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What Is a Kernel?

Every block of stone has a statue inside it and it is the task of the

sculptor to discover it.

(—Michelangelo Buonarroti (1475–1564))

1.1 Introduction

Preprocessing (data reduction or kernelization) is a computation that trans-

forms input data into “something simpler” by partially solving the problem

associated with it. Preprocessing is an integral part of almost any application:

Both systematic and intuitive approaches to tackle difficult problems often

involve it. Even in our everyday lives, we often rely on preprocessing,

sometimes without noticing it. Before we delve into the formal details, let us

start our acquaintance with preprocessing by considering several examples.

Let us first look at the simple chess puzzle depicted in Fig. 1.1. In the given

board position, we ask if White can checkmate the Black king in two moves.

A naive approach for solving this puzzle would be to try all possible moves

of White, all possible moves of Black, and then all possible moves of White.

This gives us a huge number of possible moves—the time required to solve this

puzzle with this approach would be much longer than a human life. However,

a reader with some experience of playing chess will find the solution easily:

First we move the white knight to f7, checking the black king. Next, the black

king has to move to either h8 or to h7, and in both cases it is checkmated once

the white rook is moved to h5. So how we are able to solve such problems? The

answer is that while at first look the position on the board looks complicated,

most of the pieces on the board, like white pieces on the first three rows or black

pieces on the first three columns, are irrelevant to the solution. See the right-

hand board in Fig. 1.1. An experienced player could see the important patterns
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Figure 1.1 Can White checkmate in two moves? The initial puzzle and an

“equivalent” reduced puzzle.

immediately, which allows the player to ignore the irrelevant information and

concentrate only on the essential part of the puzzle. In this case, the player

reduces the given problem to a seemingly simpler problem, and only then tries

to solve it.

In this example, we were able to successfully simplify a problem by relying

on intuition and acquired experience. However, we did not truly give a sound

rule, having provable correctness, to reduce the complexity of the problem—

this will be our goal in later examples. Moreover, in this context we also ask

ourselves whether we can turn our intuitive arguments into generic rules that

can be applied to all chess compositions. While there exist many rules for good

openings, middle games and endings in chess, turning intuition into generic

rules is not an easy task, and this is why the game is so interesting!

Let consider more generic rules in the context of another popular game,

Sudoku (see Fig. 1.2). Sudoku is a number-placement puzzle, which is played

over a 9×9 grid that is divided into 3×3 subgrids called “boxes.” Some of the

cells of the grid are already filled with some numbers. The objective is to fill

each of the empty cells with a number between 1 and 9 such that each number

appears exactly once in each row, column and box. While an unexperienced

Sudoku-solver will try to use a brute force to guess the missing numbers this

approach would work only for very simple examples. The experienced puzzle-

solver has a number of preprocessing rules under her belt that allow her to

reduce the puzzle to a state in which a brute-force approach can solve the

problem within reasonable time.

Several known such preprocessing techniques solve most easy puzzles. For

more difficult puzzles preprocessing is used to decrease the number of cases

one should analyze to find a solution, whereas the solution is obtained by
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Figure 1.2 A solution to a Sudoku puzzle.
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Figure 1.3 Applying the cross-hatching rule to the top-left and bottom-right

boxes.

combining preprocessing with other approaches. For example, one such well-

known preprocessing technique is cross-hatching. The cross-hatching rule is

applied to 3 × 3 boxes. Let us look at the top-left box of the sample puzzle in

Fig. 1.2. Because all numbers between 1 and 9 must appear in this box, the six

empty cells should be filled with the numbers 1, 4, 5, 6, 7 and 9. Let us attempt

to find an empty cell that can be filled in with the missing number 1. To identify

such a cell, we use the fact that any number can appear only once per row and

once per column. As illustrated in Fig. 1.3, we thus discover a unique cell

that can accommodate the number 1. In the bottom-right box, cross-hatching

identifies a unique cell that can accommodate the number 9.

Although many rules were devised for solving Sudoku puzzles, none

provides a generic solution to every puzzle. Thus while, for Sudoku, one can

formalize what a reduction is, we are not able to predict whether reductions

will solve the puzzle or even if they simplify the instance.
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4 1 What Is a Kernel?

In both examples, to solve the problem at hand, we first simplify, and only

then go about solving it. While in the chess puzzle we based our reduction

solely on our intuition and experience, in the Sudoku puzzle we attempted

to formalize the preprocessing rules. But is it possible not only to formalize

what a preprocessing rule is but also to analyze the impact of preprocessing

rigorously?

In all examples discussed so far, we did not try to analyze the potential

impact of implemented reduction rules. We know that in some cases reduction

rules will simplify instances significantly, but we have no idea if they will be

useful for all instances or only for some of them. We would like to examine

this issue in the context of NP-complete problems, which constitute a very

large class of interesting combinatorial problems. It is widely believed that

no NP-complete problem can be solved efficiently, that is, by a polynomial

time algorithm. Is it possible to design reduction rules that can reduce a hard

problem, say, by 5 percent while not solving it? At first glance, this idea can

never work unless P is equal to NP. Indeed, consider for example the following

NP-complete problem Vertex Cover. Here we are given an n-vertex graph

G and integer k. The task is to decide whether G contains a vertex cover S of

size at most k, that is a set such that every edge of G has at least one endpoint

in S. Vertex Cover is known to be NP-complete. Suppose that we have a

polynomial time algorithm that is able to reduce the problem to an equivalent

instance of smaller size. Say, this algorithm outputs a new graph G′ on n − 1

vertices and integer k′ such that G has a vertex cover of size at most k if and

only if G′ has a vertex cover of size at most k′. In this situation, we could

have applied the algorithm repeatedly at most n times, eventually solving the

problem optimally in polynomial time. This would imply that P is equal to NP

and thus the existence of such a preprocessing algorithm is highly unlikely.

Similar arguments are valid for any NP-hard problem. However, before hastily

determining that we have reached a dead end, let us look at another example.

In our last example, we have a set of pebbles lying on a table, and we ask if

we can cover all pebbles with k sticks. In other words, we are given a finite set

of points in the plane, and we need to decide if all these points can be covered

by at most k lines (see Fig. 1.4). This problem is known under the name Point

Line Cover. We say that the integer k is the parameter associated with our

problem instance. If there are n points, we can trivially solve the problem by

trying all possible ways to draw k lines. Every line is characterized by two

points, so this procedure will require roughly nO(k) steps.

But before trying all possible combinations, let us perform some much less

time-consuming operations. Toward this end, let us consider the following

simple yet powerful observation: If there is a line L covering at least k + 1
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Figure 1.4 Covering all points with three lines.

points, then this line should belong to every solution (that is, at most k lines

that cover all points). Indeed, if we do not use this line L, then all the points it

covers have to be covered by other lines, which will require at least k +1 lines.

Specifically, this means that if our instance has a solution, then it necessarily

contains L, and therefore the instance obtained by deleting all points covered

by L and decrementing the budget k by 1 also has a solution. In the other

direction, it is clear that if our new instance has a solution, then the original

one also has a solution. We thus conclude that solving the original problem

instance is equivalent to solving the instance obtained by deleting all points

covered by L and decrementing the budget k by 1. In other words, we can

apply the following reduction rule.

Reduction Rule Reduction Rule If there is a line L covering more than

k points, remove all points covered by L and decrement the parameter k

by one.

This reduction rule is sound: The reduced problem instance has a solution

if and only if the original problem instance has a solution. The naive imple-

mentation of the reduction rule takes time O(n3): For each pair of points, we

check if the line through it covers at least k + 1 points. After each application

of the reduction rule, we obtain an instance with a smaller number of points.

Thus, after exhaustive repeated application of this rule, we arrive at one of the

following situations.

• We end up having an instance in which no points are left, in which case the

problem has been solved.

• The parameter k is zero but some points are left. In this case, the problem

does not have solution.
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6 1 What Is a Kernel?

• Neither of the two previous conditions is true, yet the reduction rule cannot

be applied.

What would be the number of points in an irreducible instance correspond-

ing to the last case? Because no line can cover more than k points, we deduce

that if we are left with more than k2 points, the problem does not have solution.

We have thus managed, without solving the problem, to reduce the size of the

problem from n to k2! Moreover, we were able to estimate the size of the

reduced problem as a function of the parameter k. This leads us to the striking

realization that polynomial-time algorithms hold provable power over exact

solutions to hard problems; rather than being able to find those solutions, they

are able to provably reduce input sizes without changing the answer.

It is easy to show that the decision version of our puzzle problem—

determining whether a given set of points can be covered by at most k lines—is

NP-complete. While we cannot claim that our reduction rule always reduces

the number of points by 5 percent, we are still able to prove that the size of

the reduced problem does not exceed some function of the parameter k. Such

a reduced instance is called a kernel of the problem, and the theory of efficient

parameterized reductions, also known as kernelization, is the subject of this

book.

1.2 Kernelization: Formal Definition

To define kernelization formally, we need to define what a parameterized

problem is. The algorithmic and complexity theory studying parameterized

problems is called parameterized complexity.

Definition 1.1 A parameterized problem is a language L ⊆ �∗ × N, where

� is a fixed, finite alphabet. For an instance (x, k) ∈ �∗ × N, k is called the

parameter.

For example, an instance of Point Line Cover parameterized by the

solution size is a pair (S, k), where we expect S to be a set of points on a

plane encoded as a string over �, and k is a positive integer. Specifically, a pair

(S, k) is a yes-instance, which belongs to the Point Line Cover parameterized

language, if and only if the string S correctly encodes a set of points, which

we will also denote by S, and moreover this set of points can be covered

by k lines. Similarly, an instance of the CNF-SAT problem (satisfiability of

propositional formulas in conjunctive normal form), parameterized by the

number of variables, is a pair (ϕ, n), where we expect ϕ to be the input formula
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1.2 Kernelization: Formal Definition 7

encoded as a string over � and n to be the number of variables of ϕ. That is, a

pair (ϕ, n) belongs to the CNF-SAT parameterized language if and only if the

string ϕ correctly encodes a CNF formula with n variables, and the formula is

satisfiable.

We define the size of an instance (x, k) of a parameterized problem as |x|+k.

One interpretation of this convention is that, when given to the algorithm on

the input, the parameter k is encoded in unary.

The notion of kernelization is tightly linked to the notion of fixed-parameter

tractability (FPT) of parameterized problems. Before we formally define what

a kernel is, let us first briefly discuss this basic notion, which serves as

background to our story. Fixed-parameter algorithms are the class of exact

algorithms where the exponential blowup in the running time is restricted to a

small parameter associated with the input instance. That is, the running time

of such an algorithm on an input of size n is of the form O (f (k) nc), where

k is a parameter that is typically small compared to n, f (k) is a (typically

super-polynomial) function of k that does not involve n, and c is a constant.

Formally,

Definition 1.2 A parameterized problem L ⊆ �∗ × N is called fixed-

parameter tractable if there exists an algorithm A (called a fixed-

parameter algorithm), a computable function f : N → N, and a constant

c with the following property. Given any (x, k) ∈ �∗ × N, the algorithm

A correctly decides whether (x, k) ∈ L in time bounded by f (k) · |x|c.

The complexity class containing all fixed-parameter tractable problems is

called FPT.

The assumption that f is a computable function is aligned with the book by

Cygan et al. (2015). This assumption helps to avoid running into trouble when

developing complexity theory for fixed-parameter tractability.

We briefly remark that there is a hierarchy of intractable parameterized

problem classes above FPT. The main ones are the following.

FPT ⊆ M[1] ⊆ W[1] ⊆ M[2] ⊆ W[1] ⊆ · · · ⊆ W[P] ⊆ XP

The principal analog of the classical intractability class NP is W[1]. In

particular, a fundamental problem complete for W[1] is the k-Step Halting

Problem for Nondeterministic Turing Machines (with unlimited non-

determinism and alphabet size). This completeness result provides an analog

of Cook’s theorem in classical complexity. A convenient source of W[1]-

hardness reductions is provided by the result that Clique is complete for
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8 1 What Is a Kernel?

W[1]. Other highlights of this theory are that Dominating Set is complete

for W[2], and that FPT=M[1] if and only if the exponential time hypothesis

fails. The classical reference on parameterized complexity is the book by

Downey and Fellows (1999). A rich collection of books for further reading

about parameterized complexity is provided in the “Bibliographic Notes” to

this chapter.

Let us now turn our attention back to the notion of kernelization, which is

formally defined as follows.

Definition 1.3 Let L be a parameterized problem over a finite alpha-

bet �. A kernelization algorithm, or in short, a kernelization, for L is an

algorithm with the following property. For any given (x, k) ∈ �∗ × N,

it outputs in time polynomial in |(x, k)| a string x′ ∈ �∗ and an integer

k′ ∈ N such that

((x, k) ∈ L ⇐⇒ (x′, k′) ∈ L) and |x′|, k′ ≤ h(k),

where h is an arbitrary computable function. If K is a kernelization for L,

then for every instance (x, k) of L, the result of running K on the input

(x, k) is called the kernel of (x, k) (under K). The function h is referred to

as the size of the kernel. If h is a polynomial function, then we say that the

kernel is polynomial.

We remark that in the preceding definition, the function h is not unique.

However, in the context of a specific function h known to serve as an upper

bound on the size of our kernel, it is conventional to refer to this function h as

the size of the kernel.

We often say that a problem L admits a kernel of size h, meaning that

every instance of L has a kernel of size h. We also often say that L admits

a kernel with property �, meaning that every instance of L has a kernel with

property �. For example, saying that Vertex Cover admits a kernel with O(k)

vertices and O(k2) edges is a short way of saying that there is a kernelization

algorithm K such that for every instance (G, k) of the problem, K outputs a

kernel with O(k) vertices and O(k2) edges.

While the running times of kernelization algorithms are of clear importance,

the optimization of this aspect is not the topic of this book. However, we

remark that, lately, there is some growing interest in optimizing this aspect

of kernelization as well, in particular in the design of linear-time kernelization

algorithms. Here, linear time means that the running time of the algorithm is

linear in |x|, but it can be nonlinear in k.
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It is easy to see that if a decidable (parameterized) problem admits a

kernelization for some function f , then the problem is FPT: For every instance

of the problem, we call a polynomial time kernelization algorithm, and then we

use a decision algorithm to identify if the resulting instance is valid. Because

the size of the kernel is bounded by some function of the parameter, the running

time of the decision algorithm depends only on the parameter. Interestingly, the

converse also holds, that is, if a problem is FPT then it admits a kernelization.

The proof of this fact is quite simple, and we present it here.

Theorem 1.4 If a parameterized problem L is FPT then it admits a

kernelization.

Proof: Suppose that there is an algorithm deciding if (x, k) ∈ L in time

f (k)|x|c for some computable function f and constant c. On the one hand,

if |x| ≥ f (k), then we run the decision algorithm on the instance in time

f (k)|x|c ≤ |x|c+1. If the decision algorithm outputs yes, the kernelization

algorithm outputs a constant size yes-instance, and if the decision algorithm

outputs no, the kernelization algorithm outputs a constant size no-instance. On

the other hand, if |x| < f (k), then the kernelization algorithm outputs x. This

yields a kernel of size f (k) for the problem.

Theorem 1.4 shows that kernelization can be seen as an alternative defini-

tion of FPT problems. So to decide if a parameterized problem has a kernel, we

can employ many known tools already given by parameterized complexity. But

what if we are interested in kernels that are as small as possible? The size of a

kernel obtained using Theorem 1.4 equals the dependence on k in the running

time of the best known fixed-parameter algorithm for the problem, which is

usually exponential. Can we find better kernels? The answer is yes, we can,

but not always. For many problems we can obtain polynomial kernels, but

under reasonable complexity-theoretic assumptions, there exist FPT problems

that do not admit kernels of polynomial size.

Finally, if the input and output instances are associated with different prob-

lems, then the weaker notion of compression replaces the one of kernelization.

In several parts of this book polynomial compression will be used to obtain

polynomial kernels. Also the notion of compression will be very useful in

the theory of lower bounds for polynomial kernels. Formally, we have the

following weaker form of Definition 1.3.

Definition 1.5 A polynomial compression of a parameterized language

Q ⊆ �∗ × N into a language R ⊆ �∗ is an algorithm that takes as input

an instance (x, k) ∈ �∗ × N, works in time polynomial in |x| + k, and returns

a string y such that:
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10 1 What Is a Kernel?

(i) |y| ≤ p(k) for some polynomial p(·), and

(ii) y ∈ R if and only if (x, k) ∈ Q.

If |�| = 2, the polynomial p(·) will be called the bitsize of the compression.

In some cases, we will write of a polynomial compression without spec-

ifying the target language R. This means that there exists a polynomial

compression into some language R.

Of course, a polynomial kernel is also a polynomial compression. We

just treat the output kernel as an instance of the unparameterized version

of Q. Here, by an unparameterized version of a parameterized language Q we

mean a classic language Q̃ ⊆ �∗ where the parameter is appended in unary

after the instance (with some separator symbol to distinguish the start of the

parameter from the end of the input). The main difference between polynomial

compression and kernelization is that the polynomial compression is allowed

to output an instance of any language R, even an undecidable one.

When R is reducible in polynomial time back to Q, then the combination

of compression and the reduction yields a polynomial kernel for Q. In

particular, every problem in NP can be reduced in polynomial time by a

deterministic Turing machine to any NP-hard problem. The following theorem

about polynomial compression and kernelization will be used in several places

in this book.

Theorem 1.6 Let Q ⊆ �∗ × N be a parameterized language and R ⊆ �∗ be

a language such that the unparameterized version of Q ⊆ �∗ × N is NP-hard

and R ⊆ �∗ is in NP. If there is a polynomial compression of Q into R, then Q

admits a polynomial kernel.

Proof: Let (x, k) be an instance of Q. Then the application of a polynomial

compression to (x, k) results in a string y such that |y| = kO(1) and y ∈ R

if and only if (x, k) ∈ Q. Because Q̃ is NP-hard and R is in NP, there is

a polynomial time many-to-one reduction f from R to Q̃. Let z = f (y).

Because the time of the reduction is polynomial in the size of y, we have

that it runs in time kO(1) and hence |z| = kO(1). Also we have that z ∈ Q̃

if and only if y ∈ R. Let us remind that z is an instance of the unparameterized

version of Q, and thus we can rewrite z as an equivalent instance (x′, k′) ∈ Q.

This two-step polynomial-time algorithm is the desired kernelization algorithm

for Q.

Two things are worth a remark. Theorem 1.6 does not imply a polynomial

kernel when we have a polynomial compression in a language that is not in

NP. There are examples of natural problems for which we are able to obtain
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