

METHODS IN MOLECULAR BIOPHYSICS

Second Edition

Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology.

All the key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists, and those with medical backgrounds.

The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.

Nathan R. Zaccai is a Research Associate at the Cambridge Institute for Medical Research, University of Cambridge. His current research focuses on the molecular and thermodynamic basis of the transport and presentation at cell surfaces of proteins involved in pathogen evasion and host immunity.

Igor N. Serdyuk (1939–2012) was Professor of Molecular Biology and Head of the Laboratory of Nucleoprotein Physics at the Institute of Protein Research, Pushchino, Russia.

Joseph Zaccai is Directeur de Recherche Emeritus at the Centre Nationale de la Recherche Scientifique and Visiting Scientist at the Institut Laue-Langevin and Institut de Biologie Structurale, Grenoble. His current research interests include the exploration of the role of dynamics and physical chemical limits for life. He has many years of experience in teaching biophysics to biologists, medical students, and physicists.

REVIEWS FROM THE FIRST EDITION

I first asked what methods in molecular biophysics I would expect to use as a biochemist and structural biologist. This text book provides an introduction to the physics of each of [the techniques used by my own group] as well as a review of the applications.... [It] will be in demand by third year undergraduates in the many courses run by physicists to introduce them to biological themes. It would also be used by the many post-graduate students doing ... research degrees as well as post-doctorals in chemical biology, biochemistry, cell biology and structural biology research groups.... In summary, this is a valuable contribution to the field.... this is an area which has advanced tremendously and the major texts in biophysical methods are now simply out of date. The text covers the methods that young researchers and some undergraduates will wish to learn. I am sure that it will find itself on the shelves of many laboratories throughout the world. There is nothing quite like it at the moment.

Sir Tom Blundell FRS, FMedSci, Professor and Head, Department of Biochemistry, University of Cambridge

Thank you very much for giving me the opportunity to preview this wonderful text book. It has outstanding breadth while maintaining sufficient depth to follow modern experiments or initiate a deeper understanding of a new subject area. I love the 'Physicist's' and 'Biologist's Boxes' to address specific subjects for researchers with different backgrounds. This is one of the most comprehensive and highly relevant texts on biophysics that I have encountered in the last 10 years, clearly written and up-to-date. It is a must-have for biophysicists working in all lines of research, and certainly for me.

Nikolaus Grigorieff, Professor of Biochemistry, Brandeis University

[This is] a wonderful up-to-date treatise on the many and diverse methods used ... in the fields of molecular biophysics, physical biochemistry, molecular biology, biological physics and the new and emerging field of quantum nanobiology. The wide range of methods available ... in these multidisciplinary fields has been overwhelming for most researchers, students and scientists [who fail] to fully appreciate the utility and usefulness of the methods [other than their own]. [In many cases, this has] created disagreements and ... controversy. The only way to understand and appreciate fully the problems in quantum nanobiology and their complexity is to utilize and fully understand the many diverse methods covered by the authors in this very fine treatise ... [It] should be in the library of any serious researcher in the many diverse multidisciplinary fields working on problems in quantum nanobiology.... They will be greatly rewarded by an ability to see and view the problems and their complexity through different perspectives, aspects and points of view, ...

Karl J. Jalkanen, Associate Professor of Biophysics, Quantum Protein Centre, Technological University of Denmark

This most welcome text provides an up-to-date introduction to the vast field of biophysical methods. Written in an accessible style with an eye to a broad audience, it will appeal to biologists who wish to understand how to determine how macromolecules function and to scientists with a physics or physical chemistry background who wish to know how measurement of the physical world can impact our understanding of biological problems. The book succeeds in unifying disparate approaches under the aegis of developing an understanding of how macromolecules work.

Importantly, the text also provides the relevant historical background, an invaluable guide that will aid in the appreciation of what has gone before and should serve to orient them towards the future and what may be possible. It is a valuable resource for novice and seasoned biophysicists alike.

Dan Minor, California Institute for Quantitative Biomedical Research University of California, San Francisco

Methods in Molecular Biophysics is now the book I consult first when faced with an unfamiliar experimental technique. Both classic analytical techniques and the latest single-molecule methods appear in this single comprehensive reference.

Philip Nelson, Department of Physics, University of Pennsylvania, and author of Biological Physics

The authors provide an overview of many of the major recent accomplishments in the use of physical tools to investigate biological structure. There are interesting historical and biographical comments that lead the reader into understanding contemporary concepts and results. The book will be valuable both for students and research scientists.

Michael G. Rossmann, Hanley Professor of Biological Sciences, Purdue University

The melding of physics, chemistry and biology in modern science has changed our view of the natural world and opened avenues for detailed understanding of the origin of biological regulation. *Methods in Molecular Biophysics* provides an up-to-date view of classical biophysics, theory and practice of modern chemical biology and represents an essential text for the interdisciplinary scientist of the 21st Century. A great achievement and presentation awaits the student who reads this book, along with an excellent reference for the seasoned practitioner of biophysical chemistry.

Milton H Werner, Laboratory of Molecular Biophysics, The Rockefeller University

The methods, concepts, and discoveries of molecular biophysics have penetrated deeply into the fabric of modern biology. Physical methods that were once seemingly arcane are now commonplace in modern cell biology laboratories. This well written, thorough, and elegantly illustrated book provides the connections between molecular biophysics and biology that every aspiring young biologist needs. At the same time, it will serve physical scientists as a guide to the key ideas of modern biology.

Stephen H. White, Professor, Department of Physiology and Biophysics, University of California at Irvine

Methods in Molecular Biophysics offers a well-written, modern and comprehensive coverage of the properties of biological macromolecules and the techniques used to elucidate these properties. The authors have done a great service to the biophysics community in providing a long-needed update and expansion of previous texts on analysis of biological macromolecules. The choice and organization of material is especially well done. This book will be of considerable value not only to students, but also, due to the scope and breadth of coverage, to experienced researchers. I enthusiastically recommend Methods in Molecular Biophysics to anyone who wishes to know more about the techniques by which the properties of biological macromolecules are determined.

David Worcester, Department of Biological Sciences, University of Missouri - Columbia

METHODS IN MOLECULAR BIOPHYSICS

Structure, Dynamics, Function for Biology and Medicine Second Edition

NATHAN R. ZACCAI

University of Cambridge

IGOR N. SERDYUK

Formerly of the Institute of Protein Research, Pushchino, Moscow Region

JOSEPH ZACCAI

Institut Laue-Langevin

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107056374 10.1017/9781107297227

© Nathan R. Zaccai, Joseph Zaccai, and Igor N. Serdyuk 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by Clays, St lves plc in 2017

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Zaccai, Nathan R., author. | Serdyuk, Igor N., author. | Zaccai, G. (Giuseppe), author.

Title: Methods in molecular biophysics: structure, dynamics, function for Biology and

Medicine / Nathan R. Zaccai, Igor N. Serdyuk, Joseph Zaccai.

Description: Second edition. | Cambridge, United Kingdom; New York, NY, USA:

Cambridge University Press, 2017. \mid Igor N. Serdyuk's name appears first in the

previous edition. | Includes bibliographical references and index.

Identifiers: LCCN 2016046859 | ISBN 9781107056374 (hardback : alk. paper)

Subjects: | MESH: Biophysical Phenomena | Chemistry Techniques, Analytical–methods |

Diagnostic Imaging | Macromolecular Substances-chemistry

Classification: LCC QH505 | NLM QT 34 | DDC 571.4-dc23 LC record available at https://lccn.loc.gov/2016046859

ISBN 978-1-107-05637-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To Ol'ga, Brinda, Missy

CONTENTS IN BRIEF

Cor	ntents	xi
Pre	face to the First Edition	xxi
Pre	face to the Second Edition	xxiii
Intr	oduction: Molecular Biophysics at the Beginning of	
the	Twenty-First Century: From Ensemble Measurements	
to S	Single-Molecule Detection	1
Par	t A Biological Macromolecules and Physical Tools	11
A1	Macromolecules in Their Environment	13
A2	Macromolecules as Physical Particles	25
АЗ	Understanding Macromolecular Structures	43
Par	t B Mass Spectrometry	69
	Mass and Charge	71
B2	Structure Function Studies	85
Par	,	113
	Thermodynamic Stability and Interactions	115
	Differential Scanning Calorimetry	126
	Isothermal Titration Calorimetry	141
C4	Surface Plasmon Resonance and	
	Interferometry-Based Biosensors	149
Par		159
D1	Biological Macromolecules as Hydrodynamic Particles	161
	Analytical Ultracentrifugation	184
	Fluorescence Depolarization	215
D4	Dynamic Light Scattering and Fluorescence	
	Correlation Spectroscopy	229
Par		251
E1	Visible and IR Absorption Spectroscopy	253
E2	Two-Dimensional IR Spectroscopy	281

	Raman Scattering Spectroscopy	288
Ł4	Optical Activity and Circular Dichroïsm	306
Par	t F Optical Microscopy	323
F1	Light Microscopy	325
F2	Single Molecule Manipulation and Atomic Force	
	Microscopy	335
F3	Fluorescence Microscopy	384
Par	t G X-ray and Neutron Diffraction	405
G1	The Macromolecule as a Radiation	
	Scattering Particle	407
	Small-Angle Scattering and Reflectometry	423
G3	X-ray and Neutron Macromolecular	
	Crystallography	456
Par	t H Electron Diffraction	487
	Electron Microscopy	489
H2	Three-Dimensional Reconstruction from	
	Two-Dimensional Images	502
Par	t I Molecular Dynamics	519
11	Energy and Time Calculations	521
12	Neutron Spectroscopy	531
Par	t J Nuclear Magnetic Resonance	543
J1	Distances and Angles from Frequencies	545
J2	Experimental Techniques	566
J3	Structure and Dynamics Studies	594
Par	t K Medical Imaging	627
K1	Radiology and Positron Emission Tomography	629
K2	Ultrasound Imaging	639
КЗ	Magnetic Resonance Imaging	648

CONTENTS

rrejuce i	io the rirst Eatition	XXI	AZ.Z	biological Molecules and the Flow	
Preface i	to the Second Edition	xxiii		of Genetic Information	26
			A2.3	Proteins	28
Introdu	iction: Molecular Biophysics at the		A2.3.1	Chemical Composition and Primary	
	ing of the Twenty-First Century: From			Structure	28
	ble Measurements to Single-Molecule		A2.3.2	Structures of Higher Order	29
Detect		1	A2.4	Nucleic Acids	33
		_	A2.4.1	Chemical Composition and Primary	
1 A B	rief History and Perspectives	1		Structure	33
2 Lan	iguages and Tools	3	A2.4.2	Structures of Higher Order	33
3 Len	gth and Timescales in Biology	4	A2.5	Carbohydrates	34
4 The	Structure-Function Hypothesis	4	A2.5.1	Chemical Composition and Primary	
5 Cor	nplementarity of Physical Methods	5		Structure	36
6 The	ermodynamics	6	A2.5.2	Higher-Order Structures	37
7 Hyo	drodynamics	6	A2.6	Lipids	38
8 Rac	liation Scattering	7	A2.6.1	Chemical Composition	38
9 Spe	ectroscopy	7	A2.6.2	Higher-Order Structures	40
10 Sin	gle-Molecule Detection	8	A2.6.3	Lipids and Membrane Proteins	41
	physics and Medicine	10	A2.7	Checklist of Key Ideas	41
				Suggestions for Further Reading	42
PART	A BIOLOGICAL		A2 IIn	derstanding Macromolecular	
MACE	ROMOLECULES AND		Structi		43
		4.4	Structi	A105	43
PH Y 5	ICAL TOOLS	11	A3.1	Historical Review	43
			A3.2	Basic Physics and Mathematical Tools	44
A4 B//-	eremelecules in Their Environment	42	A3.2.1	Waves	44
AT IVI	acromolecules in Their Environment	13	A3.2.2	Simple Harmonic Motion	48
A1.1	Historical Review	13	A3.2.3	Fourier Analysis	50
A1.2	Macromolecular Solutions	13	A3.2.4	Quantum Mechanics	54
A1.2.1	Concentration	13	A3.2.5	Measurement Space, Mathematical	
A1.2.2	Partial Volume	14		Functions, and Straight Lines	58
A1.2.3	Colligative Properties	14	A3.3	Dynamics and Structure, Kinetics,	
A1.2.4	Chemical Potential and Activity	15		Kinematics, Relaxation	58
A1.2.5	Temperature	16	A3.3.1	Macromolecular Stabilization Forces	58
A1.2.6	Osmotic Pressure	16	A3.3.2	Length and Timescales in Macromolecular	
A1.2.7	Virial Coefficients	16		Dynamics	59
A1.3	Macromolecules, Water, and Salt	18	A3.3.3	A Physical Model for Protein Dynamics	59
A1.3.1	Ionic Strength and Debye-Hückel		A3.4	Checklist of Key Ideas	67
	Theory	19		Suggestions for Further Reading	68
A1.3.2	Polyelectrolytes and the Donnan Effect	19		ouggeonous for further freuening	
A1.3.3	Macromolecule–Solvent Interactions	20			
A1.3.4	Water, Salt and the Hydrophobic Effect	20	PART	B MASS SPECTROMETRY	69
A1.4	Checklist of Key Ideas	23			
711.T	Suggestions for Further Reading	24			
	ouggestions for Further Reading	27	B1 Ma	iss and Charge	71
					71
A2 Ma	acromolecules as Physical Particles	25	B1.1	Historical Review	71
A2.1	Historical Review and Biological		B1.2	Introduction to Biological	=-
214.1	Applications	25	D1 3	Applications	72
	пррисацона	23	B1.3	Ions in Electric and Magnetic Fields	73

B1.4	Mass Resolution and Mass Accuracy	73	PART	C THERMODYNAMICS	113
B1.4.1	Mass Resolution	73			
B1.4.2	Molecular Mass Accuracy	74	04 Th		445
B1.5	Ionization Technique	74	CT INC	ermodynamic Stability and Interactions	115
B1.5.1	From Ions in Solution to Ions in the Gas	7.4	C1.1	Historical Overview and Biological	
D1 5 2	Phase	74		Applications	115
B1.5.2	Laser Desorption, Matrix-Assisted Laser		C1.2	The Laws of Thermodynamics	116
	Desorption Ionization, and	= /	C1.2.1	Fundamental Definitions and the	
D1 5 2	Photodissociation MS	76		Zeroth Law	117
B1.5.3	Electrospray Ionization (ESI)	77	C1.2.2	The First Law and Energy	117
B1.6	Instrumentation and Innovative	77	C1.2.3	The Second Law and Entropy	118
D1 / 1	Techniques	77	C1.2.4	The Third Law and Absolute Zero	119
B1.6.1	Quadrupole Mass Filter	78	C1.3	Useful Concepts and Equations	119
B1.6.2	Quadrupole Ion Trap	78	C1.3.1	Free Energy and Allied Concepts	120
B1.6.3	Ion Cyclotron Resonance Mass	70	C1.3.2	Binding Studies	122
D1 (4	Spectrometry (ICR-MS)	78	C1.3.3	Calorimetry and Binding	123
B1.6.4	Orbitrap Analyzer	80	C1.3.4	Activation Thermodynamics	124
B1.6.5	TOF Mass Spectrometer	80	C1.4	Checklist of Key Ideas	124
B1.6.6	Fourier Transform Mass Spectrometry	0.1		Suggestions for Further Reading	125
D4 / F	(FT-MS)	81			
B1.6.7	Tandem Mass Spectrometry	02	C2 Dif	ferential Scanning Calorimetry	126
B1.7	(MS-MS) Checklist of Key Ideas	82 83			
D1.1	Suggestions for Further Reading	83	C2.1	Historical Overview	126
	ouggestions for Further Reading	03	C2.2	Basic Theory	126
			C2.3	Experimental Considerations	126
B2 Str	ucture Function Studies	85	C2.3.1	Instrument Specifications	126
B2.1	Proteins	85	C2.3.2	Sensitivity of Heat Capacity Measurements	
B2.1.1	Mass Determination	85	C2.3.3	Sample Requirements	127
B2.1.2	Proteomics	85	C2.4	The Heat Capacity of Proteins	127
B2.1.3	Protein Sequencing	88	C2.4.1	The Heat Capacity Versus Temperature	127
B2.1.4	Protein Folding and Dynamics	90	62.42	Curve	127
B2.2	Non-Covalent Complexes and Native		C2.4.2	Partition Function Analysis of the Heat	120
	(Top-Down) MS	93	C2 4 2	Capacity Curve	128
B2.2.1	Protein Complexes	93	C2.4.3	Two-State Transition: Calorimetric	120
B2.2.2	Ribosomes, Ribosomal Subunits and		C2 4 4	and Van't Hoff Enthalpies are Equal Calorimetric and Van't Hoff Enthalpies	128
	Ribosomal Proteins	94	C2.4.4	-	129
B2.3	Nucleic Acids	95	C2.4.5	are Not Equal: Cooperative Domains Folding Intermediates and Effects of	129
B2.3.1	Oligonucleotide Mixture Analysis	99	C2.4.3	Mutations	129
B2.3.2	Non-Covalent Complexes	99	C2.4.6	Complex Proteins	130
B2.3.3	Large and Very Large Nucleic Acids	99	C2.4.7	Solvent Effects on the Transition and the	150
B2.3.4	DNA Sequencing	100	C2.4.1	Absolute Partial Heat Capacity Difference	
B2.3.5	Mass Spectrometry of RNA	101		Between Folded and Unfolded States of a	
B2.4	Complex Carbohydrates	102		Macromolecule	132
B2.4.1	Oligosaccharides	102	C2.4.8	Heat Capacity Calculations from	132
B2.4.2	Glycopeptides	102	C2.7.0	Structural Data	132
B2.5	Lipidomics and Membrane Protein		C2.4.9	Protein Stabilization Forces	136
	Interactions	104	C2.5	Nucleic Acids and Lipids	139
B2.6	Mass Spectrometry in Medicine	104	C2.6	Checklist of Key Ideas	139
B2.7	Bacteria and Bacterial Taxonomy	106	02.0	Suggestions for Further Reading	140
B2.8	Imaging Mass Spectrometry	107		Cappedatono for further reading	140
B2.8.1	Single-Cell Level	107	02 los	thormal Titration Calarimeter	1 11
B2.8.2	Mammalian Tissue Level	108	US 180	thermal Titration Calorimetry	141
B2.9	Checklist of Key Ideas	109	C3.1	Historical Review	141
	Suggestions for Further Reading	110	C3.2	Experimental Aspects and Equations	141

C3.2.1	Measuring Protocol and Samples	141	D1.5.3	Macroscopic Theory of Diffusion and Fick'	'e
C3.2.2	Binding Enthalpy and Heat Capacity	142	D1.5.5	Equations	169
C3.2.3	Affinity Constants	142	D1.5.4	Solutions to Fick's Equations	170
C3.3	Applications	144	D1.5.5	Experimental Methods for Directly	
C3.3.1	Entropic Versus Enthalpic Optimization	144		Determining Diffusion Coefficients	171
C3.3.2	Relating Binding Energy and Structure	144	D1.6	Translational Friction and Diffusion	
C3.3.3	Combining ITC and Other Biophysical			Coefficients	172
	Methods	144	D1.6.1	Einstein-Smoluchowski Relation	172
C3.4	Checklist of Key Ideas	148	D1.6.2	Diffusion Coefficients of Biological	
	Suggestions for Further Reading	148		Macromolecules	174
			D1.6.3	Dependence of the Diffusion Coefficient	
C4 Su	rface Plasmon Resonance and			on the Molecular Mass of Globular	
	rometry-Based Biosensors	149		Proteins	175
interior	Tometry Buseu Blosensors	143	D1.6.4	Dependence of the Diffusion Coefficient	
C4.1	Historical Overview and Introduction			on the Molecular Mass of DNA	176
	to Biological Problems	149	D1.6.5	The Limits to Stokes' Law	176
C4.2	Measuring Surface Binding	149	D1.7	Hydrodynamic Experiments	176
C4.2.1	Layout of a Biosensor	149	D1.7.1	Measurement of Translational Frictional	
C4.2.2	SPR Biosensor	150		Coefficients	178
C4.2.3	Interferometers as Biosensors	151	D1.7.2	Measurement of Rotational Frictional	
C4.2.4	Other Types of Biosensor	151		Coefficients	179
C4.2.5	Coupling Ligands to a Surface	152	D1.7.3	Measurement of Viscosity	180
C4.3	Binding Between a Soluble Molecule	4	D1.7.4	Prediction of Hydrodynamic Properties	181
0424	and a Surface	152	D1.8	Checklist of Key Ideas	182
C4.3.1	Thermodynamics of Surface Interactions	152		Suggestions for Further Reading	183
C4.3.2	Measurement of the Equilibrium	150			
C4 2 2	Constant The Determination of the 1.	152	D2 Ana	alytical Ultracentrifugation	184
C4.3.3	The Determination of the k_{off} and k_{on} of an Interaction	152			104
C4.4		153 155	D2.1	Historical Review	184
C4.4.1	Experimental Analysis Scope of Analytes	155	D2.2	Instrumentation and Innovative	105
	Scope of Allarytes	133		Technique	185
	-	155	D2 2 1		104
C4.4.2	Experimental Controls and Pitfalls	155 155	D2.2.1	Rotors and Cells	186
C4.4.2 C4.4.3	Experimental Controls and Pitfalls Cell–Cell Interactions	155	D2.2.2	Rotors and Cells Optical Detection Systems	187
C4.4.2 C4.4.3 C4.4.4	Experimental Controls and Pitfalls Cell–Cell Interactions SPR and Mass Spectrometry	155 155	D2.2.2 D2.2.3	Rotors and Cells Optical Detection Systems Data Acquisition	187 188
C4.4.2 C4.4.3	Experimental Controls and Pitfalls Cell–Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas	155 155 156	D2.2.2 D2.2.3 D2.3	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation	187
C4.4.2 C4.4.3 C4.4.4	Experimental Controls and Pitfalls Cell–Cell Interactions SPR and Mass Spectrometry	155 155	D2.2.2 D2.2.3	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for	187 188 189
C4.4.2 C4.4.3 C4.4.4 C4.5	Experimental Controls and Pitfalls Cell–Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading	155 155 156 157	D2.2.2 D2.2.3 D2.3 D2.4	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions	187 188 189
C4.4.2 C4.4.3 C4.4.4 C4.5	Experimental Controls and Pitfalls Cell–Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas	155 155 156	D2.2.2 D2.2.3 D2.3 D2.4	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions	187 188 189 190 190
C4.4.2 C4.4.3 C4.4.4 C4.5	Experimental Controls and Pitfalls Cell–Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading	155 155 156 157	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions	187 188 189 190 190
C4.4.2 C4.4.3 C4.4.4 C4.5	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS	155 155 156 157	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions	187 188 189 190 190 190
C4.4.2 C4.4.3 C4.4.4 C4.5	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Dlogical Macromolecules as	155 155 156 157 159	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity	187 188 189 190 190
C4.4.2 C4.4.3 C4.4.4 C4.5	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS	155 155 156 157	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions	187 188 189 190 190 192 193
C4.4.2 C4.4.3 C4.4.4 C4.5	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Dlogical Macromolecules as	155 155 156 157 159	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational	187 188 189 190 190 190
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles	155 155 156 157 159	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field	187 188 189 190 190 192 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Dlogical Macromolecules as ynamic Particles History and Introduction to Biological	155 155 156 157 159	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and	187 188 189 190 190 192 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems	155 155 156 157 159	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving	187 188 189 190 190 192 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds	155 155 156 157 159 161	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary	187 188 189 190 190 192 193 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1 D1.2	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds Number	155 155 156 157 159 161 161	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary Highly Heterogeneous Systems	187 188 189 190 190 192 193 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1 D1.2 D1.2.1	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as ynamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds Number Reynolds Number	155 155 156 157 159 161 163 163	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary Highly Heterogeneous Systems Sedimentation Coefficients of Biological	187 188 189 190 190 192 193 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1 D1.2 D1.2.1 D1.2.2	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds Number Reynolds Number Movement at Low Reynolds Number	155 156 157 159 161 163 163 163	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1 D2.5.2	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary Highly Heterogeneous Systems Sedimentation Coefficients of Biological Macromolecules	187 188 189 190 190 192 193 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1 D1.2 D1.2.1 D1.2.2 D1.3 D1.4 D1.4.1	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds Number Reynolds Number Movement at Low Reynolds Number Hydration	155 156 157 159 161 163 163 163 163 165	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1 D2.5.2	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary Highly Heterogeneous Systems Sedimentation Coefficients of Biological Macromolecules Differential Sedimentation for Measuring	187 188 189 190 190 192 193 193
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1 D1.2 D1.2.1 D1.2.2 D1.3 D1.4	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds Number Reynolds Number Movement at Low Reynolds Number Hydration Friction "Stick" and "Slip" Boundary Conditions Hydrodynamic Quantities	155 156 157 159 161 163 163 163 163 165 165	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5 D2.5.1 D2.5.2	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary Highly Heterogeneous Systems Sedimentation Coefficients of Biological Macromolecules Differential Sedimentation for Measuring Small Changes in Sedimentation	187 188 189 190 190 192 193 193 195 196
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1 D1.2 D1.2.1 D1.2.2 D1.3 D1.4 D1.4.1 D1.4.2 D1.5	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds Number Reynolds Number Movement at Low Reynolds Number Hydration Friction "Stick" and "Slip" Boundary Conditions Hydrodynamic Quantities Diffusion	155 156 157 159 161 163 163 163 165 165 165	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5.1 D2.5.2 D2.5.2 D2.5.5 D2.5.4 D2.5.5	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary Highly Heterogeneous Systems Sedimentation Coefficients of Biological Macromolecules Differential Sedimentation for Measuring Small Changes in Sedimentation Coefficients Molecular Mass from Sedimentation and Diffusion Data	187 188 189 190 190 192 193 193 195 196
C4.4.2 C4.4.3 C4.4.4 C4.5 PART D1 Bio Hydrod D1.1 D1.2 D1.2.1 D1.2.2 D1.3 D1.4 D1.4.1 D1.4.2	Experimental Controls and Pitfalls Cell-Cell Interactions SPR and Mass Spectrometry Checklist of Key Ideas Suggestions for Further Reading D HYDRODYNAMICS Diogical Macromolecules as synamic Particles History and Introduction to Biological Problems Hydrodynamics at a Low Reynolds Number Reynolds Number Movement at Low Reynolds Number Hydration Friction "Stick" and "Slip" Boundary Conditions Hydrodynamic Quantities	155 156 157 159 161 163 163 163 163 165 165	D2.2.2 D2.2.3 D2.3 D2.4 D2.4.1 D2.4.2 D2.4.3 D2.5.1 D2.5.2	Rotors and Cells Optical Detection Systems Data Acquisition The Lamm Equation Solutions of the Lamm Equation for Different Boundary Conditions Exact Solutions Analytical Solutions Numerical Solutions Sedimentation Velocity Macromolecules in a Strong Gravitational Field Determination of Sedimentation and Diffusion Coefficients from the Moving Boundary Highly Heterogeneous Systems Sedimentation Coefficients of Biological Macromolecules Differential Sedimentation for Measuring Small Changes in Sedimentation Coefficients Molecular Mass from Sedimentation	187 188 189 190 190 192 193 193 195 196

D2.7.2 D2.8	Binding Constants The Partial Specific Volume	202 204	D4.4.1	Particles that are Small Compared to the Wavelength of the Incoming Light	236
D2.8 D2.9	Density Gradient Sedimentation	204	D4.4.2	Rigid Particles of Dimension Comparable	230
D2.9 D2.9.1	Velocity Zonal Method	204	D4.4.2	to the Wavelength of Light	237
D2.9.2	Equilibrium Sedimentation in a Density	204	D4.4.3	Flexible Macromolecules: DNA	238
D2.7.2	Gradient Gradient Gradient	206	D4.4.4	Macromolecules in Uniform Motion:	230
D2.10	Molecular Shape from Sedimentation	200	ד.ד.דע	Electrophoretic Light Scattering	239
D2.10	Data	207	D4.5	DLS under Non-Gaussian Statistics	241
D2.10.1	Homologous Series of Quasi-Spherical	201	D4.5.1	Scattering of a Small Number of Particles	271
D2.10.1	Particles: Globular Proteins in Water	207	D 1.3.1	(Number Fluctuations)	241
D2.10.2	Homologous Series of Random Coils:	201	D4.5.2	Cross-Correlation (Method of Two Detectors)	
D2.10.2	Proteins in Guanidine Hydrochloride	209	D4.5.3	Scattering of Single Particles	242
D2.10.3	From Slightly Flexible Rod to Nearly		D4.6	Fluorescence Correlation Spectroscopy	243
	Perfect Random Coil: DNA	209	D4.6.1	General Principles of FCS	243
D2.10.4	Ribosomal RNAs, Ribosomal Particles,		D4.6.2	Basics and Applications	244
	and RNP Complexes	210	D4.6.3	Dual-Color Fluorescence Cross-Correlation	
D2.11	Checklist of Key Ideas	213		Spectroscopy	248
	Suggestions for Further Reading	214	D4.7	Checklist of Key Ideas	248
				Suggestions for Further Reading	249
D2 Eluc	vroceenee Depolarization	215			
D3 Fluc	prescence Depolarization		DADT	CONTICAL CONCEDENCE	251
D3.1	Historical Review	215	PARI	E OPTICAL SPECTROSCOPY 2	251
D3.2	Introduction to Biological Problems	215			
D3.3	Theory of Fluorescence Depolarization	216	F1 Visil	ble and IR Absorption Spectroscopy	253
D3.3.1	Fluorescence as a Physical Phenomenon	216			
D3.3.2	Lifetime of Fluorophore and Rotational		E1.1	Brief Historical Review and Biological	
	Correlation Time	217		Applications	253
D3.3.3	Steady-State Fluorescence Depolarization	217	E1.2	Brief Theoretical Outline	254
D3.3.4	Time-Resolved Fluorescence		E1.2.1	The Extinction Coefficient and Absorbance	
D4 4	Depolarization	219	E1.3	The UV-Visible Spectral Range	255
D3.4	Instrumentation	219	E1.3.1	UV-Visible Spectrophotometers and	
D3.5	Depolarized Fluorescence and	224		Measurement Strategies	257
D2 F 1	Brownian Motion	221	E1.3.2	UV Absorption Spectra of Proteins	258
D3.5.1	Steady-State or Static Polarization	221	E1.3.3	Visible Absorption Spectra of Protein-	240
D3.5.2 D3.5.3	Fluorescence Anisotropy Decay Time	221	E1 2 4	Associated Groups	260
D3.3.3	Rotational Correlation Time of Globular Proteins	222	E1.3.4	UV Absorption Spectra of Nucleic Acids	265
D3.6		222	E1.4	IR Absorption Spectroscopy	266
D3.0	Depolarized Fluorescence and Molecular Interactions	225	E1.4.1	IR Spectrometers	266
D3.7	Checklist of Key Ideas	227	E1.4.2 E1.4.3	Molecular Vibrations IR-Active and IR-Inactive Modes	267 268
D 3.1	Suggestions for Further Reading	228	E1.4.3 E1.4.4	Quantum Mechanical Treatment of	200
	Suggestions for Further Reading	220	£1.4.4	Vibrations	268
			E1.4.5	Vibrations Vibrational Modes of Polyatomic Molecules	
_	amic Light Scattering and		E1.4.6	Resolution Enhanced FTIR Spectra	271
Fluores	cence Correlation Spectroscopy	229	E1.4.7	From Amide Bands to Protein Secondary	211
D4.1	Historical Review	229	Б1. т. т	Structure	273
D4.2	Introduction to Biological Problems	230	E1.4.8	IR Difference Spectroscopy	274
D4.3	Dynamic Light Scattering as a		E1.4.9	Time-Resolved IR Spectroscopy	276
	Spectroscopy of Very High Resolution	231	E1.4.10	DNA Conformation	277
D4.3.1	Fluctuations and Time-Correlation		E1.5	Checklist of Key Ideas	279
	Functions	232		Suggestions for Further Reading	280
D4.3.2	Measurements of the Dynamic Part of			20	-55
	Scattered Light	233	E2 Two	Dimensional ID Spectroscopy	281
D4.3.3	Diffusion Coefficients from DLS	235	EZ IWO	-Dimensional IR Spectroscopy	401
D4.4	Dynamic Light Scattering Under		E2.1	Historical Review and Introduction to	
	Gaussian Statistics	236		Biological Problems	281

E2.2	Linear and Multidimensional		E4.3	Instruments	311
	Spectroscopy	281	E4.4	CD of Proteins	311
E2.3	Principles of 2D-IR Spectroscopy	281	E4.4.1	Circular Dichroïsm of Protein Secondary	
E2.3.1	Pump Probe Experiments	281		Structures	311
E2.3.2	Selection Rules for Two-Dimensional		E4.4.2	Near-UV CD and Protein Tertiary	
	Spectroscopy	282		Structure	314
E2.3.3	NMR and 2D-IR Spectroscopy: Similarity		E4.4.3	Protein Folding	315
	and Difference	283	E4.5	Nucleic Acids and Protein-Nucleic	
E2.4	From Amide Bands to Protein Tertiary			Acid Interactions	317
	Structure	283	E4.5.1	RNA	317
E2.4.1	Simulations of 2D-IR Spectroscopy	284	E4.5.2	DNA	318
E2.4.2	Determination of Peptide Structures	284	E4.5.3	Protein–Nucleic Acid Interactions	318
E2.5	Checklist of Key Ideas	286	E4.6	Carbohydrates	319
	Suggestions for Further Reading	287	E4.7	CD from IR Radiation to X-rays	320
	ouggeonous for Further Housing	20.	E4.8	Checklist of Key Ideas	320
			2110	Suggestion for Further Reading	321
E3 Ra	man Scattering Spectroscopy	288		ouggestion for Further Reading	321
E3.1	Historical Review and Introduction to				
	Biological Problems	288	PART	F OPTICAL MICROSCOPY	323
E3.2	Classical Raman Spectroscopy	288			
E3.2.1	Raman Spectra	288			
E3.2.2	Frequency, Intensity, and Polarization	289	F1 Ligi	nt Microscopy	325
E3.2.3	Raman Spectrometers and Raman	207	F1.1	Historical Review	325
23.2.3	Microscopes	290	F1.2	Light Microscopy Inside the Classical	323
E3.2.4	Protein Secondary Structure from Raman	270	1 1,2	Limit	326
23.2.1	Spectra	291	F1.2.1	The Standard Light Microscope	326
E3.2.5	Protein Conformational Dynamics in	271	F1.2.2	The Problem of Contrast	328
L3.2.3	Solution and in Crystals	293	F1.3	Subwavelength Resolution within	320
E3.2.6	Conformation of DNA	293	11.5	the Restrictions of Geometrical	
E3.2.0	Resonance Raman Spectroscopy (RRS)			Optics	329
E3.4	Surface Enhanced Raman Spectroscopy		F1.3.1	Confocal Microscopy	329
LJ.T	(SERS)	295	F1.3.1	Lensless Microscopy	331
E3.5	Vibrational Raman Optical Activity	296	F1.4 F1.5	Checklist of Key Ideas	
E3.5.1	Vibrational Circular Dichroïsm (VCD)	296	F1.5	Suggestions for Further Reading	333 333
E3.5.1	Raman Optical Activity (ROA)	296		Suggestions for Further Reading	333
E3.5.2	Differential Raman Spectroscopy	300			
E3.7	Time-Resolved Resonance Raman	300		gle Molecule Manipulation and	
E3.1	Spectroscopy	301	Atomic	Force Microscopy	335
E3.7.1	Light-Initiated Methods	301	F2.1	Historical Review	335
E3.7.1 E3.7.2	Rapid Mixing Methods	303	F2.1	Nanoscale Manipulation in Biology	336
E3.7.2 E3.8	Checklist of Key Ideas	303	F2.2.1	Optical Traps (Laser Tweezers)	336
E3.6		304	F2.2.1	Magnetic Traps (Magnetic Tweezers)	338
	Suggestions for Further Reading	304	F2.2.3	Cantilever in the Force-Measuring Mode	330
			F2.2.3	of the AFM	339
E4 Opt	tical Activity and Circular Dichroïsm	306	E2 2 4		
E4.1	Transfer I Danis and I Later Joseph at		F2.2.4	Glass Microneedles	340
E4.1	Historical Review and Introduction to	207	F2.3	General Principles of AFM	340
E4.0	Biological Problems	306	F2.3.1	The Tip: A Key Element of Scanning	2.42
E4.2	Brief Theoretical Outline	307	F2 2 2	Force Microscopy	342
E4.2.1	Plane, Circularly, and Elliptically	20-	F2.3.2	Imaging Modes	342
T.4.6.5	Polarized Light	307	F2.4	Imaging Biological Structures	344
E4.2.2	CD, Ellipticity, and ORD	308	F2.4.1	Imaging DNA	344
E4.2.3	Electronic Transitions, Dipole, and	~ ~ -	F2.4.2	Imaging Proteins	345
	Rotational Strengths	309	F2.4.3	Biological Macromolecules at Work:	
E4.2.4	Rotational Strength and Structural		TIQ	High-Speed AFM	346
	Organization	310	F2.4.4	The AFM Probe as a Nanoscalpel	348

F2.4.5	Study of Crystal Growth	348	PART	G X-RAY AND NEUTRON	
F2.5	Combination of NSOM and AFM	349		RACTION	405
F2.6	Macromolecular Mechanics:		DIFFR	ACTION	403
	Nanometer Steps and Piconewton				
	Forces	350	G1 The	e Macromolecule as a Radiation	
F2.6.1	Linear Molecular Motors	351		ring Particle	407
F2.6.2	Rotary Molecular Motors	360	Oddition		401
F2.6.3	The Bacteriophage φ 29 DNA Packaging		G1.1	Historical Review and Introduction to	
	Motor	363		Biological Applications	407
F2.6.4	Molecular Motors and Brownian Motion	365	G1.2	Radiation and Matter	408
F2.6.5	Molecular Motors and the Second Law of		G1.2.1	X-ray and Neutron Scattering	409
	Thermodynamics	366	G1.2.2	Absorption	409
F2.6.6	DNA Mechanics	366	G1.2.3	Energy Momentum and Wavelength	409
F2.6.7	RNA Mechanics	373	G1.3	Scattering by a Single Atom	
F2.6.8	Protein Mechanics	375		(the Geometric View)	410
F2.6.9	Deformation of Polysaccharides	379	G1.3.1	Point Scattering: Scattering Length	411
F2.7	Checklist of Key Ideas	381	G1.3.2	Cross-Sections and Sample Size	412
	Suggestions for Further Reading	382	G1.4	Scattering Vector and Resolution	413
	0.088.00.00.00.00.00.00.00.00.00.00.00.0		G1.5	Scattering by an Assembly of Atoms	414
			G1.5.1	Coherent and Incoherent Scattering	414
F3 Flu	orescence Microscopy	384	G1.5.2	Elastic and Inelastic Scattering	414
F3.1	Historical Review	384	G1.5.3	Summing Waves, Fourier Transformation	١,
F3.2	Fluorescence Microscopy Inside the			and Reciprocal Space	415
1 3.2	Classical Limit	386	G1.5.4	The Phase Problem	416
F3.2.1	The Standard Wide-Field Fluorescence	000	G1.6	Solutions and Crystals	416
10.2.1	Microscope	386	G1.6.1	One-Dimensional Crystals	416
F3.2.2	Two-Photon Excited Microscopy	386	G1.6.2	Two- and Three-Dimensional	
F3.2.3	Total Internal Reflectance Fluorescence	300		Crystals	417
1 3.2.3	Microscopy (TIRFM)	388	G1.6.3	Disordered Systems	417
F3.3	Fluorescence Spectroscopy of Single	300	G1.7	Resolution and Contrast	418
13.3	Molecules	389	G1.8	The Practice of X-ray and Neutron	
F3.3.1	Laser-Induced Fluorescence	389		Diffraction	419
F3.3.2	Labeling Schemes and Observable Values	390	G1.8.1	Complementarity	419
F3.4	Increasing the Resolution of	370	G1.8.2	Sources and Instruments	419
13.4	Fluorescence Microscopy	392	G1.9	Checklist of Key Ideas	421
F3.4.1	4Pi-Confocal Microscopy	392	0117		
F3.4.2	Stimulated Emission Depletion	392			
1 3.7.2	Microscopy	393		all-Angle Scattering and	
F3.4.3	Standing-Wave Illumination Fluorescence		Reflect	tometry	423
13.4.3	Microscopy (SWFM)	394	G2.1	Theory of Small-Angle Scattering from	
F3.5	Fluorescence Resonance Energy	394	0211	Particles in Solution	423
F3.3	Transfer	395	G2.1.1	Dilute Solutions of Identical Particles	423
E2 5 1	FRET as a Spectroscopic Ruler in Static	393	G2.1.2	The Scattering Curve at Small <i>Q</i> Values:	123
F3.5.1		395	32.1.2	The Guinier Approximation, the Forward	
E2 6	and Dynamic Regimes	393 397		Scattered Intensity, and Radius of	
F3.6 F3.6.1	Green Fluorescent Protein	399		Gyration Gyration	425
	GFP as a Conformational Sensor		G2.1.3	Asymptotic Behavior of the Scattering	123
F3.6.2	GFP as a Cellular Reporter	399	02.1.3	Curve at Large Q Values: The Porod	
F3.7	Fluorescence Lifetime Imaging			Relation	426
	Microscopy (FLIM): Seeing the	400	G2.1.4	The Full Scattering Curve: The Distance	740
F2.0	Machinery of Live Cells	400	02.1.4	Distribution Function	427
F3.8	Photo-Activated Localization Microscop	y	G2.1.5	The Information Content in $p\langle r \rangle$ and $I\langle Q \rangle$	+ ∠1
	and Stochastic Optical Reconstruction	403	04.1.3	for a Monodisperse Solution of a Particle	
E2 0	Microscopy	402		with a Well-Defined Envelope	428
F3.9	Checklist of Key Ideas	402	G2.1.6	Polydisperse Solutions	430
	Suggestions for Further Reading	403	04.1.0	i orygiaperae adiunona	730

G2.1.7	Interactions Between the Particles	430	G3.3.3	Crystallization Methods	461
G2.2	Models and Simulations	431	G3.3.4	Identifying Crystals and Precipitates:	
G2.2.1	From Structure to Scattering Curve	431		Crystal Shapes and Sizes	462
G2.2.2	From the Scattering Curve to a Set of		G3.3.5	Cryo-Crystallography and Cryo-	
	Structures	435		Protectants	464
G2.3	General Contrast Variation: Particles in		G3.3.6	Crystal Mounting	464
	Different Solvents "Seen" by X-rays and		G3.3.7	Labeling	465
	"Seen" by Neutrons	436	G3.4	From Intensity Data to Structure	
G2.3.1	Two-Component Particles and the	40.4	00.44	Factor Amplitudes	466
	Parallel Axes Theorem	436	G3.4.1	Data Collection and Processing	466
G2.3.2	The Stuhrmann Analysis of Contrast	420	G3.4.2	Indexing Bragg Reflections	466
02.2.2	Variation	438	G3.4.3	Scaling the Reflection Intensities	467
G2.3.3	Deuterium Labeling and Triangulation	440	G3.4.4	Twinning	467
G2.4	The Thermodynamics Approach in	444	G3.4.5	Radiation Damage	467
02.4.1	SAS	441	G3.4.6	Determination of the Unit Cell	4.7
G2.4.1	Fluctuations in Hydrodynamics and	4.41	02.47	Dimensions	467
02.42	Scattering I.B. (1.1)	441	G3.4.7	Determination of the Space Group	468
G2.4.2	Relating the Thermodynamics and Particle		G3.4.8	Redundancy and Statistics	468
00.5	Approaches	443	G3.4.9	Molecular Packing in the Unit Cell and	470
G2.5	Interactions, Molecular Machines, and	442	G3.5	the Patterson Function	469
C2 F 1	Membrane Proteins	443		Finding a Model to Fit the Data The Model	470
G2.5.1	Aminoacyl tRNA Synthetase Interactions	442	G3.5.1		470
C2 F 2	with tRNA	443	G3.5.2	Assessing Agreement Between the Model	470
G2.5.2	ATP, Solvent- and Temperature-Induced	444	G3.5.3	and the Data	470
G2.5.3	Structural Changes of the Thermosome Membrane Proteins	444	G3.5.3	Assessing Agreement Between the Model and Chemistry	472
G2.5.5 G2.6	SAS Combined with Other Methods	444	G3.6	From the Data to the Electron	412
G2.0	for a Global Structural Study	446	G3.0	Density Distribution: Initial Phase	
G2.7	Size-Exclusion Chromatography	770		Estimate	473
G2.1	Multiangle Laser Light Scattering	447	G3.6.1	Argand Diagram	473
G2.8	Reflectometry (or Reflectivity)	448	G3.6.2	Molecular Replacement	473
G2.8.1	Background	448	G3.6.3	Direct Methods	474
G2.8.2	Instrumental Set-up	451	G3.6.4	Single and Multiple Isomorphous	17 1
G2.8.3	Examples	452	33.0.1	Replacement (SIR, MIR)	475
G2.9	Checklist of Key Ideas	454	G3.6.5	Single and Multiple Anomalous	175
02.7	Suggestions for Further Reading	455	G 5.0.5	Dispersion (SAD, MAD)	475
	ouggeonono for further from the		G3.7	From the Electron Density to the	
			0011	Atomic Model: Refinement of the	
	ay and Neutron Macromolecular			Model – Phase Improvement	477
Crystal	lography	456	G3.7.1	Fitting to the Electron Density by Eye	• • • •
G3.1	Historical Review	456		and by Hand	477
G3.2	From Crystal to Model	457	G3.7.2	Minimization of a Target Function	
G3.2.1	Reciprocal Lattice, Ewald Sphere, and			(Maximum Likelihood)	477
	Structure Factors	457	G3.7.3	Crystallographic Refinement Restraints	478
G3.2.2	Space Group Symmetry	458	G3.7.4	Refinement Procedures	479
G3.2.3	Electron Density	459	G3.7.5	Final Assessment of the Structure	482
G3.2.4	Technical Challenges and the		G3.7.6	Structural Genomics	482
	Crystallographic Model	460	G3.8	Kinetic Crystallography	483
G3.3	Crystal Growth: General Principles		G3.8.1	Trapping of Intermediate States	483
-	Involved in the Transfer of a		G3.8.2	Laue Diffraction and Time-Resolved	
	Macromolecule from Solution to a			Crystallography	483
	Crystal Form	460	G3.9	Neutron Crystallography	484
G3.3.1	Purity and Homogeneity	460	G3.10	Checklist of Key Ideas	485
G3.3.2	Crystallization Screens	461		Suggestions for Further Reading	486

PART	H ELECTRON DIFFRACTION	487	H2.3.4	Common Lines Reconstruction Procedure	
			H2.3.5 H2.3.6	Polar Fourier Transform Reconstruction	505 506
U1 Flo	ectron Microscopy	489	H2.3.7	Real-Space Reconstruction Procedure Focal and Tilt Pairs	506
III LIC	ection uncroscopy	403	H2.4	Reconstruction Procedures for One-	300
H1.1	Historical Review	489	112,7	and Two-Dimensional Crystals	506
H1.2	Introduction to Biological Problems	490	H2.4.1	Helical Reconstruction	506
H1.2.1	The Electron Microscope Image	490	H2.4.2	Electron Crystallography	507
H1.2.2	Applications of EM	490	H2.5	Classification Procedures	508
H1.2.3	Techniques Covered	490	H2.5.1	Statistical Analysis	508
H1.3	Principles of Electron Diffraction and		H2.5.2	Multivariate Statistical Analysis	508
	Imaging	490	H2.6	Determination of the Resolution	508
H1.3.1	Properties of Electrons	490	H2.6.1	Number of Images Required for a	
H1.3.2	Electromagnetic Lens	491		Reconstruction	508
H1.3.3	The Image Recorded by an Electron		H2.6.2	Definition of Resolution	509
	Microscope	491	H2.6.3	Over-Fitting and Validation of the EM	
H1.3.4	Transfer of Information from Sample to			Reconstruction	510
	Image	492	H2.7	Map Enhancement	510
H1.4	Electron Microscopes	494	H2.7.1	Symmetry	510
H1.4.1	Electron Beam Generation	494	H2.7.2	Weighting	511
H1.4.2	Transmission and Scanning Electron	40.4	H2.7.3	Use of Other Structural Information	511
***	Microscopes	494	H2.8	Applications and Examples	512
H1.4.3	Electron Images	495	H2.8.1	The Ribosome	512
H1.4.4	Image Recording System	495	H2.8.2	Icosahedral Viruses	512
H1.5	Techniques in Specimen Preparation	496	H2.8.3	Microtubules	514
H1.5.1	Specimen Support	496	H2.8.4	Integral Membrane Proteins	514
H1.5.2	Negative Staining	497	H2.9	Checklist of Key Ideas	516
H1.5.3	Freezing of the Sample	497		Suggestions for Further Reading	517
H1.6	Data Collection	498			
H1.6.1	Factors to Consider during Data Collection	on 498 498	DADT	I MOLECULAR DVNAMICE	E10
H1.6.2 H1.6.3	Data from Single Particles Imaging Crystals and Helical Molecules	498	PARI	I MOLECULAR DYNAMICS	519
H1.6.4	Tomography	499			
H1.7	Immunochemistry	500	I1 Ene	gy and Time Calculations	521
H1.8	Checklist of Key Ideas	500			
111.0	Suggestions for Further Reading	501	I1.1	Historical Review of Biological	
	ouggestions for 1 drifter reading	301		Applications	521
			I1.2	Dynamics, Kinetics, Kinematics, and	
H2 Thr	ree-Dimensional Reconstruction			Molecular Stabilization Forces	522
from Tv	wo-Dimensional Images	502	I1.3	Length and Timescales in	
H2.1	EM in Piology	E02	T4 4	Macromolecular Dynamics	522
H2.1.1	EM in Biology Structural Biology with EM	502 502	I1.4	Normal Mode Analysis	522
H2.1.1	Examples of Electron Cryo-Microscopy	302	I1.5	Molecular Dynamics Simulations	523
ΠΖ.1.2	Reconstructions	502	I1.5.1	Force Field	523
H2.2	EM Data Preparation	503	I1.5.2	Parameterization of the Force Field	523
H2.2.1	Preliminary Analysis of the Image	503	I1.5.3	Potential Energy Surface and Energy	F22
H2.2.2	Particle Selection	503	T1 5 4	Minimization	523
H2.2.3	Correction for the Contrast Transfer	303	I1.5.4	Modeling the Solvent	524
112.2.3	Function	503	I1.5.5	Typical Molecular Mechanics Simulation	F2F
H2.3	Single-Particle Reconstruction	303	T1 F 6	Protocol	525
114.0	Procedures	503	I1.5.6	Analysis of Results	525 52 6
H2.3.1	Coordinate System	503	I1.6 I1.6.1	Application Examples	526 526
H2.3.2	Reconstruction from Projections	503	II.6.1 I1.6.2	BPTI and Lysozyme Protein Folding	526 527
H2.3.3	Iteration Procedure: Reprojection	202	I1.6.2 I1.6.3	Structure Refinement	527
	Method	505	II.6.3 I1.6.4	ATP Synthase: A Molecular Machine	527
			11.0.7	1111 Symmasc. A Molecular Machille	J4 I

I1.7	Checklist of Key Ideas	529	J2.5	Two-Dimensional NMR	579
	Suggestions for Further Reading	530	J2.5.1	Correlation Spectroscopy	580
			J2.5.2	Nuclear Overhauser Enhanced	
IO No.	stron Chaotracony	E24		Spectroscopy	582
12 Net	itron Spectroscopy	531	J2.5.3	Transverse Relaxation-Optimized	
I2.1	Historical Overview and Introduction to	0		Spectroscopy	583
	Biological Applications	531	J2.6	Multi-Dimensional, Homo- and	
I2.2	Theory	532		Heteronuclear NMR	585
I2.2.1	Momentum and Energy, Distance		J2.7	Sterically Induced Alignment	586
	Traveled, and Time	532	J2.7.1	Residual Dipolar Couplings	586
I2.2.2	The Dynamic Structure Factor, Intermedi	ate	J2.7.2	Chemical Shift Anisotropy (CSA)	589
	Scattering Function and Correlation		J2.8	Isotope Labeling of Proteins and	
	Function	533		Nucleic Acids	590
I2.2.3	Coherent and Incoherent Cross-Sections	533	J2.8.1	Labeling Strategies for Proteins	590
I2.3	Applications	534	J2.8.2	Labeling Strategies for RNA	592
I2.3.1	Energy and Time Resolution	534	J2.9	Checklist of Key Ideas	592
I2.3.2	Space-Time Window	534		Suggestions for Further Reading	592
I2.3.3	Q Dependence of the Elastic Intensity	535			
I2.3.4	Quasi-Elastic Scattering and Diffusion	537	J3 Str	ucture and Dynamics Studies	594
I2.3.5	Inelastic Scattering and Vibrations	537	J3.1	Structure Calculation Strategies	
I2.4	Samples and Instruments	538	J3.1	from NMR Data	594
I2.5	Checklist of Key Ideas	541	J3.2	Three-Dimensional Structure of	374
	Suggestions for Further Reading	541	33.2	Biological Macromolecules	595
			J3.2.1	Proteins	595
DADT	L NUOL FAR MACHETIC		J3.2.1	Nucleic Acids	598
	J NUCLEAR MAGNETIC		J3.2.3	Carbohydrates	600
RESO	NANCE	543	J3.3	Dynamics of Biological Macromolecules	
			J3.3.1	Protein Dynamics from Relaxation	
				Measurements	602
J1 Dis	tances and Angles from Frequencies	545	J3.3.2	Protein Dynamics from Amide Proton	
J1.1	Historical Review	545		Exchange	606
J1.2	Fundamental Concepts	547	J3.3.3	Dynamics of Slow Events: Translational	
J1.2.1	Quantum Mechanical Description	547		Diffusion	606
J1.2.2	Classical Mechanical Description	551	J3.4	Solid-State NMR	608
J1.2.3	Nuclear Environment Effects on NMR	555	J3.4.1	Solution and Solid-State NMR:	
J1.3	Checklist of Key Ideas	564		Comparative Analysis	608
	Suggestions for Further Reading	564	J3.4.2	Solving Three-Dimensional Structures	
				in Solid-State NMR	609
12 Ev.	porimental Techniques	566	J3.4.3	Atomic Structure of the Injection Needle	
JZ EX	perimental Techniques	300		Used by Pathogenic Bacteria	611
J2.1	Fourier Transform NMR Spectroscopy	566	J3.4.4	Rapid Proton-Detected NMR Assignment	
J2.1.1	Principles	566		for Proteins with Fast MAS	612
J2.1.2	The Fourier Transform NMR		J3.5	NMR, X-ray Crystallography, Small-	
	Spectrometer	568		Angle X-ray and Neutron Scattering	
J2.2	Single-Pulse Experiments	569		(SAXS and SANS)	613
J2.2.1	Data Acquisition and Processing	569	J3.5.1	Structure of Macromolecules in Crystal	
J2.2.2	Free Induction Decay	570		and in Solution: Comparative Studies	615
J2.3	Multiple-Pulse Experiments	570	J3.5.2	NMR in Structural Genomics and for	
J2.3.1	The Inversion Recovery Method to			Intrinsically Disordered Proteins	616
	Measure Spin–Lattice Relaxation Time T_1		J3.5.3	NMR Combined with SAXS and SANS	619
J2.3.2	The Spin-Echo Effect to Measure T_2	572	J3.6	In-Cell NMR	620
J2.3.3	Polarization Transfer	575	J3.7	Checklist of Key Ideas	624
12.4	Nuclear Overhauser Enhancement	577		Suggestions for Further Reading	625

					Contents
PART	K MEDICAL IMAGING	627	K2.2	Ultrasound Waves	639
	(1 Radiology and Positron Emission Fomography		K2.3 K2.3.1	Health Physics, Absorption, and Attenuation of Ultrasound Waves in Biological Tissue Effects of Ultrasound	642 642
K1.1 K1.2 K1.2.1	Historical Review Health Physics Simple Rules to Protect the Medical Practitioner Ionizing Radiation Dose	629 630 631	K2.3.2 K2.4 K2.4.1 K2.5	Attenuation Principles of Ultrasound Imaging Imaging Mode Checklist of Key Ideas Suggestion for Further Reading	642643646647
K1.2.3 K1.2.4	Dosimetry Practice to Reduce Effective Dose in the Patient	631	K3 Ma	gnetic Resonance Imaging	648
K1.3.1 K1.3.2 K1.4	Interaction of X-rays and γ-rays with Matter Processes of X-ray and γ-ray Absorption Matter Mass Attenuation Coefficient Production of X-rays	632	K3.1 K3.2 K3.3 K3.3.1	Introduction to MRI and Historical Review Principles of Nuclear Magnetic Resonance Principles of MRI Health Physics T_1 and T_2 Image Formation, Signal	648649651652
K1.5 K1.6 K1.7 K1.7.1 K1.8	Detection of X-rays Principles of the CT Scan Positron Emission Tomography Principles of PET Checklist of Key Ideas Suggestion for Further Reading	634 635 637 637 638 638	K3.3.2 K3.4 K3.5	Localization, and Pulse Sequences Brain Water, Functional MRI, and PET Checklist of Key Ideas Suggestions for Further Reading	652 656 656 657
K2 Ultrasound Imaging		639	Reference Author I	Index	658 672
K2.1	Historical Review	639	Subject	inaex	676

PREFACE TO THE FIRST EDITION

André Guinier, whose fundamental discoveries contributed to the X-ray diffraction methods that are the basis of modern structural molecular biology, died in Paris at the beginning of July 2000, only a few weeks after it was announced in the press that a human genome had been sequenced. The sad coincidence serves as a reminder of the intimate connection between physical methods and progress in biology. Not long after, Max Perutz, Francis Crick and then David Blow, the youngest of the early protein crystallographers, passed away. The period marked the gradual closing of the era in which molecular biology was born and the opening of a new era. In what has been called the post-genome sequencing era, physical methods are now increasingly being called upon to play an essential role for the understanding of biological function at the molecular and cellular levels.

Molecular biophysics classical text books published in the previous decades have been overtaken not only by significant developments in existing methods such as those brought about by the advent of synchrotrons for X-ray crystallography or higher magnetic fields in NMR, but also by totally new methods with respect to biological applications, such as mass spectrometry and single molecule detection and manipulation. Our ambition in attempting this book was to be as up-to-date and exhaustive as possible. In their respective parts, we covered classical and advanced methods based on mass spectrometry, thermodynamics, hydrodynamics, spectroscopy, microscopy, radiation scattering, electron microscopy, molecular dynamics and NMR. But rapid progress in the field (we couldn't very well ask the biophysics community to stop working during the few years it takes to write and prepare a book!), and the requirement to keep the book to a manageable size meant that certain methods are either omitted or not perfectly up-to-date.

The key-word in molecular biophysics is *complementarity*. The Indian story of the six blind men and the elephant (see Frontispiece) is an appropriate metaphor for the field. Each of the blind men touched a different part of the elephant, and concluded on its nature: a big snake said the man who touched the trunk, the tusks were spears, its side a great wall, the tail a paint brush, the ears huge fans, the legs were tree trunks. We could add a seventh very short-sighted man to the story who can see the whole elephant but as a blurred grey cloud to illustrate diffraction methods. As we wrote in the Introduction, the ideal molecular biophysics method does not exist. It would be capable of observing not only the positions of atoms in molecules *in vivo*, but also the atomic motions and

conformational changes that occur as the molecules are involved in the chemical and physical reactions associated with their biological function, regardless of the timescale involved. No single experimental technique is capable of yielding this information. Each provides us with a partial field of view with its clear regions and areas in deep shadow. In the 21st century, physical methods have to cope with very complicated biological problems, whose solution will depend on the ability to transfer structural and functional knowledge from the operation of a single molecule to the cellular level, and then to the whole organism. The splendor and complexity of the task is humbling, but the challenge will be met.

We are deeply obliged to Professor Don Engelman of Yale University, USA, and Professor Pierre Joliot of the Institut de Biologie Physico Chimique, France, who agreed to write forewords for the book. Outstanding scientists and teachers, each is both major actor and observer in biophysical research and the development of modern biology. We are very grateful to Brinda Muthusamy who painted the frontispiece. Grateful thanks also to expert colleagues for critical discussions on the different methods: Martin Blackledge and the members of the NMR laboratory, Christine Ebel, Dick Wade, Hugues Lortat-Jacob, Patricia Amara, the members of the laboratory of mass spectrometry, all of the Institut de Biologie Structurale, France, Regine Willumeit of the GKSS, Forschungszentrum Geesthacht, Germany, Victor Aksenov of the Joint Institute of Nuclear Research, Russia, Lesley Greene, Christina Redfield, Guillaume Stewart-Jones, Yvonne Jones and David Stuart of the University of Oxford, UK, Jonathan Ruprecht and Richard Henderson of the Laboratory of Molecular Biology, UK, Simon Hanslip and Robert Falconer of the University of Cambridge, UK. We gratefully acknowledge support from the Radulf Oberthuer Foundation, Germany, the Institut de Biologie Structurale and the Institut Laue Langevin, France, and the Cyril Serdyuk Company, Ukraine. We are indebted to Gennadiy Yenin of the Institute of Protein Research, Russia for drawing figures and scientific illustrations, and to Aleksandr Timchenko, Margarita. Shelestova, Margarita Ivanova, Tatyana Kuvshinkina, and Albina Ovchinnikova (Institute of Protein Research, Russia) for technical assistance. And finally, we would like to thank all our colleagues, friends and families, and the staff of Cambridge University Press, who supported us with much patience, understanding and encouragement.

Igor N. Serdyuk, Nathan R. Zaccai, Joseph Zaccai

August 2005

PREFACE TO THE SECOND EDITION

As we wrote in the preface to the first edition, our ambition in attempting *Methods in Molecular Biophysics* was to be as up-to-date and exhaustive as possible, considering the rapid progress in the field. Judging by broad readers' responses, the book usefully fulfilled its mission. The historical introduction to each method and "physicist" and "biologist" boxes were especially appreciated. Criticism focused on the inclusion of methods which even if once important are no longer topical, and relative inattention to emerging methods that were subsequently proven to be very powerful. Scientific predictions are, of course, particularly difficult to make, especially as progress may come from difficult to foreknow technical breakthroughs. The development of new detector systems, which now permit approaching atomic resolution in cryo-electron microscopy, comes to mind. The unwieldy size and weight of the first edition also invited justified criticism (it is interesting to note that the Russian edition is in two tomes). In this second edition, we have chosen a different book format that we hope will be easier and more pleasant to handle. We have carefully gone through the text to reorganize, bring up-to-date, and prune each of the chapters. We have added a new section on medical imaging so that the book now includes the range of topics covered in most medical school biophysics courses.

To the list of colleagues gratefully acknowledged in the first edition preface, we would like to add Frank Gabel,

Institut de Biologie Structurale, Grenoble, for his critical reading of the first edition to suggest corrections and improvements, and expert colleagues who checked the updates, revisions, and additions in the second edition: Elisabetta Boeri Erba, Martin Blackledge, Dimitrios Skoufieas of the Institut de Biologie Structurale, Grenoble; Harriet Crawley-Snowdon, James Edgar, Antoni Wrobel, of the Cambridge Institute for Medical Research, University of Cambridge; Antony Fitzpatrick, Laboratory of Molecular Biology, Cambridge; Massimo Antognozzi, School of Physics, University of Bristol; Lotte Stubkjaer Fog, Medical Physicist, Section for Radiotherapy, Oncology Clinic, Rigshospitalet, Copenhagen; Alberto Bravin, Bio-medical Beam Line, European Synchrotron Radiation Facility, Grenoble; Jeremy Smith, Governor's Chair and Director, University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics.

Many thanks also to our friends and families, and the staff of Cambridge University Press, who supported the project with much patience, understanding, and encouragement.

It is with sadness that we recall the memory of Igor Serdyuk, our co-author, who died suddenly in Spring 2012.

Nathan R. Zaccai, Joseph Zaccai *June 2016*

