Synchronization

A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behavior in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations, and application examples will help advanced graduate students and researchers gain an organic and complete understanding of the subject.

Stefano Boccaletti is Senior Researcher at the CNR Institute for Complex Systems. Previously he has been the Scientific Attaché at the Italian Embassy in Israel, Full Researcher at the National Institute of Optics in Italy, and Visiting Scientist or Honorary Professor of seven international universities. He is the editor of four books and Editor in Chief of Chaos Solitons and Fractals.

Alexander N. Pisarchik is Isaac-Peral Chair in Computational Systems Biology at the Center for Biomedical Technology of the Technical University of Madrid. His research interests include chaos theory and applications in optics, electronics, biology and medicine, chaotic cryptography, and communication.

Charo I. del Genio is Visiting Faculty Member at the University of Warwick and his work primarily focuses on graph theory and complex networks, particularly with an algorithmic or simulation component. Recently he has been applying methods from network research to the study of biological systems, to explain biomolecular mechanisms and design new antimicrobial drugs.

Andreas Amann is a lecturer at University College Cork and his research interests focus on semiconductor physics, lasers, photonics, and, more recently, energy harvesting devices. From a mathematical perspective his work concerns synchronization, time delay, and complex networks.
SYNCHRONIZATION
From Coupled Systems to Complex Networks

STEFANO BOCCALETTI
CNR Institute for Complex Systems, Rome

ALEXANDER N. PISARCHIK
Technical University of Madrid, Spain

CHARO I. DEL GENIO
University of Warwick

ANDREAS AMANN
University College Cork
Contents

Preface

<table>
<thead>
<tr>
<th>Preface</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction and Main Concepts</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Dynamical Systems</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Linear Dynamical Systems</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Nonlinear Dynamical Systems</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Autonomous and Nonautonomous Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 Conservative and Dissipative Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Chaotic Systems</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 Time Series</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Phase Space</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3 Power Spectrum</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Attractors</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Types of Attractors</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Basins of Attraction and Poincaré Maps</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Stability of Dynamical Systems</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1 Linear Stability Analysis</td>
<td>11</td>
</tr>
<tr>
<td>1.4.2 Lyapunov Exponents</td>
<td>13</td>
</tr>
<tr>
<td>1.4.3 Bifurcations</td>
<td>14</td>
</tr>
</tbody>
</table>

2 Low-Dimensional Systems	**21**
2.1 A Brief History of Synchronization	21
2.2 Types of Coupling	23
2.3 Phase Oscillators	26
2.3.1 Unidirectionally Coupled Phase Oscillators	28
2.3.2 Mutually Coupled Phase Oscillators	31
2.3.3 Frequency-Splitting Bifurcation	31
2.4 Complete Synchronization	34
Contents

2.4.1 Measures of Complete Synchronization 34
2.4.2 Bidirectional Coupling 35
2.4.3 Unidirectional Coupling 36
2.4.4 Conditional Lyapunov Exponents for Discrete Systems 39
2.4.5 Example of Coupled Rössler-Like Oscillators 41
2.4.6 Stability of the Synchronization Manifold 45
2.5 Phase Synchronization 47
2.5.1 Defining Phases in Chaotic Systems 47
2.5.2 Measures of Phase Synchronization 52
2.5.3 Example: Ring of Rössler Oscillators 55
2.6 Lag and Anticipating Synchronization 60
2.7 Coherence Enhancement 64
2.7.1 Deterministic Coherence Resonance 66
2.7.2 Stabilization of Periodic Orbits in a Ring of Coupled Chaotic Oscillators 66
2.8 Generalized Synchronization 68
2.8.1 Generalized Synchronization in Unidirectionally Coupled Systems 69
2.8.2 Generalized Synchronization in Bidirectionally Coupled Systems 74
2.9 A Unifying Mathematical Framework for Synchronization 75

3 Multistable Systems, Coupled Neurons, and Applications 77
3.1 Unidirectionally Coupled Multistable Systems 79
3.1.1 Synchronization States 79
3.1.2 An Example 80
3.2 Systems with a Common External Force: Crowd Formation 92
3.2.1 A Numerical Example 94
3.3 Bidirectionally Coupled Systems 98
3.4 Synchronization of Coupled Neurons 101
3.4.1 Synchronization of Neurons with Memory 102
3.4.2 Synchronization of Neurons with Arbitrary Phase Shift 104
3.4.3 Phase Map 109
3.5 Chaos Synchronization for Secure Communication 112
3.5.1 Communication Using Chaotic Semiconductor Lasers 114
3.5.2 One-Channel Communication Scheme 116
3.5.3 Two-Channel Communication Scheme 119

4 High-Dimensional Systems 124
4.1 The Kuramoto Model 124
Contents

4.1.1 Derivation from a Generic Oscillator Model 125
4.1.2 The Case $N = 3$ 127
4.1.3 The Kuramoto Order Parameter 130
4.1.4 Numerical Phenomenology for Large N 132
4.1.5 Theory for Large N 135
4.1.6 Kuramoto Model with Time-Varying Links 141
4.2 High-Dimensional Systems with Spatial Topologies 144
 4.2.1 Spatially Discrete versus Spatially Continuous Systems 144
 4.2.2 Terminology of Coupling Schemes 145
4.3 Chimera States 147
 4.3.1 Numerical Phenomenology of the Classical Chimera State 148
 4.3.2 Classical versus Generalized Chimera States 153
 4.3.3 Experimental Implementation of Chimera States 160
 4.3.4 Theory of Chimeras 164
4.4 Bellerophon States 166
4.5 Oscillation Quenching 168
 4.5.1 Amplitude Death 169
 4.5.2 Oscillation Death 173
 4.5.3 Chimera Death 175
4.6 Auto-Synchronization and Time-Delayed Feedback 176
 4.6.1 Chaos Control 177
 4.6.2 Experimental Realization 179
 4.6.3 Theory 180

5 Complex Networks 185
 5.1 Introduction 185
 5.2 Master Stability Function 188
 5.2.1 Derivation of the Master Stability Function 188
 5.2.2 Classes of Synchronizability 192
 5.3 Small-World Networks 195
 5.3.1 Ring Lattices 196
 5.3.2 The Watts–Strogatz Model 199
 5.4 Preferential Attachment Networks 202
 5.5 Eigenvalue Bounds 204
 5.5.1 Minimum Degree Upper Bound for the Spectral Gap 204
 5.5.2 Connectivity Lower Bound on the Spectral Gap 207
 5.5.3 Diameter Lower Bound for the Spectral Gap 214
 5.5.4 Degree Bounds on λ_N 218
 5.5.5 Summary 220
 5.6 Enhancing and Optimizing Synchronization of Complex Networks 222
Contents

5.7 Explosive Synchronization in Complex Networks 223
5.8 Synchronization in Temporal and Multilayer Networks 224
 5.8.1 Time-Varying Networks 224
 5.8.2 Synchronization in Multilayer Networks 226
 5.8.3 Application of the Master Stability Function to Multistable Dynamical Systems 229
5.9 Single-Oscillator Experiments 231
 5.9.1 Experimental Setup 231
 5.9.2 General Equation 232
 5.9.3 Network of Piecewise Rössler Oscillators 234
 5.9.4 Synchronization Error 235

References 237
Index 252
Preface

Understanding, predicting, and controlling the way complex systems coordinate their dynamics in a cooperative manner have been, and still remain, among the fundamental challenges in modern scientific research. Their overwhelming difficulty stems from two major issues: extracting the proper dynamics of a solitary system, and capturing the complex way through which different systems (or units) interact to function together and in coordination with one another.

This book describes some of the most important mechanisms through which collective behavior of dynamical systems emerges, starting from the case of simple coupled systems, up to chaotic systems, infinite-dimensional systems, space-extended systems, and complex networks.

We focus on synchronization (from the Greek συν = together and χρόνος = time), which literally means “happening at the same time.” Synchronization is actually a process where, due to their interactions or to an external driving force, dynamical systems adjust some properties of their trajectories so that they eventually operate in a macroscopically coherent way.

The word synchronization appeared first in 1620, at a time when determining longitudes was a challenge for transoceanic voyages. To find a solution to this problem, Christiaan Huygens invented the pendulum clock in 1657. For practical purposes, two clocks were required in general, in case one of the two stopped working properly. So, Huygens studied the behavior of two simultaneously operating maritime clocks, and noticed that they evolved in a synchronized manner and oscillated in the same plane when they were close to one another. Since then, synchronization has been investigated in numerous fields, such as mechanics, chemistry, neuroscience, biology, ecology, and social interactions, to quote just a few examples.

Synchronization is ubiquitous in natural phenomena: the organization of the world, outside and inside us, mostly depends on how different parts, units, and components are able to synchronize. The study of synchronization, as behavior of
Preface

coupled systems correlated in time, is therefore a fast-developing research topic with applications in almost all areas of science and engineering, ranging from chaotic communication to complex biological and social networks.

After introducing the reader to the basic concepts of nonlinear dynamics, the book explains the main synchronization states, such as complete synchronization, phase synchronization, lag and anticipated synchronization, generalized synchronization, and intermittent synchronization, which happen among coupled systems. Then, we move toward describing the influence of noise on synchronization, and the occurrence of synchronous motion in multistable systems and spatially extended systems, with a description of related effects, including amplitude and oscillation death.

Finally, the book discusses underlying principles of collective dynamics on complex networks, to provide an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, give rise to parallel computing operations, and respond collectively to external perturbations or noise. We also review recent progress towards establishing a realistic and comprehensive approach capable of explaining and predicting some of the collective activity of real-world networks.

Furthermore, some of the most important applications of synchronization in different areas of science and engineering are given attention throughout this book: electronic circuits, lasers, chaotic communication, and neural networks.

The basic aim is to provide a first approach to synchronization, for readers who are interested in understanding its fundamental concepts and applications in several fields, from students and technicians to scientists and engineers conducting interdisciplinary research, both theoretical and experimental.