978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros

Excerpt More information

# SPM

## Summary for Policymakers

#### **Drafting Authors:**

Christopher B. Field (USA), Vicente R. Barros (Argentina), Michael D. Mastrandrea (USA), Katharine J. Mach (USA), Mohamed A.-K. Abdrabo (Egypt), W. Neil Adger (UK), Yury A. Anokhin (Russian Federation), Oleg A. Anisimov (Russian Federation), Douglas J. Arent (USA), Jonathon Barnett (Australia), Virginia R. Burkett (USA), Rongshuo Cai (China), Monalisa Chatterjee (USA/India), Stewart J. Cohen (Canada), Wolfgang Cramer (Germany/France), Purnamita Dasgupta (India), Debra J. Davidson (Canada), Fatima Denton (Gambia), Petra Döll (Germany), Kirstin Dow (USA), Yasuaki Hijioka (Japan), Ove Hoegh-Guldberg (Australia), Richard G. Jones (UK), Roger N. Jones (Australia), Roger L. Kitching (Australia), R. Sari Kovats (UK), Joan Nymand Larsen (Iceland), Erda Lin (China), David B. Lobell (USA), Iñigo J. Losada (Spain), Graciela O. Magrin (Argentina), José A. Marengo (Brazil), Anil Markandya (Spain), Bruce A. McCarl (USA), Roger F. McLean (Australia), Linda O. Mearns (USA), Guy F. Midgley (South Africa), Nobuo Mimura (Japan), John F. Morton (UK), Isabelle Niang (Senegal), Ian R. Noble (Australia), Leonard A. Nurse (Barbados), Karen L. O'Brien (Norway), Taikan Oki (Japan), Lennart Olsson (Sweden), Michael Oppenheimer (USA), Jonathan T. Overpeck (USA), Joy J. Pereira (Malaysia), Elvira S. Poloczanska (Australia), John R. Porter (Denmark), Hans-O. Pörtner (Germany), Michael J. Prather (USA), Roger S. Pulwarty (USA), Andy Reisinger (New Zealand), Aromar Revi (India), Patricia Romero-Lankao (Mexico), Oliver C. Ruppel (Namibia), David E. Satterthwaite (UK), Daniela N. Schmidt (UK), Josef Settele (Germany), Kirk R. Smith (USA), Dáithí A. Stone (Canada/South Africa/USA), Avelino G. Suarez (Cuba), Petra Tschakert (USA), Riccardo Valentini (Italy), Alicia Villamizar (Venezuela), Rachel Warren (UK), Thomas J. Wilbanks (USA), Poh Poh Wong (Singapore), Alistair Woodward (New Zealand), Gary W. Yohe (USA)

#### This Summary for Policymakers should be cited as:

IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.

Cambridge University Press 978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros Excerpt

More information

Summary for Policymakers

## **Contents**

| Assessing and Managing the Risks of Climate Change |                                                                                       | 3  |
|----------------------------------------------------|---------------------------------------------------------------------------------------|----|
|                                                    | Background Box SPM.1. Context for the Assessment                                      | 4  |
|                                                    | Background Box SPM.2. Terms Central for Understanding the Summary                     | 5  |
|                                                    | Background Box SPM.3. Communication of the Degree of Certainty in Assessment Findings | 6  |
| A:                                                 | Observed Impacts, Vulnerability, and Adaptation in a Complex and Changing World       | 4  |
|                                                    | A-1. Observed Impacts, Vulnerability, and Exposure                                    | 4  |
|                                                    | A-2. Adaptation Experience                                                            |    |
|                                                    | A-3. The Decision-making Context                                                      | 9  |
| B:                                                 | Future Risks and Opportunities for Adaptation                                         | 11 |
|                                                    | B-1. Key Risks across Sectors and Regions                                             | 11 |
|                                                    | Assessment Box SPM.1. Human Interference with the Climate System                      | 12 |
|                                                    | B-2. Sectoral Risks and Potential for Adaptation                                      | 14 |
|                                                    | B-3. Regional Key Risks and Potential for Adaptation                                  | 20 |
|                                                    | Assessment Box SPM.2. Regional Key Risks                                              | 21 |
| C:                                                 | Managing Future Risks and Building Resilience                                         | 25 |
|                                                    | C-1. Principles for Effective Adaptation                                              | 25 |
|                                                    | C-2. Climate-resilient Pathways and Transformation                                    | 28 |
| Supplementary Material                             |                                                                                       |    |

#### Cambridge University Press 978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros Excerpt More information

Summary for Policymakers

SPM

### ASSESSING AND MANAGING THE RISKS OF CLIMATE CHANGE

Human interference with the climate system is occurring,<sup>1</sup> and climate change poses risks for human and natural systems (Figure SPM.1). The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation.

Climate change involves complex interactions and changing likelihoods of diverse impacts. A focus on risk, which is new in this report, supports decision making in the context of climate change and complements other elements of the report. People and societies may perceive or rank risks and potential benefits differently, given diverse values and goals.

Compared to past WGII reports, the WGII AR5 assesses a substantially larger knowledge base of relevant scientific, technical, and socioeconomic literature. Increased literature has facilitated comprehensive assessment across a broader set of topics and sectors, with expanded coverage of human systems, adaptation, and the ocean. See Background Box SPM.1.<sup>2</sup>

Section A of this summary characterizes observed impacts, vulnerability and exposure, and adaptive responses to date. Section B examines future risks and potential benefits. Section C considers principles for effective adaptation and the broader interactions among adaptation, mitigation,

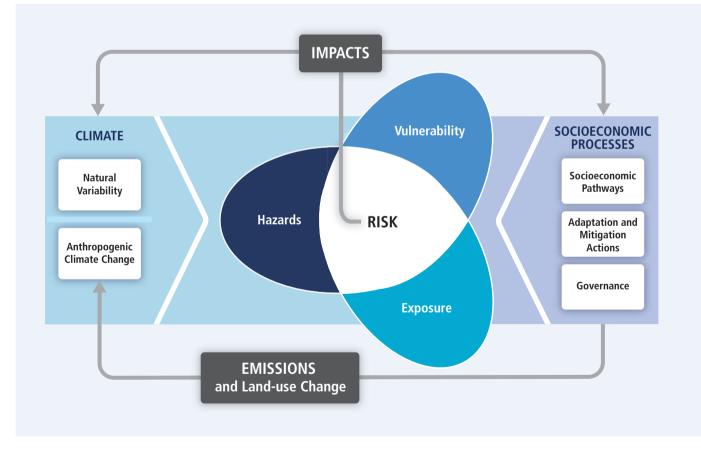



Figure SPM.1 | Illustration of the core concepts of the WGII AR5. Risk of climate-related impacts results from the interaction of climate-related hazards (including hazardous events and trends) with the vulnerability and exposure of human and natural systems. Changes in both the climate system (left) and socioeconomic processes including adaptation and mitigation (right) are drivers of hazards, exposure, and vulnerability. [19.2, Figure 19-1]

<sup>&</sup>lt;sup>1</sup> A key finding of the WGI AR5 is, "It is *extremely likely* that human influence has been the dominant cause of the observed warming since the mid-20th century." [WGI AR5 SPM Section D.3, 2.2, 6.3, 10.3-6, 10.9]

<sup>&</sup>lt;sup>2</sup> 1.1, Figure 1-1

978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros Excerpt

More information

SPM

**Summary for Policymakers** 

#### Background Box SPM.1 | Context for the Assessment

For the past 2 decades, IPCC's Working Group II has developed assessments of climate-change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC's Fourth Assessment Report (WGII AR4), published in 2007, and the *Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation* (SREX), published in 2012. It follows the Working Group I contribution to the AR5 (WGI AR5).<sup>3</sup>

The number of scientific publications available for assessing climate-change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation. Authorship of climate-change publications from developing countries has increased, although it still represents a small fraction of the total.<sup>4</sup>

The WGII AR5 is presented in two parts (Part A: Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage.

and sustainable development. Background Box SPM.2 defines central concepts, and Background Box SPM.3 introduces terms used to convey the degree of certainty in key findings. Chapter references in brackets and in footnotes indicate support for findings, figures, and tables.

#### A: OBSERVED IMPACTS, VULNERABILITY, AND ADAPTATION IN A COMPLEX AND CHANGING WORLD

#### A-1. Observed Impacts, Vulnerability, and Exposure

In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans. Evidence of climate-change impacts is strongest and most comprehensive for natural systems. Some impacts on human systems have also been attributed<sup>5</sup> to climate change, with a major or minor contribution of climate change distinguishable from other influences. See Figure SPM.2. Attribution of observed impacts in the WGII AR5 generally links responses of natural and human systems to observed climate change, regardless of its cause.<sup>6</sup>

In many regions, changing precipitation or melting snow and ice are altering hydrological systems, affecting water resources in terms of quantity and quality (*medium confidence*). Glaciers continue to shrink almost worldwide due to climate change (*high confidence*), affecting runoff and water resources downstream (*medium confidence*). Climate change is causing permafrost warming and thawing in high-latitude regions and in high-elevation regions (*high confidence*).<sup>7</sup>

Many terrestrial, freshwater, and marine species have shifted their geographic ranges, seasonal activities, migration patterns, abundances, and species interactions in response to ongoing climate change (*high confidence*). See Figure SPM.2B. While only a few recent species extinctions have been attributed as yet to climate change (*high confidence*), natural global climate change at rates slower than current anthropogenic climate change caused significant ecosystem shifts and species extinctions during the past millions of years (*high confidence*).<sup>8</sup>

Based on many studies covering a wide range of regions and crops, negative impacts of climate change on crop yields have been more common than positive impacts (*high confidence*). The smaller number of studies showing positive impacts relate mainly to

<sup>&</sup>lt;sup>3</sup> 1.2-3

<sup>&</sup>lt;sup>4</sup> 1.1, Figure 1-1

 <sup>&</sup>lt;sup>5</sup> The term *attribution* is used differently in WGI and WGI. Attribution in WGI considers the links between impacts on natural and human systems and observed climate change, regardless of its cause. By comparison, attribution in WGI quantifies the links between observed climate change and human activity, as well as other external climate drivers.
<sup>6</sup> 18.1, 18.3-6

<sup>&</sup>lt;sup>7</sup> 3.2, 4.3, 18.3, 18.5, 24.4, 26.2, 28.2, Tables 3-1 and 25-1, Figures 18-2 and 26-1

<sup>&</sup>lt;sup>8</sup> 4.2-4, 5.3-4, 6.1, 6.3-4, 18.3, 18.5, 22.3, 24.4, 25.6, 28.2, 30.4-5, Boxes 4-2, 4-3, 25-3, CC-CR, and CC-MB

<sup>4</sup> 

978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros Excerpt

#### **Summary for Policymakers**

SPM

#### Background Box SPM.2 | Terms Central for Understanding the Summary<sup>9</sup>

**Climate change**: Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings such as modulations of the solar cycles, volcanic eruptions, and persistent anthropogenic changes in the composition of the atmosphere or in land use. Note that the Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as: "a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods." The UNFCCC thus makes a distinction between climate change attributable to human activities altering the atmospheric composition, and climate variability attributable to natural causes.

**Hazard**: The potential occurrence of a natural or human-induced physical event or trend or physical impact that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems, and environmental resources. In this report, the term *hazard* usually refers to climate-related physical events or trends or their physical impacts.

**Exposure**: The presence of people, livelihoods, species or ecosystems, environmental functions, services, and resources, infrastructure, or economic, social, or cultural assets in places and settings that could be adversely affected.

**Vulnerability**: The propensity or predisposition to be adversely affected. Vulnerability encompasses a variety of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to cope and adapt.

**Impacts**: Effects on natural and human systems. In this report, the term *impacts* is used primarily to refer to the effects on natural and human systems of extreme weather and climate events and of climate change. Impacts generally refer to effects on lives, livelihoods, health, ecosystems, economies, societies, cultures, services, and infrastructure due to the interaction of climate changes or hazardous climate events occurring within a specific time period and the vulnerability of an exposed society or system. Impacts are also referred to as *consequences* and *outcomes*. The impacts of climate change on geophysical systems, including floods, droughts, and sea level rise, are a subset of impacts called physical impacts.

**Risk**: The potential for consequences where something of value is at stake and where the outcome is uncertain, recognizing the diversity of values. Risk is often represented as probability of occurrence of hazardous events or trends multiplied by the impacts if these events or trends occur. Risk results from the interaction of vulnerability, exposure, and hazard (see Figure SPM.1). In this report, the term *risk* is used primarily to refer to the risks of climate-change impacts.

Adaptation: The process of adjustment to actual or expected climate and its effects. In human systems, adaptation seeks to moderate or avoid harm or exploit beneficial opportunities. In some natural systems, human intervention may facilitate adjustment to expected climate and its effects.

**Transformation**: A change in the fundamental attributes of natural and human systems. Within this summary, transformation could reflect strengthened, altered, or aligned paradigms, goals, or values towards promoting adaptation for sustainable development, including poverty reduction.

**Resilience**: The capacity of social, economic, and environmental systems to cope with a hazardous event or trend or disturbance, responding or reorganizing in ways that maintain their essential function, identity, and structure, while also maintaining the capacity for adaptation, learning, and transformation.

high-latitude regions, though it is not yet clear whether the balance of impacts has been negative or positive in these regions (*high confidence*). Climate change has negatively affected wheat and maize yields for many regions and in the global aggregate (*medium confidence*). Effects on rice and soybean yield have been smaller in major production regions and globally, with a median change of zero across all available data, which are fewer for soy compared to the other crops. Observed impacts relate mainly to production aspects of food security rather than access

<sup>&</sup>lt;sup>9</sup> The WGII AR5 glossary defines many terms used across chapters of the report. Reflecting progress in science, some definitions differ in breadth and focus from the definitions used in the AR4 and other IPCC reports.

978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros Excerpt

More information

**Summary for Policymakers** 

#### Background Box SPM.3 | Communication of the Degree of Certainty in Assessment Findings<sup>10</sup>

The degree of certainty in each key finding of the assessment is based on the type, amount, quality, and consistency of evidence (e.g., data, mechanistic understanding, theory, models, expert judgment) and the degree of agreement. The summary terms to describe evidence are: *limited, medium,* or *robust;* and agreement: *low, medium,* or *high.* 

Confidence in the validity of a finding synthesizes the evaluation of evidence and agreement. Levels of confidence include five qualifiers: *very low, low, medium, high*, and *very high*.

The likelihood, or probability, of some well-defined outcome having occurred or occurring in the future can be described quantitatively through the following terms: *virtually certain*, 99–100% probability; *extremely likely*, 95–100%; *very likely*, 90–100%; *likely*, 66–100%; *more likely than not*, >50–100%; *about as likely as not*, 33–66%; *unlikely*, 0–33%; *very unlikely*, 0–10%; *extremely unlikely*, 0–5%; and *exceptionally unlikely*, 0–1%. Unless otherwise indicated, findings assigned a likelihood term are associated with *high* or *very high confidence*. Where appropriate, findings are also formulated as statements of fact without using uncertainty qualifiers.

Within paragraphs of this summary, the confidence, evidence, and agreement terms given for a bold key finding apply to subsequent statements in the paragraph, unless additional terms are provided.

or other components of food security. See Figure SPM.2C. Since AR4, several periods of rapid food and cereal price increases following climate extremes in key producing regions indicate a sensitivity of current markets to climate extremes among other factors (*medium confidence*).<sup>11</sup>

At present the worldwide burden of human ill-health from climate change is relatively small compared with effects of other stressors and is not well quantified. However, there has been increased heat-related mortality and decreased cold-related mortality in some regions as a result of warming (*medium confidence*). Local changes in temperature and rainfall have altered the distribution of some water-borne illnesses and disease vectors (*medium confidence*).<sup>12</sup>

**Differences in vulnerability and exposure arise from non-climatic factors and from multidimensional inequalities often produced by uneven development processes (very high confidence). These differences shape differential risks from climate change.** See Figure SPM.1. People who are socially, economically, culturally, politically, institutionally, or otherwise marginalized are especially vulnerable to climate change and also to some adaptation and mitigation responses (*medium evidence, high agreement*). This heightened vulnerability is rarely due to a single cause. Rather, it is the product of intersecting social processes that result in inequalities in socioeconomic status and income, as well as in exposure. Such social processes include, for example, discrimination on the basis of gender, class, ethnicity, age, and (dis)ability.<sup>13</sup>

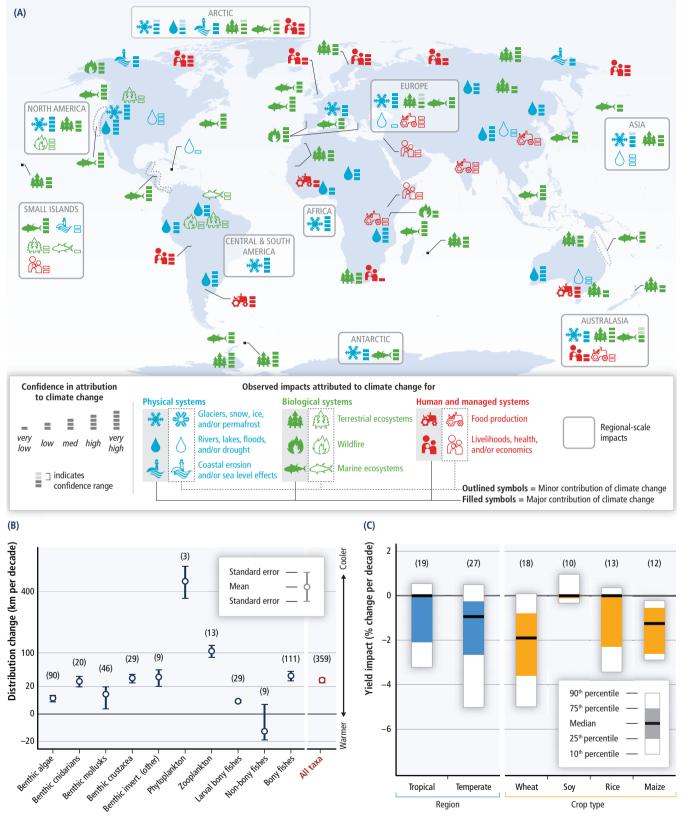
Impacts from recent climate-related extremes, such as heat waves, droughts, floods, cyclones, and wildfires, reveal significant vulnerability and exposure of some ecosystems and many human systems to current climate variability (very high confidence). Impacts of such climate-related extremes include alteration of ecosystems, disruption of food production and water supply, damage to infrastructure and settlements, morbidity and mortality, and consequences for mental health and human well-being. For countries at all levels of development, these impacts are consistent with a significant lack of preparedness for current climate variability in some sectors.<sup>14</sup>

Climate-related hazards exacerbate other stressors, often with negative outcomes for livelihoods, especially for people living in poverty (*high confidence*). Climate-related hazards affect poor people's lives directly through impacts on livelihoods, reductions in crop

<sup>&</sup>lt;sup>10</sup> 1.1, Box 1-1

<sup>&</sup>lt;sup>11</sup> 7.2, 18.4, 22.3, 26.5, Figures 7-2, 7-3, and 7-7

<sup>&</sup>lt;sup>12</sup> 11.4-6, 18.4, 25.8


<sup>&</sup>lt;sup>13</sup> 8.1-2, 9.3-4, 10.9, 11.1, 11.3-5, 12.2-5, 13.1-3, 14.1-3, 18.4, 19.6, 23.5, 25.8, 26.6, 26.8, 28.4, Box CC-GC

<sup>&</sup>lt;sup>14</sup> 3.2, 4.2-3, 8.1, 9.3, 10.7, 11.3, 11.7, 13.2, 14.1, 18.6, 22.3, 25.6-8, 26.6-7, 30.5, Tables 18-3 and 23-1, Figure 26-2, Boxes 4-3, 4-4, 25-5, 25-6, 25-8, and CC-CR

978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

Edited by Christopher B. Field and Vicente R. Barros Excerpt

More information



**Summary for Policymakers** 

Figure SPM.2 | Widespread impacts in a changing world. (A) Global patterns of impacts in recent decades attributed to climate change, based on studies since the AR4. Impacts are shown at a range of geographic scales. Symbols indicate categories of attributed impacts, the relative contribution of climate change (major or minor) to the observed impact, and confidence in attribution. See supplementary Table SPM.A1 for descriptions of the impacts. (B) Average rates of change in distribution (km per decade) for marine taxonomic groups based on observations over 1900-2010. Positive distribution changes are consistent with warming (moving into previously cooler waters, generally poleward). The number of responses analyzed is given within parentheses for each category. (C) Summary of estimated impacts of observed climate changes on yields over 1960–2013 for four major crops in temperate and tropical regions, with the number of data points analyzed given within parentheses for each category. [Figures 7-2, 18-3, and MB-2]

7

978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros Excerpt

More information

SPM

#### **Summary for Policymakers**

yields, or destruction of homes and indirectly through, for example, increased food prices and food insecurity. Observed positive effects for poor and marginalized people, which are limited and often indirect, include examples such as diversification of social networks and of agricultural practices.<sup>15</sup>

Violent conflict increases vulnerability to climate change (medium evidence, high agreement). Large-scale violent conflict harms assets that facilitate adaptation, including infrastructure, institutions, natural resources, social capital, and livelihood opportunities.<sup>16</sup>

#### A-2. Adaptation Experience

Throughout history, people and societies have adjusted to and coped with climate, climate variability, and extremes, with varying degrees of success. This section focuses on adaptive human responses to observed and projected climate-change impacts, which can also address broader risk-reduction and development objectives.

Adaptation is becoming embedded in some planning processes, with more limited implementation of responses (high confidence). Engineered and technological options are commonly implemented adaptive responses, often integrated within existing programs such as disaster risk management and water management. There is increasing recognition of the value of social, institutional, and ecosystem-based measures and of the extent of constraints to adaptation. Adaptation options adopted to date continue to emphasize incremental adjustments and cobenefits and are starting to emphasize flexibility and learning (medium evidence, medium agreement). Most assessments of adaptation have been restricted to impacts, vulnerability, and adaptation planning, with very few assessing the processes of implementation or the effects of adaptation actions (medium evidence, high agreement).17

Adaptation experience is accumulating across regions in the public and private sector and within communities (high confidence). Governments at various levels are starting to develop adaptation plans and policies and to integrate climate-change considerations into broader development plans. Examples of adaptation across regions include the following:

- In Africa, most national governments are initiating governance systems for adaptation. Disaster risk management, adjustments in technologies and infrastructure, ecosystem-based approaches, basic public health measures, and livelihood diversification are reducing vulnerability, although efforts to date tend to be isolated.18
- In Europe, adaptation policy has been developed across all levels of government, with some adaptation planning integrated into coastal and water management, into environmental protection and land planning, and into disaster risk management.<sup>19</sup>
- In Asia, adaptation is being facilitated in some areas through mainstreaming climate adaptation action into subnational development planning, early warning systems, integrated water resources management, agroforestry, and coastal reforestation of mangroves.<sup>20</sup>
- In Australasia, planning for sea level rise, and in southern Australia for reduced water availability, is becoming adopted widely. Planning for sea level rise has evolved considerably over the past 2 decades and shows a diversity of approaches, although its implementation remains piecemeal.<sup>21</sup>
- In North America, governments are engaging in incremental adaptation assessment and planning, particularly at the municipal level. Some proactive adaptation is occurring to protect longer-term investments in energy and public infrastructure.<sup>22</sup>
- In Central and South America, ecosystem-based adaptation including protected areas, conservation agreements, and community management of natural areas is occurring. Resilient crop varieties, climate forecasts, and integrated water resources management are being adopted within the agricultural sector in some areas.<sup>23</sup>

18 22.4

- 22 26.7-9 <sup>23</sup> 27.3
- 8

<sup>&</sup>lt;sup>15</sup> 8.2-3, 9.3, 11.3, 13.1-3, 22.3, 24.4, 26.8

<sup>&</sup>lt;sup>16</sup> 12.5, 19.2, 19.6

<sup>&</sup>lt;sup>17</sup> 4.4, 5.5, 6.4, 8.3, 9.4, 11.7, 14.1, 14.3-4, 15.2-5, 17.2-3, 21.3, 21.5, 22.4, 23.7, 25.4, 26.8-9, 30.6, Boxes 25-1, 25-2, 25-9, and CC-EA

<sup>&</sup>lt;sup>19</sup> 23.7, Boxes 5-1 and 23-3 <sup>20</sup> 24.4-6, 24.9 Box CC-TC

<sup>&</sup>lt;sup>21</sup> 25.4, 25.10, Table 25-2, Boxes 25-1, 25-2, and 25-9

978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros Excerpt

More information

**Summary for Policymakers** 

- In the Arctic, some communities have begun to deploy adaptive co-management strategies and communications infrastructure, combining traditional and scientific knowledge.<sup>24</sup>
- In small islands, which have diverse physical and human attributes, community-based adaptation has been shown to generate larger benefits when delivered in conjunction with other development activities.<sup>25</sup>
- In the ocean, international cooperation and marine spatial planning are starting to facilitate adaptation to climate change, with constraints from challenges of spatial scale and governance issues.<sup>26</sup>

SPM

#### A-3. The Decision-making Context

Climate variability and extremes have long been important in many decision-making contexts. Climate-related risks are now evolving over time due to both climate change and development. This section builds from existing experience with decision making and risk management. It creates a foundation for understanding the report's assessment of future climate-related risks and potential responses.

**Responding to climate-related risks involves decision making in a changing world, with continuing uncertainty about the severity and timing of climate-change impacts and with limits to the effectiveness of adaptation (***high confidence***). Iterative risk management is a useful framework for decision making in complex situations characterized by large potential consequences, persistent uncertainties, long timeframes, potential for learning, and multiple climatic and non-climatic influences changing over time. See Figure SPM.3.** Assessment of the widest possible range of potential impacts, including low-probability outcomes with large consequences, is central to understanding the benefits and trade-offs of alternative risk management actions. The complexity of adaptation actions across scales and contexts means that monitoring and learning are important components of effective adaptation.<sup>27</sup>

#### Adaptation and mitigation choices in the near term will affect the risks of climate change throughout the 21st century (high

*confidence*). Figure SPM.4 illustrates projected warming under a low-emission mitigation scenario and a high-emission scenario [Representative Concentration Pathways (RCPs) 2.6 and 8.5], along with observed temperature changes. The benefits of adaptation and mitigation occur over different but overlapping timeframes. Projected global temperature increase over the next few decades is similar across emission scenarios (Figure SPM.4B).<sup>28</sup> During this near-term period, risks will evolve as socioeconomic trends interact with the changing climate. Societal

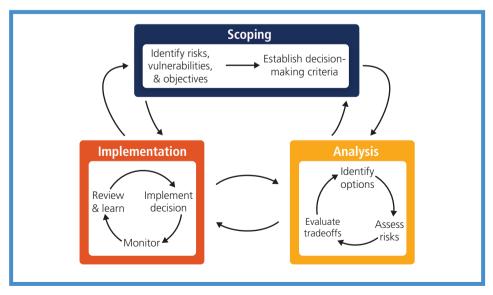



Figure SPM.3 | Climate-change adaptation as an iterative risk management process with multiple feedbacks. People and knowledge shape the process and its outcomes. [Figure 2-1]

<sup>24</sup> 28.2, 28.4

<sup>25</sup> 29.3, 29.6, Table 29-3, Figure 29-1

<sup>28</sup> WGI AR5 11.3

9

<sup>&</sup>lt;sup>26</sup> 30.6

<sup>&</sup>lt;sup>27</sup> 2.1-4, 3.6, 14.1-3, 15.2-4, 16.2-4, 17.1-3, 17.5, 20.6, 22.4, 25.4, Figure 1-5

978-1-107-05807-1 - Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Edited by Christopher B. Field and Vicente R. Barros

Excerpt More information

**Summary for Policymakers** 

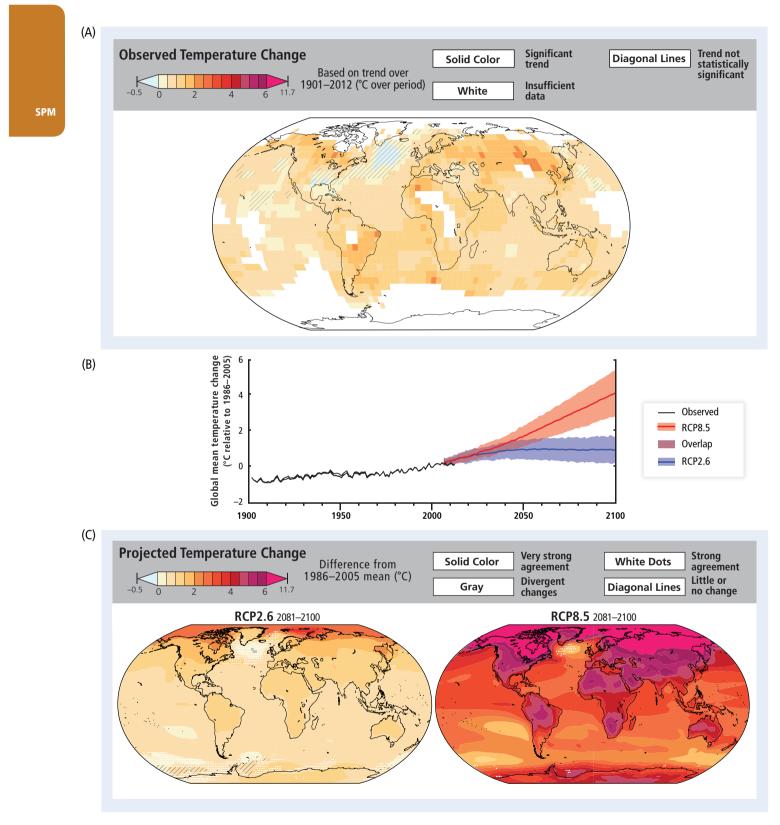



Figure SPM.4 | Observed and projected changes in annual average surface temperature. This figure informs understanding of climate-related risks in the WGII AR5. It illustrates temperature change observed to date and projected warming under continued high emissions and under ambitious mitigation.