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To Alan Weinstein with admiration.

This survey on flexible Weinstein manifolds, which is essentially an extract
from [Cieliebak and Eliashberg 2012], provides to an interested reader a
shortcut to theorems on deformations of flexible Weinstein structures and their
applications.

1. Introduction

The notion of a Weinstein manifold was introduced in [Eliashberg and Gromov
1991], formalizing the symplectic handlebody construction from Alan Weinstein’s
paper [1991] and the Stein handlebody construction from [Eliashberg 1990].
Since then, the notion of a Weinstein manifold has become one of the central
notions in symplectic and contact topology. The existence question for Weinstein
structures on manifolds of dimension > 4 was settled in [Eliashberg 1990].
The past five years have brought two major breakthroughs on the uniqueness
question: From [McLean 2009] and other work we know that, on any manifold
of dimension > 4 which admits a Weinstein structure, there exist infinitely many
Weinstein structures that are pairwise nonhomotopic (but formally homotopic).
On the other hand, Murphy’s h-principle for loose Legendrian knots [Murphy
2012] has led to the notion of flexible Weinstein structures, which are unique up
to homotopy in their formal class. In this survey, which is essentially an extract
from [Cieliebak and Eliashberg 2012], we discuss this uniqueness result and
some of its applications.

1A. Weinstein manifolds and cobordisms.

Definition. A Weinstein structure on an open manifold V is a triple .!;X; �/,
where

� ! is a symplectic form on V ,

� � W V ! R is an exhausting generalized Morse function,

� X is a complete vector field which is Liouville for ! and gradient-like for �.
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2 KAI CIELIEBAK AND YAKOV ELIASHBERG

The quadruple .V; !;X; �/ is then called a Weinstein manifold.

Let us explain all the terms in this definition. A symplectic form is a nonde-
generate closed 2-form !. A Liouville field for ! is a vector field X satisfying
LX! D !; by Cartan’s formula, this is equivalent to saying that the associated
Liouville form

� WD iX!

satisfies d�D !. A function � W V ! R is called exhausting if it is proper (i.e.,
preimages of compact sets are compact) and bounded from below. It is called
Morse if all its critical points are nondegenerate, and generalized Morse if its
critical points are either nondegenerate or embryonic, where the latter condition
means that in some local coordinates x1; : : : ; xm near the critical point p the
function looks like the function �0 in the birth–death family

�t .x/D �t .p/˙ tx1C x
3
1 �

kX
iD2

x2i C

mX
jDkC1

x2j :

A vector field X is called complete if its flow exists for all times. It is called
gradient-like for a function � if

d�.X/� ı.jX j2Cjd�j2/;

where ı W V ! RC is a positive function and the norms are taken with respect
to any Riemannian metric on V . Note that away from critical points this just
means d�.X/ > 0. Critical points p of � agree with zeroes of X , and p is
nondegenerate (resp. embryonic) as a critical point of � if and only if it is
nondegenerate (resp. embryonic) as a zero of X . Here a zero p of a vector field
X is called embryonic if X agrees near p, up to higher order terms, with the
gradient of a function having p as an embryonic critical point.

It is not hard to see that any Weinstein structure .!;X; �/ can be perturbed
to make the function � Morse. However, in 1-parameter families of Weinstein
structures embryonic zeroes are generically unavoidable. Since we wish to study
such families, we allow for embryonic zeroes in the definition of a Weinstein
structure.

We will also consider Weinstein structures on a cobordism, that is, a compact
manifold W with boundary @W D @CW q @�W . The definition of a Weinstein
cobordism .W; !;X; �/ differs from that of a Weinstein manifold only in replac-
ing the condition that � is exhausting by the requirement that @˙W are regular
level sets of � with �j@�W Dmin� and �j@CW Dmax�, and completeness of
X by the condition that X points inward along @�W and outward along @CW .
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FLEXIBLE WEINSTEIN MANIFOLDS 3

A Weinstein cobordism with @�W D∅ is called a Weinstein domain. Thus
any Weinstein manifold .V; !;X; �/ can be exhausted by Weinstein domains
Wk Df� � ckg, where ck%1 is a sequence of regular values of the function �.

The Liouville form �D iX! induces contact forms ˛c WD �j†c and contact
structures �c WD ker.˛c/ on all regular level sets†c WD��1.c/ of �. In particular,
the boundary components of a Weinstein cobordism carry contact forms which
make @CW a symplectically convex and @�W a symplectically concave boundary
(i.e., the orientation induced by the contact form agrees with the boundary
orientation on @CW and is opposite to it on @�W ). Contact manifolds which
appear as boundaries of Weinstein domains are called Weinstein fillable.

A Weinstein manifold .V; !;X; �/ is said to be of finite type if � has only
finitely many critical points. By attaching a cylindrical end�

RC � @W; d.e
r�j@W /;

@

@r
; f .r/

�
(i.e., the positive half of the symplectization of the contact structure on the
boundary) to the boundary, any Weinstein domain .W; !;X; �/ can be completed
to a finite type Weinstein manifold, called its completion. Conversely, any finite
type Weinstein manifold can be obtained by attaching a cylindrical end to a
Weinstein domain.

Here are some basic examples of Weinstein manifolds:

(1) Cn with complex coordinates xj C iyj carries the canonical Weinstein
structure �X

j

dxj ^ dyj ;
1

2

X
j

�
xj

@

@xj
Cyj

@

@yj

�
;
X
j

.x2j Cy
2
j /

�
:

(2) The cotangent bundle T �Q of a closed manifold Q carries a canonical
Weinstein structure which in canonical local coordinates .qj ; pj / is given by�X

j

dpj ^ dqj ;
X
j

pj
@

@pj
;
X
j

p2j

�
:

(As it stands, this is not yet a Weinstein structure because
P
j p

2
j is not a

generalized Morse function, but a perturbation can easily be constructed to make
the function Morse.)

(3) The product of two Weinstein manifolds .V1;!1;X1;�1/ and .V2;!2;X2;�2/
has a canonical Weinstein structure .V1�V2; !1˚!2; X1˚X2; �1˚�2/. The
product V �C with its canonical Weinstein structure is called the stabilization
of the Weinstein manifold .V; !;X; �/.
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4 KAI CIELIEBAK AND YAKOV ELIASHBERG

In a Weinstein manifold .V; !;X; �/, there is an intriguing interplay between
Morse theoretic properties of � and symplectic geometry: the stable manifold
W �p (with respect to the vector field X) of a critical point p is isotropic in the
symplectic sense (i.e., !jW �p D 0), and its intersection with every regular level
set ��1.c/ is isotropic in the contact sense (i.e., it is tangent to �c). In particular,
the Morse indices of critical points of � are � 1

2
dimV .

1B. Stein–Weinstein–Morse. Weinstein structures are related to several other
interesting structures as shown in the following diagram:

Stein
W
����! Weinstein

M
����! Morse??y

Liouville:

Here Weinstein denotes the space of Weinstein structures and Morse the space
of generalized Morse functions on a fixed manifold V or a cobordism W . As
before, we require the function � to be exhausting in the manifold case, and
to have @˙W as regular level sets with �j@�W D min� and �j@CW D max�
in the cobordism case. The map M WWeinstein!Morse is the obvious one
.!;X; �/ 7! �.

The space Liouville of Liouville structures consists of pairs .!;X/ of a
symplectic form ! and a vector field X (the Liouville field) satisfying LX! D !.
Moreover, in the cobordism case we require that the Liouville field X points
inward along @�W and outward along @CW , and in the manifold case we require
that X is complete and there exists an exhaustion V1 � V2 � � � � of V D[kVk
by compact sets with smooth boundary @Vk along which X points outward.
The map Weinstein! Liouville sends .!;X; �/ to .!;X/. Note that to each
Liouville structure .!;X/ we can associate the Liouville form � WD iX!, and
.!;X/ can be recovered from � by the formulas ! D d� and iXd�D �.

The space Stein of Stein structures consists of pairs .J; �/ of an integrable
complex structure J and a generalized Morse function � (exhausting resp. con-
stant on the boundary components) such that �ddC�.v; J v/ > 0 for all nonzero
v 2T V , where dC� WD d� ıJ . If .J; �/ is a Stein structure, then !� WD�ddC�

is a symplectic form compatible with J . Moreover, the Liouville field X�
defined by

iX�!� D�d
C�

is the gradient of � with respect to the Riemannian metric g� WD !�. � ; J � /. In
the manifold case, completeness of X� can be arranged by replacing � by f ı�
for a diffeomorphism f WR!R with f 00 � 0 and limx!1 f 0.x/D1; we will
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FLEXIBLE WEINSTEIN MANIFOLDS 5

suppress the function f from the notation. So we have a canonical map

W WStein!Weinstein; .J; �/ 7! .!� ; X� ; �/:

It is interesting to compare the homotopy types of these spaces. For simplicity,
let us consider the case of a compact domain W and equip all spaces with the
C1 topology. The results which we discuss below remain true in the manifold
case, but one needs to define the topology more carefully; see Section 4C. Since
all the spaces have the homotopy types of CW complexes, any weak homotopy
equivalence between them is a homotopy equivalence.

The spaces Liouville and Weinstein are very different: there exist many
examples of Liouville domains that admit no Weinstein structure, and of contact
manifolds that bound a Liouville domain but no Weinstein domain. The first
such example was constructed in [McDuff 1991]: the manifold Œ0; 1��†, where
† is the unit cotangent bundle of a closed oriented surface of genus > 1, carries
a Liouville structure, but its boundary is disconnected and hence cannot bound a
Weinstein domain. Many more such examples are discussed in [Geiges 1994].

By contrast, the spaces of Stein and Weinstein structures turn out to be closely
related. One of the main results of [Cieliebak and Eliashberg 2012] is this:

Theorem 1.1. The map W WStein!Weinstein induces an isomorphism on �0
and a surjection on �1.

It lends evidence to the conjecture that W WStein!Weinstein is a homotopy
equivalence.

The relation between the spaces Morse and Weinstein is the subject of this
article. Note first that, since for a Weinstein domain .W; !;X; �/ of real dimen-
sion 2n all critical points of � have index � n, one should only consider the
subset Morsen �Morse of functions all of whose critical points have index
� n. Moreover, one should restrict to the subset Weinsteinflex

� � Weinstein

of Weinstein structures .!;X; �/ with ! in a fixed given homotopy class � of
nondegenerate 2-forms which are flexible in the sense of Section 2 below. The
following sections are devoted to the proof of the next theorem.

Theorem 1.2 [Cieliebak and Eliashberg 2012]. Let � be a nonempty homotopy
class of nondegenerate 2-forms on a domain or manifold of dimension 2n > 4.
Then:

(a) Any Morse function �2Morsen can be lifted to a flexible Weinstein structure
.!;X; �/ with ! 2 �.

(b) Given two flexible Weinstein structures .!0; X0; �0/ and .!1; X1; �1/ in
Weinsteinflex

� , any path �t 2Morsen, t 2 Œ0; 1�, connecting �0 and �1 can
be lifted to a path of flexible Weinstein structures .!t ; Xt ; �t / connecting
.!0; X0; �0/ and .!1; X1; �1/.
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6 KAI CIELIEBAK AND YAKOV ELIASHBERG

In other words, the map M W Weinsteinflex
� ! Morsen has the following

properties:

� M is surjective;

� the fibers of M are path connected;

� M has the path lifting property.

This motivates the following:

Conjecture. On a domain or manifold of dimension 2n > 4, the map

M WWeinsteinflex
� !Morsen

is a Serre fibration with contractible fibers.

2. Flexible Weinstein structures

Roughly speaking, a Weinstein structure is “flexible” if all its attaching spheres
obey an h-principle. More precisely, note that each Weinstein manifold or
cobordism can be cut along regular level sets of the function into Weinstein
cobordisms that are elementary in the sense that there are no trajectories of the
vector field connecting different critical points. An elementary 2n-dimensional
Weinstein cobordism .W; !;X; �/, n>2, is called flexible if the attaching spheres
of all index n handles form in @�W a loose Legendrian link in the sense of
Section 2C below. A Weinstein cobordism or manifold structure .!;X; �/ is
called flexible if it can be decomposed into elementary flexible cobordisms.

A 2n-dimensional Weinstein structure .!;X; �/, n� 2, is called subcritical if
all critical points of the function � have index < n. In particular, any subcritical
Weinstein structure in dimension 2n > 4 is flexible.

The notion of flexibility can be extended to dimension 4 as follows. We call
a 4-dimensional Weinstein cobordism flexible if it is either subcritical, or the
contact structure on @�W is overtwisted (or both); see Section 2B below. In
particular, a 4-dimensional Weinstein manifold is then flexible if and only if it is
subcritical.

Remark 2.1. The property of a Weinstein structure being subcritical is not
preserved under Weinstein homotopies because one can always create index n
critical points (see Proposition 4.7 below). We do not know whether flexibility is
preserved under Weinstein homotopies. In fact, it is not even clear to us whether
every decomposition of a flexible Weinstein cobordismW into elementary cobor-
disms consists of flexible elementary cobordisms. Indeed, if P1 and P2 are
two partitions of W into elementary cobordisms and P2 is finer than P1, then
flexibility of P1 implies flexibility of P2 (in particular the partition for which
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FLEXIBLE WEINSTEIN MANIFOLDS 7

each elementary cobordism contains only one critical value is then flexible), but
we do not know whether flexibility of P2 implies flexibility of P1.

The remainder of this section is devoted to the definition of loose Legendrian
links and a discussion of the relevant h-principles.

2A. Gromov’s h-principle for subcritical isotropic embeddings. Consider a
contact manifold .M; � D ker˛/ of dimension 2n � 1 and a manifold ƒ of
dimension k � 1 � n � 1. A monomorphism F W Tƒ ! TM is a fiberwise
injective bundle homomorphism covering a smooth map f Wƒ!M . It is called
isotropic if it sends each Txƒ to a symplectically isotropic subspace of �f .x/
(with respect to the symplectic form d˛j�). A formal isotropic embedding of
ƒ into .M; �/ is a pair .f; F s/, where f Wƒ ,!M is a smooth embedding and
F s W Tƒ! TM , s 2 Œ0; 1�, is a homotopy of monomorphisms covering f that
starts at F 0 D df and ends at an isotropic monomorphism F 1 W Tƒ! � . In the
case k D n we also call this a formal Legendrian embedding.

Any genuine isotropic embedding can be viewed as a formal isotropic embed-
ding .f; F s � df /. We will not distinguish between an isotropic embedding and
its canonical lift to the space of formal isotropic embeddings. A homotopy of
formal isotropic embeddings .ft ; F st /, t 2 Œ0; 1�, will be called a formal isotropic
isotopy. Note that the maps ft underlying a formal isotropic isotopy form a
smooth isotopy.

In the subcritical case k < n, Gromov proved the following h-principle.

Theorem 2.2 (h-principle for subcritical isotropic embeddings [Gromov 1986;
Eliashberg and Mishachev 2002]). Let .M; �/ be a contact manifold of dimension
2n� 1 and ƒ a manifold of dimension k� 1 < n� 1. Then the inclusion of the
space of isotropic embeddings ƒ ,! .M; �/ into the space of formal isotropic
embeddings is a weak homotopy equivalence. In particular:

(a) Given any formal isotropic embedding .f; F s/ ofƒ into .M; �/, there exists
an isotropic embedding Qf Wƒ ,!M which is C 0-close to f and formally
isotropically isotopic to .f; F s/.

(b) Let .ft ; F st /, t 2 Œ0; 1�, be a formal isotropic isotopy connecting two isotropic
embeddings f0; f1 W ƒ ,! M . Then there exists an isotropic isotopy Qft
connecting Qf0 D f0 and Qf1 D f1 which is C 0-close to ft and is homotopic
to the formal isotopy .ft ; F st / through formal isotropic isotopies with fixed
endpoints.

Let us discuss what happens with this theorem in the critical case k D n. Part
(a) remains true in all higher dimensions k D n > 2:
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8 KAI CIELIEBAK AND YAKOV ELIASHBERG

Theorem 2.3 (existence theorem for Legendrian embeddings for n > 2 [Eliash-
berg 1990; Cieliebak and Eliashberg 2012]1). Let .M; �/ be a contact manifold
of dimension 2n� 1� 5 and ƒ a manifold of dimension n� 1. Then given any
formal Legendrian embedding .f; F s/ ofƒ into .M; �/, there exists a Legendrian
embedding Qf Wƒ,!M which is C 0-close to f and formally Legendrian isotopic
to .f; F s/.

Part (b) of Theorem 2.2 does not carry over to the critical case k D n: For
any n� 2, there are many examples of pairs of Legendrian knots in .R2n�1; �st/

which are formally Legendrian isotopic but not Legendrian isotopic; see, for
example, [Chekanov 2002; Ekholm et al. 2005].

2B. Legendrian knots in overtwisted contact manifolds. Finally, we consider
Theorem 2.2 in the case k D nD 2, that is, for Legendrian knots (or links) in
contact 3-manifolds. Recall that in dimension 3 there is a dichotomy between
tight and overtwisted contact structures, which was introduced in [Eliashberg
1989]. A contact structure � on a 3-dimensional manifoldM is called overtwisted
if there exists an embedded disc D�M which is tangent to � along its boundary
@D. Equivalently, one can require the existence of an embedded disc with
Legendrian boundary @D which is transverse to � along @D. A disc with such
properties is called an overtwisted disc.

Part (a) of Theorem 2.2 becomes false for k D n D 2 due to Bennequin’s
inequality. Let us explain this for R3 with its standard (tight) contact structure
�st D ker˛st, ˛st D dz�p dq. To any formal Legendrian embedding .f; F s/ of
S1 into .R3; �st/ we can associate two integers as follows. Identifying �st to R2

via the projection R3! R2 onto the .q; p/-plane, the fiberwise injective bundle
homomorphism F 1 W TS1Š S1�R! �stŠR2 gives rise to a map S1!R2 n0,
t 7!F 1.t; 1/. The winding number of this map around 02R2 is called the rotation
number r.f; F 1/. On the other hand, .F 1; iF 1; @z/ defines a trivialization of the
bundle f �TR3, where i is the standard complex structure on �stŠR2ŠC. Using
the homotopyF s , we homotope this to a trivialization .e1; e2; e3/ of f �TR3 with
e1 D Pf (unique up to homotopy). The Thurston–Bennequin invariant tb.f; F s/
is the linking number of f with a push-off in direction e2. It is not hard to see
that the pair of invariants .r; tb/ yields a bijection between homotopy classes
of formal Legendrian embeddings covering a fixed smooth embedding f and
Z2. In particular, the pair .r; tb/ can take arbitrary values on formal Legendrian
embeddings, while for genuine Legendrian embeddings f W S1 ,! .R3; �st/ the

1The hypothesis in [Cieliebak and Eliashberg 2012] that ƒ is simply connected can be easily
removed.
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FLEXIBLE WEINSTEIN MANIFOLDS 9

values of .r; tb/ are constrained by Bennequin’s inequality [1983]

tb.f /Cjr.f /j � ��.†/;

where † is a Seifert surface for f .
Bennequin’s inequality, and thus the failure of part (a), carry over to all

tight contact 3-manifolds. On the other hand, Bennequin’s inequality fails, and
except for the C 0-closeness Theorem 2.2 remains true, on overtwisted contact
3-manifolds:

Theorem 2.4 [Dymara 2001; Eliashberg and Fraser 2009]. Let .M; �/ be a
closed connected overtwisted contact 3-manifold, and D �M an overtwisted
disc.

(a) Any formal Legendrian knot .f; F s/ in M is formally Legendrian isotopic
to a Legendrian knot Qf W S1 ,!M nD.

(b) Let .ft ; F st /, s; t 2 Œ0; 1�, be a formal Legendrian isotopy in M connecting
two Legendrian knots f0; f1 W S1 ,! M nD. Then there exists a Legen-
drian isotopy Qft W S1 ,!M nD connecting Qf0 D f0 and Qf1 D f1 which
is homotopic to .ft ; F st / through formal Legendrian isotopies with fixed
endpoints.

Although Theorem 2.2 (b) generally fails for knots in tight contact 3-manifolds,
there are some remnants for special classes of Legendrian knots:

� any two formally Legendrian isotopic unknots in .R3; �st/ are Legendrian
isotopic [Eliashberg and Fraser 2009];

� any two formally Legendrian isotopic knots become Legendrian isotopic
after sufficiently many stabilizations (whose number depends on the knots)
[Fuchs and Tabachnikov 1997].

E. Murphy [2012] discovered that the situation becomes much cleaner for n > 2:
on any contact manifold of dimension � 5 there exists a class of Legendrian
knots, called loose, which satisfy both parts of Theorem 2.2. Let us now describe
this class.

2C. Murphy’s h-principle for loose Legendrian knots. In order to define loose
Legendrian knots we need to describe a local model. Throughout this section we
assume n > 2.

Consider a Legendrian arc �0 in the standard contact space .R3; dz�p1dq1/
with front projection as shown in Figure 1, for some a > 0. Suppose that the
slopes at the self-intersection point, as well as at end points of the interval are
˙1, and the slope is everywhere in the interval Œ�1; 1�, so the Legendrian arc �0
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10 KAI CIELIEBAK AND YAKOV ELIASHBERG

a

−a

1−1

z

q1

Figure 1. Front of the Legendrian arc �0.

is contained in the box

Qa WD fjq1j; jp1j � 1; jzj � ag

and @�0 � @Qa. Take the standard contact space
�
R2n�1; dz �

Pn�1
iD1 pidqi

�
,

which we view as the product of the contact space .R3; dz�p1dq1/ and the Li-
ouville space

�
R2n�4; �

Pn�1
iD2 pidqi

�
. With q0 WD .q2; : : : ; qn�1/ and similarly

for p0, we set

jp0j WD max
2�i�n�2

jpi j and jq0j WD max
2�i�n�2

jqi j:

For b; c > 0 we define

Pbc WD fjq
0
j � b; jp0j � cg � R2n�4;

Rabc WDQa �Pbc D fjq1j; jp1j � 1; jzj � a; jq
0
j � b; jp0j � cg:

Let the Legendrian solid cylinder ƒ0 �
�
R2n�1; dz �

Pn�1
iD1 pidqi

�
be the

product of �0 � R3 with the Lagrangian disc fp0 D 0; jq0j � bg � R2n�4. Note
that ƒ0 � Rabc and @ƒ0 � @Rabc . The front of ƒ0 is obtained by translating
the front of �0 in the q0-directions; see Figure 2. The pair .Rabc ; ƒ0/ is called a
standard loose Legendrian chart if

a < bc:

2b

< 2a

Figure 2. Front of the Legendrian solid cylinder ƒ0.
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