

Design and Deployment of Small Cell Networks

This comprehensive resource covers everything you need to know about small cell networks, from design, to analysis, optimization, and deployment.

Detailing fundamental concepts as well as more advanced topics, and describing emerging trends, challenges, and recent research results, in this book experts explain how you can improve performance, decision making, resource management, and energy efficiency in next-generation wireless networks.

Key topics covered include green small cell networks and associated tradeoffs, optimized design and performance analysis, backhauling and traffic overloading, contextaware self-organizing networks, deployment strategies, and mobility management in large-scale heterogeneous networks (HetNets).

Written by leading experts in academia and industry, and including tools and techniques for small cell network design and deployment, this is an ideal resource for graduate students, researchers, and industry practitioners working in communications and networking.

Alagan Anpalagan is a Professor in the Department of Electrical and Computer Engineering at Ryerson University where he is the recipient of the Dean's Teaching Award; Faculty Scholastic, Research and Creativity Award; and Faculty Service Award. He is a registered Professional Engineer in the province of Ontario, Canada and a Fellow of the Institution of Engineering and Technology.

Mehdi Bennis is a Senior Research Fellow at the Centre for Wireless Communications (CWC), University of Oulu, Finland. Previously he worked as a research engineer at IMRA-EUROPE and was a visiting researcher at the Alcatel-Lucent Chair on Flexible Radio, SUPELEC.

Rath Vannithamby leads a team responsible for 5G and Internet of Things research at Intel Labs and was previously a researcher at Ericsson. He is currently a Senior Member of the IEEE and an IEEE Communications Society Distinguished Lecturer.

Design and Deployment of Small Cell Networks

ALAGAN ANPALAGAN

Ryerson University

MEHDI BENNIS

University of Oulu

RATH VANNITHAMBY

Intel Corporation

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107056718

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

ISBN 978-1-107-05671-8 Hardback

Additional resources for this publication at www.cambridge.org/9781107056718

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of contributors	page x	
	Preface	XV	
1	Mobility performance optimization for 3GPP LTE HetNets Kathiravetpillai Sivanesan, Jialin Zou, Subramanian Vasudevan, and Sudeep Palat		
	1.1 Introduction	1	
	1.2 Radio link monitoring and failure recovery process	4	
	1.3 Handover process	7	
	1.4 Mobility performance and challenges	11	
	1.5 Mobility performance results	16	
	1.6 RLM and RLF recovery enhancement in HetNets	21	
	1.7 Discovery of small cells	23	
	1.8 Summary	29	
2	Design and performance analysis of multi-radio small cell networks Nageen Himayat, Shu-ping Yeh, Shilpa Talwar, Mikhail Gerasimenko, Sergey Andreev, and Yevgeni Koucheryavy		
	2.1 Introduction	31	
	2.2 Integrated multi-RAT HetNet architectures	34	
	2.3 Radio resource management in multi-RAT HetNets	37	
	2.4 Analytical frameworks for radio resource management in integrated	1	
	multi-RAT access network	41	
	2.5 System evaluation methodology and assumptions	46	
	2.6 Performance evaluation	48	
	2.7 Summary and next steps	54	
3	Dynamic TDD small cell management	58	
	Cheng-Chih Chao, Yi-Ting Lin, and Hung-Yu Wei		
	3.1 Dynamic TDD system overview	58	
	3.2 D-TDD deployment and issues	62	
	3.3 Simulation methodology	64	
	3.4 Interference mitigation method for D-TDD	69	
	3.5 Conclusion	72	

vi **Contents**

	2CDD DAN standards for small calls	75
4	3GPP RAN standards for small cells Weimin Xiao, Jialing Liu, and Anthony C. K. Soong	75
	4.1 Introduction	75
	4.2 Interference management	76
	4.3 Mobility management	83
	4.4 Spectrum utilization	85
	4.5 Dense network adaptation	87
	4.6 Other related 3GPP RAN items	90
	4.7 Future 3GPP features for small cell	93
	4.8 Appendix: brief description of LTE channels	94
5	Dense networks of small cells	96
	Jialing Liu, Weimin Xiao, and Anthony C. K. Soong	
	5.1 Introduction	96
	5.2 Evaluation and performance of dense networks of small cells	98
	5.3 Characterizing dense cellular networks	107
	5.4 Technologies for dense networks	111
	5.5 Summary and future directions	118
	5.6 Appendix	120
6	Traffic offloading scenarios for heterogeneous networks	122
	Adrian Kliks, Nikos Dimitriou, Andreas Zalonis, and Oliver Holland	
	6.1 Introduction	122
	6.2 The role of small cells in traffic offloading	124
	6.3 Technological solutions for HetNets	127
	6.4 HetNets offloading: benefits analysis	137
	6.5 HetNets offloading assessment	139
	6.6 Conclusions	144
7	Required number of small cell access points in heterogeneous	
	wireless networks	148
	S. Alireza Banani, Andrew Eckford, and Raviraj Adve	
	7.1 Introduction	148
	7.2 Finite-area network with uniformly distributed SC APs	150
	7.3 Dependent placement of SCs in a hexagonal grid network	158
8	Small cell deployments: system scenarios, performance, and analysis	169
	Mark C. Reed and He Wang	
	8.1 System scenarios	171
	8.2 Analytical model and performance analysis	180
	8.3 Summary	187

		Contents	vii
9	_	orary cognitive small cell networks for rapid and emergency deployments Al-Hourani, Sithamparanathan Kandeepan, and Senthuran Arunthavanathan	191
		Introduction	191
		The concept of temporary cognitive small cell networks	192
		Network model	196
		Deployment process Compiting interference mitigation techniques	198 199
		Cognitive interference mitigation techniques Spectrum sensing and radio environment learning	203
		Simulation of temporary cognitive small cell networks	203
		Conclusion	210
			210
10	_	term evolution (LTE) and LTE-Advanced activities in small cell networks g, Jinsong Wu, Lu Zhang, and Shengjie Zhao	213
	10.1	Introduction	213
	10.2	Relay eNodeB in LTE-Advanced	215
	10.3	Pico eNodeB in LTE-Advanced	223
	10.4	Home eNodeB in LTE-Advanced	230
	10.5	Small cell enhancement in Release 12	235
	10.6	Summary	239
11	Game	theory and learning techniques for self-organization in small	
		etworks	242
	Prabod	ini Semasinghe, Kun Zhu, Ekram Hossain, and Alagan Anpalagan	
	11.1	Small cell networks	242
	11.2	Self-organization	244
	11.3	Issues and challenges in self-organizing small cell networks	248
	11.4	Game theory for self-organizing small cell networks	250
	11.5	Game theory-based resource management for self-organizing small cells	258
	11.6	Learning techniques for self-organizing small cell networks	270
	11.7	Conclusion	278
12	_	y efficient strategies with BS sleep mode in green small cell networks Yhang and Jun Cai	284
	12.1	Tutus duration	204
	12.1 12.2	Introduction System model and problem formulation	284 288
	12.2	•	291
	12.3		302
	12.4		302
			300
13		ity management in small cell heterogeneous networks egg and Xavier Gelabert	309
	13.1	Introduction	309
		Mobility in LTE small cell HetNets	311

viii	Conte	nts		
	13.3 13.4	Mobility robustness optimization (MRO) Inter-system mobility: LTE to WiFi	328 333	
	13.5	Summary	335	
14	perfo	rt of deploying small cells: field trial experiments, system design, rmance prediction, and deployment feasibility Calin, Aliye Özge Kaya, Amine Abouliatim, Gonçalo Ferrada, and Ionel Petrut	338	
	14.3 14.4	Introduction LTE small cell field trials LTE performance prediction framework validation with measurements High density small cells' design for stadiums using the LTE performance prediction framework Summers	338 339 349 354 360	
15	14.5 Summary Centralized self-optimization of interference management in LTE-A HetNets Yasir Khan, Berna Sayrac, and Eric Moulines		363	
	15.1 15.2 15.3 15.4 15.5	Introduction Interference management in HetNets Surrogate-based optimization (SBO) Centralized self-optimization for interference mitigation Concluding remarks and open issues	363 365 370 383 388	
16	Self-organized ICIC for SCN Lorenza Giupponi, Ali Imran, and Ana Maria Galindo			
	16.1 16.2 16.3	Femto-macro interference control: a time-difference learning approach Macro-femto interference minimization through self-organization of macro cell azimuth angles Summary	394 407 421	
17	Large-scale deployment and scalability Iris Barcia, Simon Chapman, and Chris Beale		425	
	17.1 17.2 17.3	Introduction L-SND for modern wireless networks Large-scale challenges	425 431 439	
18	_	y efficient heterogeneous networks M. A. Imran, M. Z. Shakir, and K. A. Qaraqe	462	
	18.1 18.2 18.3 18.4 18.5	Introduction Conventional HetNet HetNet based on cloud architecture Multi-point coordination Conclusions	462 465 467 473 480	

		Со	ntents	ix
19		- and frequency-domain e-ICIC with single- and multi-flow carrie	er:	484
		m Simsek, Mehdi Bennis, and Ismail Guvenc		404
	19.1	Inter-cell interference in HetNets		485
	19.2	Time-domain e-ICIC in HetNets		486
	19.3	Frequency-domain e-ICIC in HetNets		488
	19.4	Single-flow and multi-flow transmission		490
	Index			502

Contributors

Amine Abouliatim

Alcatel-Lucent

Raviraj Adve

University of Toronto

Akram Al-Hourani

RMIT University

Sergey Andreev

Tampere University of Technology

Alagan Anpalagan

Ryerson University

Senthuran Arunthavanathan

RMIT University

S. Alireza Banani

University of Toronto

Iris Barcia

Keima Limited

Chris Beale

Keima Limited

Mehdi Bennis

University of Oulu

Jun Cai

University of Manitoba

Doru Calin

Alcatel-Lucent

List of contributors

χi

Cheng-Chih Chao

National Taiwan University

Simon Chapman

Keima Limited

Nikos Dimitriou

National Kapodistrian University of Athens

Andrew Eckford

York University

Gonçalo Ferrada

Alcatel-Lucent

Ana Maria Galindo

Orange Labs

Xavier Gelabert

Huawei Technologies

Mikhail Gerasimenko

Tampere University of Technology

Lorenza Giupponi

Telecommunications Technology Centre of Catalonia

Ismail Guvenc

Florida International University

Nageen Himayat

Intel Corporation

Oliver Holland

Kings College London

Ekram Hossain

University of Manitoba

Ali Imran

Qatar Mobility Innovations Centre

M. A. Imran

University of Surrey

xii List of contributors

Qi Jiang

Alcatel-Lucent

Sithamparanathan Kandeepan

RMIT University

Aliye Özge Kaya

Alcatel-Lucent

Yasir Khan

Orange Labs

Adrian Kliks

Poznan University of Technology

Yevgeni Koucheryavy

Tampere University of Technology

Peter Legg

Huawei Technologies

Yi-Ting Lin

National Taiwan University

Jialing Liu

Huawei R&D

Eric Moulines

Telecom ParisTech

Sudeep Palat

Alcatel-lucent

Ionel Petrut

Alcatel-Lucent

K. A. Qaraqe

Texas A&M University at Qatar

Y. Qi

University of Surrey

Mark C. Reed

NICTA, Australia

List of contributors

XIII

Berna Sayrac

Orange Labs

Prabodini Semasinghe

University of Manitoba

M. Z. Shakir

Texas A&M University at Qatar

Meryem Simsek

Dresden University of Technology

Kathiravetpillai Sivanesan

Intel Corporation

Anthony C. K. Soong

Huawei R&D

Shilpa Talwar

Intel Corporation

Rath Vannithamby

Intel Corporation

Subramanian Vasudevan

Alcatel-lucent

He Wang

NICTA, Australia

Hung-Yu Wei

National Taiwan University

Jinsong Wu

Alcatel-Lucent

Weimin Xiao

Huawei R&D

Shu-ping Yeh

Intel Corporation

Andreas Zalonis

National Kapodistrian University of Athens

xiv List of contributors

Hong Zhang

University of Manitoba

Lu Zhang

Alcatel-Lucent

Shengjie Zhao

Tongji University

Kun Zhu

University of Manitoba

Jialin Zou

Alcatel-Lucent

Preface

The ever-increasing use of smart phone devices, multimedia applications, and social networking, along with the demand for higher data rates, ubiquitous coverage, and better quality of service, pose new challenges to the traditional mobile wireless network paradigm that depends on macro cells for service delivery. Small cell networks (SCNs) have emerged as an attractive paradigm and hold great promise for future wireless communication systems (5G systems). SCNs encompass a broad variety of cell types, such as micro, pico, and femto cells, as well as advanced wireless relays, and distributed antenna systems. SCNs co-exist with the macro cellular network and bring the network closer to the user equipment. SCNs require low power, incur low cost, and provide increased spatial reuse. Data traffic offloading eases the load on the expensive macro cells with significant savings expected to the network operators using small cells.

As the demand for increased bandwidth rages on, SCNs emerged in dense urban areas mainly to provide coverage and capacity. They have now gained momentum and are expected to dominate in the coming years, with the rollout in large scale – either planned or in ad-hoc manner – and the development of 5G systems with many small cell components. Already, the number of "small cells" in the world exceeds the total number of traditional mobile base stations. SCNs are also envisioned to pave the way for new services. However, there are many challenges in the design and deployment of small cell networks, which have to be addressed in order to be technically and commercially successful. This book provides various concepts in the design, analysis, optimization, and deployment of small cell networks, using a treatment approach suitable for pedagogical and practical purposes.

This book is an excellent source for understanding small cell network concepts, associated problems, and potential solutions in next-generation wireless networks. It covers from fundamentals to advanced topics, deployment issues, environmental concerns, optimized solutions, and standards activities in emerging small cell networks. New trends, challenges, and research results are also provided. Written by leading experts in the field from academia and industry around the world, it is a valuable resource dealing with both the important, core, and specialized issues in these areas. It offers a wide coverage of topics, while balancing the treatment to suit the needs of first-time learners of the concepts and specialists in the field. It serves as a one-stop reference book for students,

xvi Preface

instructors, researchers, and industry practitioners who are working in the design and deployment of small cell networks. Some highlights are:

- · dense networking and multi-radio networking
- green small cell networks and tradeoffs
- optimized design and performance analysis
- · backhauling and traffic overloading
- · small cell network management
- deployment strategies
- latest standard activities
- context-aware self-organizing networks
- mobility management in large-scale HetNets
- coverage centric deployment of small cells
- enhanced inter-node carrier aggregation in small cells

The editors would like to thank all the chapter authors for their excellent and timely contribution. Special thanks go to the staff at Cambridge University Press for their professional and dedicated service. Last, but not least, we want to thank our families for their support, encouragement, and sacrifice.

Alagan Anpalagan Mehdi Bennis Rath Vannithamby