators of technology transfer by 6 or 7 economic regions		
SR: Emissions Scenarios (IPCC, 2000a)	4 SRES world regions defined in common across integrated assessment models; 11 sub-regions; driving factors by 6 continental regions		
Third Assessment Report (TAR) (IPCC, 2001a–c)	Climate: Gridded observations of climate trends; 20 example glaciers; 9 biomes for carbon cycle; Circulation Regimes for model evaluation; 23 "Giorgi- type" regions for regional climate projections		
	Impacts, Adaptation, and Vulnerability: Example projections from 32 "Giorgi-type" regions; basins by continent; 5 coastal types; urban/rural settlements; insurance by economic region; 8 continental-scale regions equivalent to 1998 Special Report but with single chapter for Asia; subdivisions used for each region (Africa, Asia, and Latin America by climate zones; North America by 6 core regions and 3 border regions)		
	Mitigation: Country examples; developed (Annex I) and developing (non-Annex I); various economic regions; policies, measures, and instruments by 4 blocs: OECD, Economies in Transition, China and Centrally Planned Asia, and Rest of the World		
SR: Ozone Layer (IPCC/TEAP, 2005)	Various economic regions/countries depending on sources and uses of chemicals		
SR: Carbon Capture and Storage (IPCC, 2005)	CO ₂ sources by 9 economic regions; potential storage facilities by geological formation, by oil/gas wells, by ocean depth; costs by 4 economic groupings		
Fourth Assessment Report (AR4) (IPCC, 2007a–c)	Climate: Land use types for surface forcing of climate; observations by 19 Giorgi regions; modes of variability for model evaluation; attribution of climate change by 22 "Giorgi-type" regions and by 6 ocean regions; climate statistics for 30 "Giorgi-type" regions; probability density functions of projections for 26 regions; summary graphs for 8 continental regions		
	Impacts, Adaptation, and Vulnerability: Studies reporting observed impacts by 7 IPCC regions; comparison of TAR and AR4 climate projections for 32 "Giorgi-type" regions; ecosystems by 11 biomes; agriculture by latitudinal zone; examples of coastal mega-deltas; industry and settlement by continental region; 8 continental regions, as in TAR, but Small Islands not Small Island States; sub-regional summary maps for each region, using physiographic, biogeographic, or geographic definitions; example vulnerability maps at sub-national scale and globally by country		
	Mitigation: 17 global economic regions for GDP; energy supply by continent, by economic region, by 3 UNFCCC groupings; trends in CO ₂ emissions (and projections), waste and carbon balance by economic region		
SR: Renewable Energy Sources and Climate Change Mitigation (IPCC, 2011)	Global maps showing potential resources for renewable energy: land suitability for bioenergy production, global irradiance for solar, geothermal, hydropower, ocean waves/tidal range, wind; various economic/continental regions: installed capacity (realized vs. potential), types of technologies, investment cost, cost effectiveness, various scenario-based projections; country comparisons of deployment and uptake of technologies, share of energy market		
SR: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC, 2012)	Trends in observed (tables) and projected (maps and tables) climate extremes (T_{max} , T_{min} , heat waves, heavy precipitation and dryness) by 26 sub- continental regions covering most land areas of the globe; attribution studies of return periods of extreme temperatures for 15 "Giorgi-type" regions; gridded global maps of projected extremes of temperature, precipitation, wind speed, dry spells, and soil moisture anomalies; continental-scale estimates of projected changes in impacts of extremes (floods, cyclones, coastal inundation) as well as frequencies of observed climate extremes and their estimated costs); distinctions drawn between local, country and international/global actors with respect to risk management and its financing		

Continued next page \rightarrow

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field Excerpt

More information

Chapter 21

Regional Context

Table 21-2 (continued)

IPCC report	Treatment of regions
Fifth Assessment Report (IPCC, 2013a, 2014, and this volume)	Climate: Gridded global maps of observed changes in climate; cryosphere observations from 19 glacierized regions and 3 Arctic permafrost zones; paleoclimatic reconstructions for 7 continental regions; CO ₂ fluxes for 11 land and 10 ocean regions; observed aerosol concentrations for 6 continental regions and projections for 9 regions; detection and attribution of changes in mean and extreme climate for 7 continental and 8 ocean regions; climate model evaluation and multi-model projections of extremes for 26 sub-continental regions; maps and time series of seasonal and annual multi-model simulated climate changes for 19 sub-continental regions and global over 1900–2100
	Impacts, Adaptation, and Vulnerability, Part A: Global and sectoral aspects: Gridded global maps of water resources, species distributions, ocean productivity; global map of 51 ocean biomes; detection and attribution of observed impacts, key risks, and vulnerabilities and adaptation synthesis by IPCC regions. Part B: Regional aspects: 9 continental-scale regions, 8 as in AR4 plus the ocean; sub-regions in Africa (5), Europe (5), Asia (6), Central and South America (5 or 7); Polar (2); Small Islands (4), Oceans (7); Other disaggregation by gridded maps or countries
	Mitigation: Economic statistics by development (3 or 5 categories) or by income; 5 country groupings (plus international transport) for emission- related scenario analysis (RCP5: OECD 1990 countries, Reforming Economies, Latin America and Caribbean, Middle East and Africa, Asia) with further disaggregation to 10 regions (RCP10) for regional development; land use regions for forest (13) and agriculture (11); Most other analyses by example countries

Notes: IS92 = IPCC Scenarios, 1992; OECD = Organisation for Economic Cooperation and Development; RCP = Representative Concentration Pathway; SRES = Special Report on Emission Scenarios; UNFCCC = United Nations Framework Convention on Climate Change.

Some of the main topics benefiting from a regional treatment are:

- Changes in climate, typically represented over sub-continental regions, a scale at which global climate models simulate well the pattern of observed surface temperatures, though more modestly the pattern of precipitation (Flato et al., 2014). While maps are widely used to represent climatic patterns, regional aggregation of this (typically gridded) information is still required to summarize the processes and trends they depict. Examples, including information on climate extremes, are presented elsewhere in this chapter, with systematic coverage of all regions provided in on-line supplementary material. Selected time series plots of temperature and precipitation change from an atlas of global and regional climate projections accompanying the WGI report (Collins et al., 2014a) can also be found in several regional chapters of this volume. In Figure 21-1, the sub-continental regions used for summarizing climate information are overlaid on a map of the nine regions treated in Part B.
- Changes in other aspects of the climate system, such as cryosphere, oceans, sea level, and atmospheric composition. A regional treatment of these phenomena is often extremely important to gauge real risks, for example, when regional changes in land movements and local ocean currents counter or reinforce global sea level rise (Nicholls et al., 2013).
- Climate change impacts on natural resource sectors, such as agriculture, forestry, ecosystems, water resources, and fisheries, and on human activities and infrastructure, often with regional treatment according to biogeographical characteristics (e.g., biomes; climatic zones; physiographic features such as mountains, river basins, coastlines, or deltas; or combinations of these).
- Adaptive capacity, which is a measure of society's ability to adjust to the potential impacts of climate change, sometimes characterized in relation to social vulnerability (Füssel, 2010b) and represented in regional statistics through the use of socioeconomic indicators.

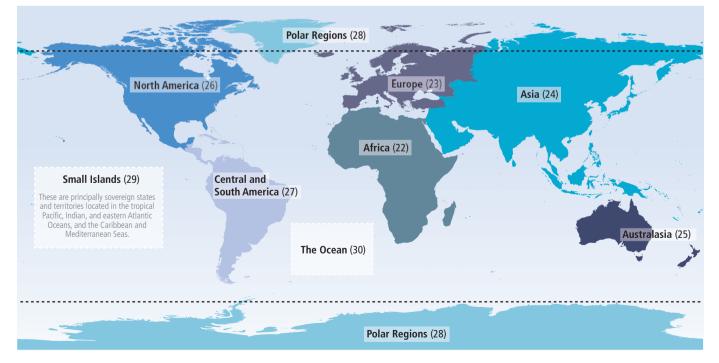


Figure 21-1 | Specification of the world regions described in Chapters 22 to 30 of this volume. Chapter numbers are given in parentheses after each region's name.

1142

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field Excerpt

More information

Regional Context

Chapter 21

Box 21-1 | A New Framework of Global Scenarios for Regional Assessment

The major socioeconomic driving factors of future emissions and their effects on the global climate system were characterized in the TAR and AR4 using scenarios derived from the IPCC *Special Report on Emissions Scenarios* (SRES; IPCC, 2000a). However, these scenarios are becoming outdated in terms of their data and projections, and their scope is too narrow to serve contemporary user needs (Ebi et al., 2013). More recently a new approach to developing climate and socioeconomic scenarios has been adopted in which concentration trajectories for atmospheric greenhouse gases (GHGs) and aerosols were developed first (Representative Concentration Pathways (RCPs); Moss et al., 2010), thereby allowing climate modeling work to proceed much earlier in the process than for SRES. Different possible Shared Socioeconomic Pathways (SSPs), intended for shared use among different climate change research communities, were to be determined later, recognizing that more than one socioeconomic pathway can lead to the same concentrations of GHGs and aerosols (Kriegler et al., 2012).

Four different RCPs were developed, corresponding to four different levels of radiative forcing of the atmosphere by 2100 relative to preindustrial levels, expressed in units of W m⁻²: RCP8.5, 6.0, 4.5, and 2.6 (van Vuuren et al., 2012). These embrace the range of scenarios found in the literature, and all except RCP8.5 also include explicit stabilization strategies, which were missing from the SRES set. An approximate mapping of the SRES scenarios onto the RCPs on the basis of a resemblance in radiative forcing by 2100 is presented in Chapter 1, pairing RCP8.5 with SRES A2 and RCP 4.5 with B1 and noting that RCP6.0 lies between B1 and B2. No SRES scenarios result in forcing as low as RCP2.6, though mitigation scenarios developed from initial SRES trajectories have been applied in a few climate model experiments (e.g., the E1 scenario; Johns et al., 2011).

In addition, five SSPs have been proposed, representing a wide range of possible development pathways (van Vuuren et al., 2013). An inverse approach is applied, whereby the SSPs are constructed in terms of outcomes most relevant to IAV and mitigation analysis, depicted as challenges to mitigation and adaptation. Narrative storylines for the SSPs have been outlined and preliminary quantifications of the socioeconomic variables are underway (O'Neill et al., 2013). Priority has been given to a set of *basic* SSPs with the minimum detail and comprehensiveness needed to provide inputs to impacts, adaptation, and vulnerability (IAV), and integrated assessment models, primarily at global or large regional scales. Building on the basic SSPs, a second stage will construct *extended* SSPs, designed for finer-scale regional and sectoral applications (O'Neill et al., 2013).

An overall scenario architecture has been designed for integrating RCPs and SSPs (Ebi et al., 2013; van Vuuren et al., 2013), for considering mitigation and adaptation policies using Shared Policy Assumptions (SPAs; Kriegler et al., 2013) and for providing relevant socioeconomic information at the scales required for IAV analysis (van Ruijven et al., 2013). Additional information on these scenarios can be found in Section 1.1.3 and elsewhere in the assessment (Blanco et al., 2014; Collins et al., 2014a; Kunreuther et al., 2014). However, owing to the time lags that still exist between the generation of RCP-based climate change projections in the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) and the development of SSPs, few of the IAV studies assessed in this report actively use these scenarios. Instead, most of the scenario-related studies in the assessed literature still rely on the SRES.

- *Emissions* of greenhouse gases (GHGs) and aerosols and their cycling through the Earth system (Blanco et al., 2014; Ciais et al., 2014).
- Human responses to climate change through mitigation and adaptation, which can require both global and regional approaches (e.g., Agrawala et al., 2014; Somanathan et al., 2014; Stavins et al., 2014; see also Chapters 14 to 16).

Detailed examples of these elements are referred to throughout this chapter and the regional ones that follow. Some of the more important international political groupings that are pertinent to the climate change issue are described and cataloged in on-line supplementary material (Section SM21.1). Table SM21-1 lists United Nations member states and other territories, their status in September 2013 with respect to some illustrative groupings of potential relevance for international climate change policy making, and the regional chapters in which they are considered in this report.

Finally, new global socioeconomic and environmental scenarios for climate change research have emerged since the AR4 that are richer and more diverse and offer a higher level of regional detail than previous scenarios taken from the IPCC *Special Report on Emissions Scenarios* (SRES). These are introduced in Box 21-1.

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field Excerpt

More information

Chapter 21

Regional Context

21.2.3. Introduction to Methods and Information

There has been significant confusion and debate about the definitions of key terms (Janssen and Ostrom, 2006), such as vulnerability (Adger, 2006), adaptation (Stafford Smith et al., 2011), adaptive capacity (Smit and Wandel, 2006), and resilience (Klein et al., 2003). One explanation is that the terms are not independent concepts, but defined by each other, thus making it impossible to remove the confusion around the definitions (Hinkel, 2011). The differences in the definitions relate to the different entry points for looking at climate change risk (IPCC, 2012).

Table 21-3 shows two ways to think about vulnerability, demonstrating that different objectives (e.g., improving well-being and livelihoods or reducing climate change impacts) lead to different sets of questions being asked. This results in the selection of different methods to arrive at the answers. The two approaches portrayed in the middle and righthand columns of Table 21-3 have also been characterized in terms of top-down (middle column) and bottom-up (right column) perspectives, with the former identifying physical vulnerability and the latter social vulnerability (Dessai and Hulme, 2004). In the middle column, the climate change impacts are the starting point for the analysis, revealing that people and/or ecosystems are vulnerable to climate change. This approach commonly applies global-scale scenario information and seeks to refine this to the region of interest through downscaling procedures. For the approach illustrated on the right, the development context is the starting point (i.e., social vulnerability), commonly focusing on local scales, on top of which climate change occurs. The task is then to identify what changes are needed in the broader scale development pathways to reduce vulnerability to climate change. Another difference is a contrast in time frames, where a climate change-focused approach tends to look to the future to see how to adjust to expected changes, whereas a vulnerabilityfocused approach is centered on addressing the drivers of current vulnerability. A similar approach is described by McGray et al. (2009).

The information assessed in this chapter stems from different entry points, framings, and conceptual frameworks for thinking about risk. They merge social and natural science perspectives with transdisciplinary ones. There is no single "best" conceptual model: the approaches change as scientific thinking evolves. The IPCC itself is an example of this: The IPCC *Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation* (SREX; IPCC, 2012) presented an approach that has been adjusted and adapted in Chapter 19 of this volume. Chapter 2 describes other conceptual models for decision making in the context of risk. Though this diversity in approaches enriches our understanding of climate change, it can also create difficulties in comparisons. For instance, findings that are described as vulnerabilities in some studies may be classified as impacts in others; lack of adaptive capacity in one setting might be described as social vulnerability in another.

21.3. Synthesis of Key Regional Issues

This section presents information on IAV and climate science in a regional context. To illustrate how these different elements play out in actual decision-making contexts, Table 21-4 presents examples drawn from the regional and thematic chapters, which illustrate how information about vulnerability and exposure, and climate science at different scales, inform adaptation (implemented in policy and practice as part of a wider decision-making context). These show that decision making is informed by a combination of different types of information. However, this section is organized by the three constituent elements: vulnerabilities and impacts, adaptation, and climate science.

The following two subsections offer a brief synopsis of the approaches being reported in the different regional chapters on impacts and vulnerability studies (Section 21.3.1) and adaptation studies (Section 21.3.2), aiming particularly to highlight similarities and differences among regions. Table 21-5 serves as a rough template for organizing this discussion, which is limited to the literature that has been assessed by the regional chapters. It is organized according to the broad research approach applied, distinguishing impacts and vulnerability approaches from adaptation approaches, and according to scales of application ranging from global to local.

Table 21-3 | Two possible entry points for thinking about vulnerability to climate change (illustrative and adapted from Füssel, 2007).

Context	Climate change impacts perspective	Vulnerability perspective
Root problem	Climate change	Social vulnerability
Policy context	Climate change mitigation, compensation, technical adaptation	Social adaptation, sustainable development
Illustrative policy question	What are the benefits of climate change mitigation?	How can the vulnerability of societies to climatic hazards be reduced?
Illustrative research question	What are the expected net impacts of climate change in different regions?	Why are some groups more affected by climatic hazards than others?
Vulnerability and adaptive capacity	Adaptive capacity determines vulnerability	Vulnerability determines adaptive capacity
Reference for adaptive capacity	Adaptation to future climate change	Adaptation to current climate variability
Starting point of analysis	Scenarios of future climate change	Current vulnerability to climatic variability
Analytical function	Descriptive, positivist	Explanatory, normative
Main discipline	Natural science	Social science
Meaning of "vulnerability"	Expected net damage for a given level of global climate change	Susceptibility to climate change and variability as determined by socioeconomic factors
Vulnerability approach	Integrated, risk-hazard	Political economy
Reference	IPCC (2001a)	Adger (1999)

1144

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field Excerpt

More information

Regional Context

Chapter 21

Section 21.3.3 then provides an analysis of advances in understanding of the physical climate system for the different regions covered in Chapters 22 to 30, introducing new regional information to complement the large-scale and process-oriented findings presented by WGI AR5.

Understanding the reliability of this information is of crucial importance. In the context of IAV studies it is relevant to a very wide range of scales and it comes with a similarly wide range of reliabilities. Using a classification of spatial scales similar to that presented in Table 21-5,

Table 21-4 | Illustrative examples of adaptation experience, as well as approaches to reduce vulnerability and enhance resilience. Adaptation actions can be influenced by climate variability, extremes, and change, and by exposure and vulnerability at the scale of risk management. Many examples and case studies demonstrate complexity at the level of communities or specific regions within a country. It is at this spatial scale that complex interactions between vulnerabilities, inequalities, and climate change come to the fore. At the same time, place-based examples illustrate how larger-level drivers and stressors shape differential risks and livelihood trajectories, often mediated by institutions.

Early warning systems for heat		
Exposure and vulnerability	Factors affecting exposure and vulnerability include age, preexisting health status, level of outdoor activity, socioeconomic factors including poverty and social isolation, access to and use of cooling, physiological and behavioral adaptation of the population, urban heat island effects, and urban infrastructure. [8.2.3, 8.2.4, 11.3.3, 11.3.4, 11.4.1, 11.7, 13.2.1, 19.3.2, 23.5.1, 25.3, 25.8.1, SREX Table SPM.1]	
Climate information at the global scale	 Observed: Very likely decrease in the number of cold days and nights and increase in the number of warm days and nights, on the global scale between 1951 and 2010. [WGI AR5 2.6.1] Medium confidence that the length and frequency of warm spells, including heat waves, has increased globally since 1950. [WGI AR5 2.6.1] 	
	Projected: Virtually certain that, in most places, there will be more hot and fewer cold temperature extremes as global mean temperatures increase, for events defined as extremes on both daily and seasonal time scales. [WGI AR5 12.4.3]	
Climate information at the regional scale	Observed: • Likely that heat wave frequency has increased since 1950 in large parts of Europe, Asia, and Australia. [WGI AR5 2.6.1] • Medium confidence in overall increase in heat waves and warm spells in North America since 1960. Insufficient evidence for assessment or spatially varying trends in heat waves or warm spells for South America and most of Africa. [SREX Table 3-2; WGI AR5 2.6.1]	
	 Projected: Likely that, by the end of the 21st century under Representative Concentration Pathway 8.5 (RCP8.5) in most land regions, a current 20-year high-temperature event will at least double its frequency and in many regions occur every 2 years or annually, while a current 20-year low-temperature event will become exceedingly rare. [WGI AR5 12.4.3] Very likely more frequent and/or longer heat waves or warm spells over most land areas. [WGI AR5 12.4.3] 	
Description	Heat-health early warning systems are instruments to prevent negative health impacts during heat waves. Weather forecasts are used to predict situations associated with increased mortality or morbidity. Components of effective heat wave and health warning systems include identifying weather situations that adversely affect human health, monitoring weather forecasts, communicating heat wave and prevention responses, targeting notifications to vulnerable populations, and evaluating and revising the system to increase effectiveness in a changing climate. Warning systems for heat waves have been planned and implemented broadly, for example in Europe, the United States, Asia, and Australia. [11.7.3, 24.4.6, 25.8.1, 26.6, Box 25-6]	
Broader context	 Heat health warning systems can be combined with other elements of a health protection plan, for example building capacity to support communities most at risk, supporting and funding health services, and distributing public health information. In Africa, Asia, and elsewhere, early warning systems have been used to provide warning of and reduce a variety of risks related to famine and food insecurity; flooding and other weather-related hazards; exposure to air pollution from fire; and vector-borne and food-borne disease outbreaks. [7.5.1, 11.7, 15.4.2, 22.4.5, 24.4.6, 25.8.1, 26.6.3, Box 25-6] 	
Mangrove restoration to	reduce flood risks and protect shorelines from storm surge	
Exposure and vulnerability	Loss of mangroves increases exposure of coastlines to storm surge, coastal erosion, saline intrusion, and tropical cyclones. Exposed infrastructure, livelihoods, and people are vulnerable to associated damage. Areas with development in the coastal zone, such as on small islands, can be particularly vulnerable. [5.4.3, 5.5.6, 29.7.2, Box CC-EA]	
Climate information at the global scale	Observed: <i>Likely</i> increase in the magnitude of extreme high sea level events since 1970, mostly explained by rising mean sea level. [WGI AR5 3.7.5] <i>Low confidence</i> in long-term (centennial) changes in tropical cyclone activity, after accounting for past changes in observing capabilities. [WGI AR5 2.6.3] 	
	 Projected: Very likely significant increase in the occurrence of future sea level extremes by 2050 and 2100. [WGI AR5 13.7.2] In the 21st century, likely that the global frequency of tropical cyclones will either decrease or remain essentially unchanged. Likely increase in both global mean tropical cyclone maximum wind speed and rainfall rates. [WGI AR5 14.6] 	
Climate information at the regional scale	Observed: Change in sea level relative to the land (relative sea level) can be significantly different from the global mean sea level change because of changes in the distribution of water in the ocean and vertical movement of the land. [WGI AR5 3.7.3]	
	 Projected: Low confidence in region-specific projections of storminess and associated storm surges. [WGI AR5 13.7.2] Projections of regional changes in sea level reach values of up to 30% above the global mean value in the Southern Ocean and around North America, and between 10% to 20% above the global mean value in equatorial regions. [WGI AR5 13.6.5] More likely than not substantial increase in the frequency of the most intense tropical cyclones in the western North Pacific and North Atlantic. [WGI AR5 14.6] 	
Description	Mangrove restoration and rehabilitation has occurred in a number of locations (e.g., Vietnam, Djibouti, and Brazil) to reduce coastal flooding risks and protect shorelines from storm surge. Restored mangroves have been shown to attenuate wave height and thus reduce wave damage and erosion. They protect aquaculture industry from storm damage and reduce saltwater intrusion. [2.4.3, 5.5.4, 8.3.3, 22.4.5, 27.3.3]	
Broader context	 Considered a low-regrets option benefiting sustainable development, livelihood improvement, and human well-being through improvements for food security and reduced risks from flooding, saline intrusion, wave damage, and erosion. Restoration and rehabilitation of mangroves, as well as of wetlands or deltas, is ecosystem-based adaptation that enhances ecosystem services. Synergies with mitigation given that mangrove forests represent large stores of carbon. Well-integrated ecosystem-based adaptation can be more cost effective and sustainable than non-integrated physical engineering approaches. [5.5, 8.4.2, 14.3.1, 24.6, 29.3.1, 29.7.2, 30.6.1, 30.6.2, Table 5-4, Box CC-EA] 	

Continued next page \rightarrow

Cambridge University Press 978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field

Excerpt More information

Regional Context

Chapter 21

Table 21-4 (continued)

Community-based adapta	ition and traditional practices in small island contexts
Exposure and vulnerability	With small land area, often low elevation coasts, and concentration of human communities and infrastructure in coastal zones, small islands are particularly vulnerable to rising sea levels and impacts such as inundation, saltwater intrusion, and shoreline change. [29.3.1, 29.3.3, 29.6.1, 29.6.2, 29.7.2]
Climate information at the global scale	Observed: • Likely increase in the magnitude of extreme high sea level events since 1970, mostly explained by rising mean sea level. [WGI AR5 3.7.5] • Low confidence in long-term (centennial) changes in tropical cyclone activity, after accounting for past changes in observing capabilities. [WGI AR5 2.6.3] • Singe 1950 the number of heavy precipitation events over land has <i>likely</i> increased in more regions than it has decreased. [WGI AR5 2.6.2]
	 Projected: Very likely significant increase in the occurrence of future sea level extremes by 2050 and 2100. [WGI AR5 13.7.2] In the 21st century, likely that the global frequency of tropical cyclones will either decrease or remain essentially unchanged. Likely increase in both global mean tropical cyclone maximum wind speed and rainfall rates. [WGI AR5 14.6] Globally, for short-duration precipitation events, likely shift to more intense individual storms and fewer weak storms. [WGI AR5 12.4.5]
Climate information at the regional scale	Observed: Change in sea level relative to the land (relative sea level) can be significantly different from the global mean sea level change because of changes in the distribution of water in the ocean and vertical movement of the land. [WGI AR5 3.7.3]
	 Projected: Low confidence in region-specific projections of storminess and associated storm surges. [WGI AR5 13.7.2] Projections of regional changes in sea level reach values of up to 30% above the global mean value in the Southern Ocean and around North America, and between 10% and 20% above the global mean value in equatorial regions. [WGI AR5 13.6.5] More likely than not substantial increase in the frequency of the most intense tropical cyclones in the western North Pacific and North Atlantic. [WGI AR5 14.6]
Description	Traditional technologies and skills can be relevant for climate adaptation in small island contexts. In the Solomon Islands, relevant traditional practices include elevating concrete floors to keep them dry during heavy precipitation events and building low aerodynamic houses with palm leaves as roofing to avoid hazards from flying debris during cyclones, supported by perceptions that traditional construction methods are more resilient to extreme weather. In Fiji after Cyclone Ami in 2003, mutual support and risk sharing formed a central pillar for community-based adaptation, with unaffected households fishing to support those with damaged homes. Participatory consultations across stakeholders and sectors within communities and capacity building taking into account traditional practices can be vital to the success of adaptation initiatives in island communities, such as in Fiji or Samoa. [29.6.2]
Broader context	 Perceptions of self-efficacy and adaptive capacity in addressing climate stress can be important in determining resilience and identifying useful solutions. The relevance of community-based adaptation principles to island communities, as a facilitating factor in adaptation planning and implementation, has been highlighted, for example, with focus on empowerment and learning-by-doing, while addressing local priorities and building on local knowledge and capacity. Community-based adaptation can include measures that cut across sectors and technological, social, and institutional processes, recognizing that technology by itself is only one component of successful adaptation. [5.5.4, 29.6.2]
Adaptive approaches to f	lood defense in Europe
Exposure and vulnerability	Increased exposure of persons and property in flood risk areas has contributed to increased damages from flood events over recent decades. [5.4.3, 5.4.4, 5.5.5, 23.3.1, Box 5-1]
Climate information at the global scale	Observed: • Likely increase in the magnitude of extreme high sea level events since 1970, mostly explained by rising mean sea level. [WGI AR5 3.7.5] • Since 1950 the number of heavy precipitation events over land has <i>likely</i> increased in more regions than it has decreased. [WGI AR5 2.6.2]
	 Projected: Very likely that the time-mean rate of global mean sea level rise during the 21st century will exceed the rate observed during 1971–2010 for all RCP scenarios. [WGI AR5 13.5.1] Globally, for short-duration precipitation events, <i>likely</i> shift to more intense individual storms and fewer weak storms. [WGI AR5 12.4.5]
Climate information at the regional scale	Observed: • Likely increase in the frequency or intensity of heavy precipitation in Europe, with some seasonal and/or regional variations. [WGI AR5 2.6.2] • Increase in heavy precipitation in winter since the 1950s in some areas of northern Europe (medium confidence). Increase in heavy precipitation since the 1950s in some parts of west-central Europe and European Russia, especially in winter (medium confidence). [SREX Table 3-2] • Increasing mean sea level with regional variations, except in the Baltic Sea where the relative sea level is decreasing due to vertical crustal motion. [5.3.2, 23.2.2]
	 Projected: Over most of the mid-latitude land masses, extreme precipitation events will <i>very likely</i> be more intense and more frequent in a warmer world. [WGI AR5 12.4.5] Overall precipitation increase in northern Europe and decrease in southern Europe (<i>medium confidence</i>). [23.2.2] Increased extreme precipitation in northern Europe during all seasons, particularly winter, and in central Europe except in summer (<i>high confidence</i>). [23.2.2]
Description	Several governments have made ambitious efforts to address flood risk and sea level rise over the coming century. In the Netherlands, government recommendations include "soft" measures preserving land from development to accommodate increased river inundation; maintaining coastal protection through beach nourishment; and ensuring necessary political-administrative, legal, and financial resources. Through a multi-stage process, the British government has also developed extensive adaptation plans to adjust and improve flood defenses to protect London from future storm surges and river flooding. Pathways have been analyzed for different adaptation options and decisions, depending on eventual sea level rise, with ongoing monitoring of the drivers of risk informing decisions. [5.5.4, 23.7.1, Box 5-1]
Broader context	 The Dutch plan is considered a paradigm shift, addressing coastal protection by "working with nature" and providing "room for river." The British plan incorporates iterative, adaptive decisions depending on the eventual sea level rise with numerous and diverse measures possible over the next 50 to 100 years to reduce risk to acceptable levels. In cities in Europe and elsewhere, the importance of strong political leadership or government champions in driving successful adaptation action has been next for the next for the importance of strong political leadership or government champions in driving successful adaptation action has been next for the next for the
	noted.

Continued next page \rightarrow

1146

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field

Excerpt More information

Regional Context

Chapter 21

Table 21-4 (continued)

Index-based insurance fo	
Exposure and vulnerability	Susceptibility to food insecurity and depletion of farmers' productive assets following crop failure. Low prevalence of insurance due to absent or poorly developed insurance markets or to amount of premium payments. The most marginalized and resource-poor especially may have limited ability to afford insurance premiums. [10.7.6, 13.3.2, Box 22-1]
Climate information at the global scale	 Observed: Very likely decrease in the number of cold days and nights and increase in the number of warm days and nights, on the global scale between 1951 and 2010. [WGI AR5 2.6.1] Medium confidence that the length and frequency of warm spells, including heat waves, has increased globally since 1950. [WGI AR5 2.6.1] Since 1950 the number of heavy precipitation events over land has <i>likely</i> increased in more regions than it has decreased. [WGI AR5 2.6.2] Low confidence in a global-scale observed trend in drought or dryness (lack of rainfall). [WGI AR5 2.6.2]
	 Projected: Virtually certain that, in most places, there will be more hot and fewer cold temperature extremes as global mean temperatures increase, for events defined as extremes on both daily and seasonal time scales. [WGI AR5 12.4.3] Regional to global-scale projected decreases in soil moisture and increased risk of agricultural drought are <i>likely</i> in presently dry regions, and are projected with medium confidence by the end of this century under the RCP8.5 scenario. [WGI AR5 12.4.5] Globally, for short-duration precipitation events, <i>likely</i> shift to more intense individual storms and fewer weak storms. [WGI AR5 12.4.5]
Climate information at the regional scale	Observed: • Medium confidence in increase in frequency of warm days and decrease in frequency of cold days and nights in southern Africa. [SREX Table 3-2] • Medium confidence in increase in frequency of warm nights in northern and southern Africa. [SREX Table 3-2]
	 Projected: <i>Likely</i> surface drying in southern Africa by the end of the 21st century under RCP8.5 (<i>high confidence</i>). [WGI AR5 12.4.5] <i>Likely</i> increase in warm days and nights and decrease in cold days and nights in all regions of Africa (<i>high confidence</i>). Increase in warm days largest in summer and fall (<i>medium confidence</i>). [Table SREX 3-3] Likely more frequent and/or longer heat waves and warm spells in Africa (<i>high confidence</i>). [Table SREX 3-3]
Description	A recently introduced mechanism that has been piloted in a number of rural locations, including in Malawi, Sudan, and Ethiopia, as well as in India. When physical conditions reach a particular predetermined threshold where significant losses are expected to occur—weather conditions such as excessively high or low cumulative rainfall or temperature peaks—the insurance pays out. [9.4.2, 13.3.2, 15.4.4, Box 22-1]
Broader context	 Index-based weather insurance is considered well suited to the agricultural sector in developing countries. The mechanism allows risk to be shared across communities, with costs spread over time, while overcoming obstacles to traditional agricultural and disaster insurance markets. It can be integrated with other strategies such as microfinance and social protection programs. Risk-based premiums can help encourage adaptive responses and foster risk awareness and risk reduction by providing financial incentives to policyholders to reduce their risk profile. Challenges can be associated with limited availability of accurate weather data and difficulties in establishing which weather conditions cause losses. Basis risk (i.e., farmers suffer losses but no payout is triggered based on weather data) can promote distrust. There can also be difficulty in scaling up pilot schemes. Insurance for work programs can enable cash-poor farmers to work for insurance premiums by engaging in community-identified disaster risk reduction projects. [10.7.4 to 10.7.6, 13.3.2, 15.4.4, Table 10-7, Box 22-7]

Continued next page \rightarrow

Table 21-6 provides a summary assessment of the reliability of information on two basic climate variables of relevance, surface temperature and precipitation. It is drawn from the extensive assessment and supporting literature from the IPCC SREX (IPCC, 2012) and the WGI AR5 reports. Some discussion of relevant methodologies and related issues and results is also presented in Section 21.5.

Table 21-6 shows there are significant variations in reliability, with finer scaled information generally less reliable given the need for a greater density of observations and/or for models to maintain accuracy at high resolutions. The reliability of information on past climate depends on the availability and quality of observations, which are higher for temperature than precipitation as observations of temperature are easier to make and generally more representative of surrounding areas than is the case for precipitation. Future climate change reliability depends on the performance of the models used for the projections in simulating the processes that lead to these changes. Again, information on temperature is generally more reliable owing to the models' demonstrated ability to simulate the relevant processes when reproducing past changes. The significant geographical variations, in the case of the observations, result from issues with availability and/or quality of data in many regions, especially for precipitation. For future climate change, data availability is less of an issue with the advent of large ensembles of climate model

projections but quality is a significant problem in some regions where the models perform poorly and there is little confidence that processes driving the projected changes are accurately captured. A framework for summary information on model projections of future climate change placed in the context of observed changes is presented in Box 21-2.

21.3.1. Vulnerabilities and Impacts

21.3.1.1. Observed Impacts

The evidence linking observed impacts on biological, physical, and (increasingly) human systems to recent and ongoing regional climate changes has become more compelling since the AR4 (see Chapter 18). One reason for this is the improved reporting of published studies from hitherto under-represented regions of the world, especially in the tropics (Rosenzweig and Neofotis, 2013). That said, the disparity is still large between the copious evidence being presented from Europe and North America, as well as good quality data emerging from Australasia, polar regions, many ocean areas, and some parts of Asia and South America, compared to the much sparser coverage of studies from Africa, large parts of Asia, Central and South America, and many small islands. On the other hand, as the time series of well-calibrated satellite observations

978-1-107-05816-3 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Vicente R. Barros and Christopher B. Field

Excerpt More information

Chapter 21

Regional Context

Table 21-4 (continued)

Relocation of agricultural industries in Australia		
Exposure and vulnerability	Crops sensitive to changing patterns of temperature, rainfall, and water availability. [7.3, 7.5.2]	
Climate information at the global scale	Observed: • Very likely decrease in the number of cold days and nights and increase in the number of warm days and nights, on the global scale between 1951 and 2010. [WGI AR5 2.6.1] • Medium confidence that the length and frequency of warm spells, including heat waves, has increased globally since 1950. [WGI AR5 2.6.1] • Medium confidence in precipitation change over global land areas since 1950. [WGI AR5 2.5.1] • Since 1950 the number of heavy precipitation events over land has <i>likely</i> increased in more regions than it has decreased. [WGI AR5 2.6.2] • Low confidence in a global-scale observed trend in drought or dryness (lack of rainfall). [WGI AR5 2.6.2]	
	 Projected: Virtually certain that, in most places, there will be more hot and fewer cold temperature extremes as global mean temperatures increase, for events defined as extremes on both daily and seasonal time scales. [WGI AR5 12.4.3] Virtually certain increase in global precipitation as global mean surface temperature increases. [WGI AR5 12.4.1] Regional to global-scale projected decreases in soil moisture and increased risk of agricultural drought are <i>likely</i> in presently dry regions, and are projected with <i>medium confidence</i> by the end of this century under the RCP8.5 scenario. [WGI AR5 12.4.5] Globally, for short-duration precipitation events, <i>likely</i> shift to more intense individual storms and fewer weak storms. [WGI AR5 12.4.5] 	
Climate information at the regional scale	Observed: • Cool extremes rarer and hot extremes more frequent and intense over Australia and New Zealand, since 1950 (<i>high confidence</i>). [Table 25-1] • Likely increase in heat wave frequency since 1950 in large parts of Australia. [WGI AR5 2.6.1] • Likely increase in precipitation in southwestern Australia since the 1970s and southeastern Australia since the mid-1990s, and annual increases in precipitation in northwestern Australia since the 1950s (<i>very high confidence</i>). [Table 25-1] • Mixed or insignificant trends in annual daily precipitation extremes, but a tendency to significant increase in annual intensity of heavy precipitation in recent decades for sub-daily events in Australia (<i>high confidence</i>). [Table 25-1]	
	 Projected: Hot days and nights more frequent and cold days and nights less frequent during the 21st century in Australia and New Zealand (<i>high confidence</i>). [Table 25-1] Annual decline in precipitation over southwestern Australia (<i>high confidence</i>) and elsewhere in southern Australia (<i>medium confidence</i>). Reductions strongest in the winter half-year (<i>high confidence</i>). [Table 25-1] Increase in most regions in the intensity of rare daily rainfall extremes and in sub-daily extremes (<i>medium confidence</i>) in Australia and New Zealand. [Table 25-1] Drought occurrence to increase in southern Australia (<i>medium confidence</i>). [Table 25-1] Snow depth and snow area to decline in Australia (<i>very high confidence</i>). [Table 25-1] Freshwater resources projected to decline in far southwestern Australia (<i>high confidence</i>). [25.5.2] 	
Description	Industries and individual farmers are relocating parts of their operations, for example for rice, wine, or peanuts in Australia, or are changing land use <i>in situ</i> in response to recent climate change or expectations of future change. For example, there has been some switching from grazing to cropping in southern Australia. Adaptive movement of crops has also occurred elsewhere. [7.5.1, 25.7.2, Table 9-7, Box 25-5]	
Broader context	 Considered transformational adaptation in response to impacts of climate change. Positive or negative implications for the wider communities in origin and destination regions. [25.7.2, Box 25-5] 	

become longer in duration, and hence statistically more robust, these are increasingly providing a near global coverage of changes in surface characteristics such as vegetation, hydrology, and snow and ice conditions that can usefully complement or substitute for surface observations (see Table 21-4 and Chapter 18 for examples). Changes in climate variables other than temperature, such as precipitation, evapotranspiration, and carbon dioxide (CO_2) concentration, are also being related to observed impacts in a growing number of studies (Rosenzweig and Neofotis, 2013; see also examples from Australia in Table 25-3 and southeastern South America in Figure 27-7).

Other regional differences in observed changes worth pointing out include trends in relative sea level, which is rising on average globally (Church et al., 2014), but displays large regional variations in magnitude, or even sign, due to a combination of influences ranging from El Niño/ La Niña cycles to local tectonic activity (Nicholls et al., 2013), making general conclusions about ongoing and future risks of sea level change very difficult to draw across diverse regional groupings such as small islands (see Chapter 29). There are also regional variations in another ongoing effect of rising CO₂ concentration—ocean acidification, with a greater pH decrease at high latitudes consistent with the generally lower buffer capacities of the high latitude oceans compared to lower latitudes (Rhein et al., 2014; Section 3.8.2). Calcifying organisms are expected to show responses to these trends in future, but key

1148

uncertainties remain at organismal to ecosystem levels (Chapter 30, Box CC-OA).

21.3.1.2. Future Impacts and Vulnerability

21.3.1.2.1. Impact models

The long-term monitoring of environmental variables, as well as serving a critical role in the detection and attribution of observed impacts, also provides basic calibration material used for the development and testing of impact models. These include process-based or statistical models used to simulate the biophysical impacts of climate on outcomes such as crop yield, forest productivity, river runoff, coastal inundation, or human mortality and morbidity (see Chapters 2 to 7, 11). They also encompass various types of economic models that can be applied to evaluate the costs incurred by biophysical impacts (see, e.g., Chapters 10 and 17).

There are also Integrated Assessment Models (IAMs), Earth system models, and other more loosely linked integrated model frameworks that represent multiple systems and processes (e.g., energy, emissions, climate, land use change, biophysical impacts, economic effects, global trade) and the various interactions and feedbacks between them. For examples of these, see Section 17.6.3 and Flato et al. (2014).