White Space Communication Technologies

Increase the efficient use of time-varying available spectrum with this unique book, the first to describe RF hardware design for white space applications, including both analog and digital approaches. Emerging technologies are discussed and signal processing issues are addressed, providing the background knowledge and practical tools needed to develop future radio technologies.

Real-world examples are included, together with global spectrum regulations and policies, for a practical approach to developing technologies for worldwide applications. Cross analog and digital design guidelines are provided to cut design time and cost.

This holistic, system level view of transceiver design for white space technologies is ideal for practicing engineers and students and researchers in academia.

Nuno Borges Carvalho is a Full Professor and Senior Research Scientist in the Institute of Telecommunications at the University of Aveiro, Portugal. He has co-authored two previous books, including *Microwave and Wireless Measurement Techniques* (Cambridge University Press, 2013). He is Associate Editor of *IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Magazine*, and *Wireless Power Transfer*.

Alessandro Cidronali is an Associate Professor of Electronics in the Department of Information Engineering at the university of Florence, Italy, where he teaches courses on electron devices and integrated microwave circuits. He was Associate Editor of *IEEE Transactions on Microwave Theory and Techniques*, and he currently serves on IEEE MTT-S Technical Committees. He also has over five years of experience in industry, having held positions at Motorola Labs (Tempe, AZ) and the National Insitute of Standards and Technology (Boulder, CO).

Roberto Gómez-García is an Associate Professor in the Department of Signal Theory and Communications at the University of Alcalá, Spain. He is Associate Editor of *IEEE Transactions on Microwave Theory and Techniques, IEEE Transactions on Circuits and Systems*, and *IET Microwaves, Antennas and Propagation*.

White Space Communication Technologies

NUNO BORGES CARVALHO

University of Aveiro

ALESSANDRO CIDRONALI University of Florence

ROBERTO GÓMEZ-GARCÍA University of Alcalá

© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107055919

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Clays, St Ives plc

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

White space communication technologies / edited by Nuno Borges Carvalho, University of Aveiro, Alessandro Cidronali, University of Florence, Roberto Gómez-García, University of Alcalá. pages cm

ISBN 978-1-107-05591-9 (Hardback)

1. Radio resource management (Wireless communications) 2. Wireless communication systems.

3. Radio frequency allocation. I. Carvalho, Nuno Borges, editor of compilation.

II. Cidronali, Alessandro, editor of compilation. III. Gómez-García, Roberto, editor of compilation. TK5103.4873.W46 2014

621.382'3-dc23 2014010355

ISBN 978-1-107-05591-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

		of contributors	page x
	Pref		xiii
	List	of abbreviations	xvii
Part I Wh	ite sp	pace technology signal processing and digital design	1
1	Whit Antór	3	
	1.1	Introduction	3
	1.2	TV white spaces regulatory approach	4
		1.2.1 European approach	5
		1.2.2 USA approach	10
	1.3	Technology proposals for spectrum awareness	23
		1.3.1 Spectrum sensing technological approach	23
		1.3.2 Geo-location plus database	24
	1.4	Cognitive radio technology and its implementation challenges	28
		1.4.1 Overview of CR technology	28
		1.4.2 Wide-band operation and frequency agility	29
		1.4.3 Resilience to high dynamic range conditions	30
		1.4.4 Nonlinearity influences on spectrum sensing	30
		1.4.5 Transmitter linearity–efficiency compromise	31
		1.4.6 Spectrum sensing paradigm	32
	1.5	Applications for the white space spectrum	33
		1.5.1 Mobile communication systems extension	33
		1.5.2 Direct device to device communications	33
		1.5.3 Cognitive ad hoc networks	34
		1.5.4 Rural broadband services	35
		1.5.5 Smart metering wireless sensor networks	35
	1.6	References	35

٧

vi	Con	tents	
2	Trar	nsceiver challenges for white space radio	40
L		n Gard	40
	2.1	Introduction	40
	2.2	Interference to white space radio	41
	2.3	White space radio restrictions	42
	2.4	Receiver noise figure	45
	2.5	Intermodulation interference from an adjacent channel signal	47
	2.6	Intermodulation interference from multiple television transmitters	52
	2.7	Receiver interference example	54
	2.8	References	57
3		nt-ends for software-defined radio Vieira and Daniel Albuquerque	58
	3.1	Introduction	58
	3.2	Software-defined radio	59
		3.2.1 The ideal SDR	59
		3.2.2 ADC concerns	60
		3.2.3 Digital signal processor concerns	60
		3.2.4 Other concerns for an ideal SDR	61
		3.2.5 SDR – definition	62
		3.2.6 Different types of SDR	63
		3.2.7 The classic RF front-ends for SDR	64
		3.2.8 A multi-band receiver	66
		3.2.9 Direct bandpass sampling	69
		3.2.10 Analog signal processing for SDR front-ends	70
		3.2.11 Solutions to increase the ADC sampling rate	72
	3.3	I	75
		3.3.1 The challenge for SDR front-ends	76
		3.3.2 Cochlea – the same problem, the same solution	77
	3.4	The hybrid filter bank	82
		3.4.1 Filter bank design	86
		3.4.2 Sampling the analysis filters in the frequency domain	87
	2.5	3.4.3 Stability of the solution	88
	3.5	8	89
	3.6	Simulation results	90
	2.5	3.6.1 HFB design with the Papoulis–Gerchberg algorithm	91
	3.7	Real-time hardware implementations	94
	2.0	3.7.1 Wide-band signal reconstruction	96
	3.8	Conclusion	98
	3.9	References	98

4.3.4 Need of tunable filters/duplexers for SDR platform 115 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.3.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 156 5.3.2 Multi-band filtering cell 156			Contents	vii
4 Reconfigurable RF front-ends for cognitive and software-defined radio 105 Erick Emmanuel Djounessi and Ke Wu 1.1 Introduction 105 4.2. Software-defined radio architectures 105 4.2.1 Heterodyne transceiver architecture 107 4.2.2. Direct-conversion (zero IF) transceiver architecture 107 4.2.1 Leterodyne transceiver architecture 107 4.2.2. Direct-conversion (zero IF) transceiver architecture 107 4.3.1 Low temperature co-fired ceramics (LTCC) 113 4.3.1 Low temperature co-fired ceramics (LTCC) 114 4.3.3 Need of adjustable or reconfigurable matching network (antenna truer) for SDR 114 4.3.4 Need of tunable filters/duplexers for SDR platform 115 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver achitectures 128 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References <				
Erick Emmanuel Djournessi and Ke Wu 105 4.1 Introduction 105 4.2 Software-defined radio architectures 105 4.2.1 Heterodyne transceiver architecture 107 4.2.2 Direct-conversion (zero IF) transceiver architecture 110 4.3 RF front-end module for software-defined radio (SDR) 113 4.3.1 Low temperature co-fired ceramics (LTCC) 113 4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of tunable filters/duplexers for SDR platform 115 4.3.4 Need of tunable filters/duplexers for SDR 114 4.3.5 Need of tunable filters/duplexers for SDR 114 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.6 Torable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 13 143 5.2 Flittering stages for white space cognitive/software-defined radio receivers 143 5.2.1 Introduction 143 5.2.1 <	Part II	Adaptab	le receivers for white space technologies	103
4.2 Software-defined radio architectures 105 4.2.1 Heterodyne transceiver architecture 107 4.2.2 Direct-conversion (zero IF) transceiver architecture 110 4.3 RF front-end module for software-defined radio (SDR) 113 4.3.1 Low temperature co-fired ceramics (LTCC) 113 4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of dijustable or reconfigurable matching network (antenna tuner) for SDR 114 4.3.4 Need of tunable filters/duplexers for SDR platform 115 4.3.5 Need of tunable components (PA) for SDR 120 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 14 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Fereras, and Manuel Sánchez-Renedo 144 5.1	4			105
4.2 Software-defined radio architectures 103 4.2.1 Heterodyne transceiver architecture 107 4.2.2 Direct-conversion (zero IF) transceiver architecture 110 4.3 RF front-end module for software-defined radio (SDR) 113 4.3.1 Low temperature co-fired ceramics (LTCC) 113 4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of dijustable or reconfigurable matching network (antenna tuner) for SDR 114 4.3.4 Need of tunable filters/duplexers for SDR platform 115 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 133 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 7.0 Introduction 143 5.1 Introduction 144		4.1	Introduction	105
4.2.2 Direct-conversion (zero IF) transceiver architecture 110 4.3 RF front-end module for software-defined radio (SDR) 113 4.3.1 Low temperature co-fired ceramics (LTCC) 113 4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of adjustable or reconfigurable matching network (antenna tuner) for SDR 114 4.3.5 Need of tunable filters/duplexers for SDR platform 115 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 7.1 Introduction 143 5.2. Channelizer Maine development 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.3.3 IF channelizer 148 5.2.4 Experimental signal-reconstruction results 152 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5.3.2 Multi-band filtering cell 156		4.2	Software-defined radio architectures	105
4.2.2 Direct-conversion (zero IF) transceiver architecture 110 4.3 RF front-end module for software-defined radio (SDR) 113 4.3.1 Low temperature co-fired ceramics (LTCC) 113 4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of adjustable or reconfigurable matching network (antenna tuner) for SDR 114 4.3.5 Need of tunable filters/duplexers for SDR platform 115 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 133 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 7.1 Introduction 143 5.2. Channelizer 144 5.2.1 General description 144 5.2.2.2 RF channelizer 144 5.2.3 IF channelizer 144 5.2.4 Experimental signal-reconstruction results 155 5.3.3 Experimental results 166 5.4 Conclusions 163 5.5 References 164 5.6 Subs			4.2.1 Heterodyne transceiver architecture	107
4.3 RF front-end module for software-defined radio (SDR) 113 4.3.1 Low temperature co-fired ceramics (LTCC) 113 4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of tunable or reconfigurable matching network (antenna tuner) for SDR 114 4.3.4 Need of tunable filters/duplexers for SDR platform 115 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 122 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5.1 Introduction 143 5.2.2 Channelizer 144 5.2.3 General description 144 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 153 5.3.1 General description 154 5.2.2 RF channelizer 164 </td <td></td> <td></td> <td></td> <td>110</td>				110
4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of adjustable or reconfigurable matching network (antenna tuner) for SDR 114 4.3.4 Need of tunable filters/duplexers for SDR platform 114 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 SoL Channelized wide-band receiver architecture 144 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.3.3 IUti-channel wide-band receiver architecture 155 5.3.1 General description 154 5.3 Multi-channel wide-band receiver architecture 155 5.3.3		4.3		113
4.3.2 Need of tunable/smart and MIMO antenna systems for SDR 114 4.3.3 Need of adjustable or reconfigurable matching network (antenna tuner) for SDR 114 4.3.4 Need of tunable filters/duplexers for SDR platform 114 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 SoL Channelized wide-band receiver architecture 144 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.3.3 IUti-channel wide-band receiver architecture 155 5.3.1 General description 154 5.3 Multi-channel wide-band receiver architecture 155 5.3.3			4.3.1 Low temperature co-fired ceramics (LTCC)	113
tuner) for SDR 114 4.3.4 Need of tunable filters/duplexers for SDR platform 115 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-Maria Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelizer 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 155 5.3.1 General description 155 5.3.2 Multi-channel wide-band receiver architecture 156 5.3.3 Experimental results<			· · · · · · · · · · · · · · · · · · ·	114
4.3.4 Need of tunable filters/duplexers for SDR platform 115 4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelizer dide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.3.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 156 5.3.2 Multi-band filtering cell 156			•	
4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4				114
4.3.5 Need of tunable power amplifiers (PA) for SDR systems 116 4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4			4.3.4 Need of tunable filters/duplexers for SDR platform	115
4.3.6 Techniques and technologies enabling the development of tunable elements for SDR transceiver design 118 4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164				116
elements for SDR transceiver design1184.3.7Tunable RF front-end components for SDR1204.3.8Software-defined radio (SDR) transceiver architectures1284.4Conclusions1394.5References1405Filtering stages for white space cognitive/software-defined radio receivers1435Filtering stages for white space cognitive/software-defined radio receivers1435Filtering stages for white space cognitive/software-defined radio receivers1435Filtering stages for white space cognitive/software-defined radio receivers1435Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo1435.1Introduction1435.2Channelized wide-band receiver architecture1445.2.1General description1445.2.2RF channelizer1485.2.4Experimental signal-reconstruction results1525.3Multi-channel wide-band receiver architecture1555.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168				
4.3.7 Tunable RF front-end components for SDR 120 4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 6.1<			elements for SDR transceiver design	118
4.3.8 Software-defined radio (SDR) transceiver architectures 128 4.4 Conclusions 139 4.5 References 140 5 Filtering stages for white space cognitive/software-defined radio receivers 143 Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo 143 5.1 Introduction 143 5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 6.1 Introduction 167 6.2 Modern communi			•	120
4.4Conclusions1394.5References1405Filtering stages for white space cognitive/software-defined radio receivers Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo1435.1Introduction1435.2Channelized wide-band receiver architecture1445.2.1General description1445.2.2RF channelizer1465.2.3IF channelizer1485.2.4Experimental signal-reconstruction results1525.3Multi-channel wide-band receiver architecture1555.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1676Subsampling multi-standard receiver design for cognitive radio systems Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168				128
5Filtering stages for white space cognitive/software-defined radio receivers Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo1435.1Introduction1435.2Channelized wide-band receiver architecture1445.2.1General description1445.2.2RF channelizer1465.2.3IF channelizer1485.2.4Experimental signal-reconstruction results1525.3Multi-channel wide-band receiver architecture1555.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168		4.4		139
Roberto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and Manuel Sánchez-Renedo1435.1Introduction1435.2Channelized wide-band receiver architecture1445.2.1General description1445.2.2RF channelizer1465.2.3IF channelizer1465.2.4Experimental signal-reconstruction results1525.3Multi-channel wide-band receiver architecture1555.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168		4.5	References	140
5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 6.1 Introduction 167 6.2 Modern communication transmitters 168	5	Rober	rto Gomez-Garcia, José Pedro Magalhães, José-María Munoz-Ferreras, and	143
5.2 Channelized wide-band receiver architecture 144 5.2.1 General description 144 5.2.2 RF channelizer 146 5.2.3 IF channelizer 146 5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 6.1 Introduction 167 6.2 Modern communication transmitters 168		5 1	Introduction	1/13
5.2.1General description1445.2.2RF channelizer1465.2.3IF channelizer1485.2.4Experimental signal-reconstruction results1525.3Multi-channel wide-band receiver architecture1555.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168				
5.2.2RF channelizer1465.2.3IF channelizer1485.2.4Experimental signal-reconstruction results1525.3Multi-channel wide-band receiver architecture1555.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems167Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168		5.2		
5.2.3IF channelizer1485.2.4Experimental signal-reconstruction results1525.3Multi-channel wide-band receiver architecture1555.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems1676.1Introduction1676.2Modern communication transmitters168			*	
5.2.4 Experimental signal-reconstruction results 152 5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi 167 6.1 Introduction 167 6.2 Modern communication transmitters 168				1.0
5.3 Multi-channel wide-band receiver architecture 155 5.3.1 General description 155 5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi 167 6.1 Introduction 167 6.2 Modern communication transmitters 168				
5.3.1General description1555.3.2Multi-band filtering cell1565.3.3Experimental results1605.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168		53		
5.3.2 Multi-band filtering cell 156 5.3.3 Experimental results 160 5.4 Conclusions 163 5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi 167 6.1 Introduction 167 6.2 Modern communication transmitters 168		5.5		
5.3.3 Experimental results1605.4 Conclusions1635.5 References1646 Subsampling multi-standard receiver design for cognitive radio systems167Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1 Introduction1676.2 Modern communication transmitters168				
5.4Conclusions1635.5References1646Subsampling multi-standard receiver design for cognitive radio systems167Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1Introduction1676.2Modern communication transmitters168			•	
5.5 References 164 6 Subsampling multi-standard receiver design for cognitive radio systems 167 Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi 167 6.1 Introduction 167 6.2 Modern communication transmitters 168		5 /	1	
Abul Hasan, Mohamed Helaoui, and Fadhel M. Ghannouchi1676.1 Introduction1676.2 Modern communication transmitters168				
6.2 Modern communication transmitters 168	6			167
6.2 Modern communication transmitters 168		6.1	Introduction	167
		6.3	Review of sampling theory	169

viii	Cont	tents	
		6.3.1 Sampling frequency for distortion-free reconstruction	170
		6.3.2 Effect of quantization	173
	6.4	Theory of subsampling	174
		6.4.1 Conditions for subsampling	176
		6.4.2 Example case study	178
	6.5	Subsampling receiver architecture	179
	6.6	Impairments in subsampling receiver	181
		6.6.1 Sampling jitter	181
		6.6.2 Folded thermal noise	182
		6.6.3 Frequency response of sample and hold circuit	185
	6.7	Multi-standard subsampling receiver	187
		6.7.1 Example case study	189
	6.8	Optimization of basic subsampling receiver architecture	191
		6.8.1 Optimization for noise performance	191
		6.8.2 Optimization for maximum standard coverage	192
	6.9	Conclusion	194
	6.10	References	195
Part III	Adapta	ble transceivers for white space technologies	197
7		te spaces exploration using FPGA-based all-digital transmitters on Silva and Arnaldo S. R. Oliveira	199
	7.1	Introduction	199
		7.1.1 Scope and motivation	199
		7.1.2 Chapter organization	201
	7.2	Fundamental concepts of pulse-based all-digital transmitters	201
		7.2.1 Pulse-width modulation	202
		7.2.2 $\Sigma \Delta$ modulation	207
		7.2.3 Implementation technologies comparison	210
	7.3	Review of digital transmitters for wireless applications	211
		7.3.1 RF-level pulsed architectures	211
		7.3.2 Baseband-level pulsed architectures	214
		7.3.3 Discussion	216
	7.4	Simultaneous multi-channel transmission for white spaces exploration	217
		7.4.1 Concurrent multi-band transmitter	217
		7.4.2 Fine tunable multi-channel transmitter	220
		7.4.3 Coding efficiency optimization	223
		7.4.4 Discussion	225
	7.5	Conclusion	226
	7.6	References	226
			0

		Contents	ix
8		ference active cancelation techniques for agile transceivers no Maddio, Alessandro Cidronali, Giovanni Collodi, and Gianfranco Manes	231
	8.1	Introduction	231
	8.2	Digital receiver architecture	232
		8.2.1 System level analysis	232
		8.2.2 Filtering	234
		8.2.3 Receiver desensitization	237
	8.3	Interference active cancelation	240
		8.3.1 Interference cancelation classification	240
		8.3.2 Active analog cancelation analytical treatment	241
		8.3.3 Local oscillator phase noise effect on canceling mechanism	242
	8.4	Mechanism of active analog self-interference cancelation	244
		8.4.1 Analytical canceler model	246
		8.4.2 Canceler training algorithm	248
		8.4.3 Canceling limits	251
	8.5	Examples of active analog canceler	252
		8.5.1 Active analog canceler for self-interference in agile full-duplex	
		transceivers	252
		8.5.2 Active analog interference cancelation for CR transceivers	258
		8.5.3 Conclusions	260
	8.6	References	261
9		ly efficient transmitter architectures	262
	Pere	L. Gilabert, Gabriel Montoro, and José Angel García	
	9.1	Introduction	262
	9.2	Description of the transmitter architectures	264
		9.2.1 Outphasing transmitter	264
		9.2.2 Envelope tracking	266
		9.2.3 Polar transmitter with $\Delta \Sigma$ modulation	270
	9.3	Discussion	274
		References	277
	Inde	x	280

Contributors

Daniel Albuquerque

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

Nuno Borges Carvalho

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

Alessandro Cidronali

Dept. Information Engineering, University of Florence, Florence, Italy

Giovanni Collodi

Dept. Information Engineering, University of Florence, Florence, Italy

Pedro Cruz

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

Erick Emmanuel Djoumessi

Intel Corporation, 600 North U.S. Highway 45, Libertyville, IL 60048, United States

José Angel García

Dept. of Communications Engineering, Universidad de Cantabria (UNICAN), Santander, Spain

Kevin Gard Analog Devices, USA

Fadhel M. Ghannouchi

University of Calgary, Calgary, Canada

List of contributors

xi

Pere L. Gilabert

Dept. of Signal Theory and Communications, Universitat Politécnica de Catalunya (UPC), Barcelona, Spain

Roberto Gómez-García

Department of Signal Theory and Communications, University of Alcalá, Polytechnic School, 28871 Alcalá de Henares, Madrid, Spain

Abul Hasan

University of Calgary, Calgary, Canada

Mohamed Helaoui

University of Calgary, Calgary, Canada

Stefano Maddio

Dept. Information Engineering, University of Florence, Florence, Italy

José Pedro Magalhães

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

Gianfranco Manes

Dept. Information Engineering, University of Florence, Florence, Italy

Gabriel Montoro

Dept. of Signal Theory and Communications, Universitat Politécnica de Catalunya (UPC), Barcelona, Spain

António Morgado

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

José-María Munoz-Ferreras

Department of Signal Theory and Communications, University of Alcalá, Polytechnic School, 28871 Alcalá de Henares, Madrid, Spain

Arnaldo S. R. Oliveira

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

Manuel Sánchez-Renedo

Department of Signal Theory and Communications, University of Alcalá, Polytechnic School, 28871 Alcalá de Henares, Madrid, Spain

xii List of contributors

Nelson Silva

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

José Vieira

Departamento de Electrónica Telecomunicações e Informática, Instituto de Telecomunicações, Universidade de Aveiro, Portugal

Ke Wu

Ecole Polytechnique (University of Montreal), Montreal, Canada

Preface

White space technologies is an area of great interest in the technology, information, and communication field, due mainly to the possibility to have cooperating radios that will optimize the transmission parameters to achieve the best possible performance. This area achieved even greater importance due to the possibility to use frequency bands that are under-utilized, or are used sparsely – one of the cases being the TV band that was empty after the analog-to-digital TV switch over.

White space radios should be agile and adapt to the radio interface with a clear view and optimized operation; that is why special care should be taken with these types of radio and a special design procedure should be followed and discussed. It is exactly in this area that this book fits, by discussing technological implementation details and processes that are fundamental for building cognitive radios that will be the basis of white space devices.

The book is divided into three parts, each one with three chapters. The first part is focused on the general problems we face in white space technology and signal processing. The second part will focus on adaptable receivers for white space devices, and the final part will be focused on adaptable transceivers.

The first chapter of the book "White space technology, the background" will start the discussion of these radios and give some technological views. In this chapter, white space technology will be discussed and the operational details of cognitive radio architectures, how these new radio systems will be able to adapt themselves to the environment, and how they will be able to manage conveniently the data transmission speed with optimum spectrum occupancy, but also energy awareness, will be discussed. A brief explanation of white space technologies, addressing the main hardware limitations of cognitive radio architectures, will be presented. Special attention will also be given to multi-carrier and noncoherent OFDM approaches, and the impact these new kinds of signal could have on front-ends.

The second chapter "Transceiver challenges for white space radio" provides an overview of transceiver challenges and solutions specific to cognitive and softwaredefined radio. Interference scenarios for white space radio are developed as a model for receiver linearity requirements. Transmitter linearity requirements for white space radio transceivers are reviewed along with the implications for transmitter power efficiency. State-of-the-art architectures and circuit solutions for configurable high dynamic range CMOS integrated transceivers are presented. Specific approaches to high dynamic range xiv

Cambridge University Press 978-1-107-05591-9 - White Space Communication Technologies Nuno Borges Carvalho, Alessandro Cidronali and Roberto Gómez-García Frontmatter <u>More information</u>

Preface

receivers that are tolerant of large amplitude off-channel interfering signals are also reviewed.

The third chapter "Front-ends for software-defined radio" will discuss front-ends, inspired by the human cochlea, that could solve dynamic range and bandwidth problems by using a hybrid filter bank to convert the RF signal to the digital domain. The main advantages of this solution will be presented and will demonstrate how digital signal processing machinery could help. A review of spectrum sensing techniques and dynamic spectrum aggregation will be performed, and the operation of the hybrid filter bank will be discussed and how it can have a key role to make these operations effective.

The fourth chapter "Reconfigurable RF front-ends for cognitive and software-defined radio" presents and discusses RF-front-end components designed for cognitive and software-defined radio systems, with emphasis on receiver solutions for high dynamic range and re-configurability. An overview of classical and emerging RF analog frontend receiver architectures such as heterodyne and zero-IF is presented in terms of related advantages and drawbacks per system requirements. The performances of main RF front-end receiver components such as filters, and active and passive tunable mixers, are studied and compared. Different design techniques and technological processes used for the development of tuning elements are also presented with performance comparisons in terms of frequency tuning range, loss, supply voltage, and linearity. The design methodology and implementation of frequency-agile multi-port interferometer techniques made of tunable bandpass filters, diplexers and couplers based on available semiconductor and ferroelectric materials are examined as a potential and cost-effective solution for a reconfigurable direct-conversion receiver platform. Performance comparisons of different tunable receiver architectures are presented and analyzed in this chapter; one structure relying on a tunable bandpass filter, and the other system based on a semiconductor varactor-based tunable passive mixer, with the latter showing better sensitivity and dynamic range. In summary, an integrated circuit level of electronically tunable mixers based on interferometer techniques presents great potential and a costeffective solution for cognitive and software-defined radio platforms, with particular interest for advanced multi-mode, multi-band wireless transceivers with carrier aggregation capability.

Next, the fifth chapter will discuss filtering strategies, "Filtering stages for white space cognitive/software-defined radio receivers", and presents a description of the necessities of filtering stages for receiver modules in the white space communications scenario. Specifically, two different receiver configurations are studied, with focus on the filtering blocks carrying out the signal selection. The first one is a mixed-domain receiver structure simultaneously exploiting both analog and digital signal processing concepts under the "hybrid filter bank" philosophy. The key principle for the proper operation of this receiver solution is the exhaustive channelization of the incoming desired signal into narrower signal subbands. This must be performed through sophisticated contiguous-band high-order multiplexers at both the RF and IF levels. The second one is a direct-sampling receiver solution for multi-channel communications working at subNyquist rates. The core part of this class of receiver is the multi-band filter that acquires all the signal subbands at the same time, which are subsequently

Preface

XV

sampled at subNyquist rates. This type of multi-band filter should be designed by means of signal-interference techniques, since classic coupled-resonator networks can exhibit serious deficiencies for this application. For all the filtering devices reported in this chapter, main issues about their theoretical design are detailed. Furthermore, real proof-of-concept prototypes are developed and characterized.

The sixth chapter "Subsampling multi-standard receiver design for cognitive radio systems" will discuss the requirements for a cognitive radio system and how multi-standard requirements come into the picture, conventional receiver architectures and their problems, how a subsampling receiver solves these problems, and gives a description of a subsampling receiver, including its advantages and disadvantages. In this chapter, a close view is given of subsampling receivers and how their impact on white space technology will be fundamental; furthermore, there will also be a discussion on why optimization is required for basic subsampling receiver architecture for the multi-standard case, as well as on the typical requirements that force optimization.

The seventh chapter will be focused on "White spaces exploration using FPGA-based all-digital transmitters" and will discuss the design challenges inherent in flexible RF transmitters for exploring the TV white spaces and the recent advances in FPGA-based multi-mode and multi-channel all-digital transmitters. The chapter starts with an introduction to the design challenges of RF transmitters targeting white space systems followed by a discussion on how all-digital transmitters implemented on FPGA technology will address some important requirements, such as flexibility, integration, and power efficiency. The second part of the chapter is devoted to the presentation and discussion of the operation principles, architectures, and design of all-digital transmitters based on different approaches. The recent techniques for improving important figures of merit, such as bandwidth, in-band and out-of-band noise, filtering requirements, coding and power efficiency are also described and compared. The chapter ends with a discussion on promising future research directions.

The eighth chapter will discuss "Interference active cancelation techniques for agile transceivers" starting with a review of the basic and advanced transceiver architectures suitable for cognitive radios. It first introduces the figures of merit of the transceivers along with the main effects which degrade overall performance. Receiver desensitization due to the combined effects of both interference and the transmitter leakage signal at the receivers is explained by system-level analysis. This impairment makes the design of transceivers for white spaces more challenging than for conventional application and can be solved by either sharp notch filters or dynamic signal cancelation at the receiver input. The latter is covered in detail along with an explanation of the related algorithm. The architectures under consideration largely share the digital IF technique as an effective way to ensure high flexibility with respect to modulation modes and spectra.

Finally the book will end with a thorough analysis of "highly efficient transmitter architectures" and there will be a discussion on the several highly efficient transmitter architectures that have been proposed, and even revived, aimed at enhancing typical Class AB PA efficiency figures in Cartesian transmitters. The chapter addresses stateof-the-art, highly efficient transmitter architectures that are potential candidates to be used in white space scenarios. Hence, architectures such as linear amplification with

xvi Preface

nonlinear components (LINC), Doherty PAs, polar transmitters with pulsed/delta-sigma modulation, envelope elimination and restoration (EER), and envelope tracking (ET) will be examined in the chapter.

The work to write and finish a book is not exclusively that of the authors, but includes the help and collaboration of many people who somehow cross our paths during this process. So we would like to express our gratitude to many people who directly, or indirectly, helped us to carry on this task.

The first acknowledgments go to our families for their patience and emotional support. In addition, we are especially in debt to a group of our students, or simply collaborators, who contributed with some results, images, and experimental data to the book. Those include Paulo Gonçalves and Hugo Mostardinha, among others. Finally, we would like to acknowledge also the support provided by the Portuguese National Science Foundation (FCT), the Instituto de Telecomunicações – Departamento de Electrónica, Telecomunicações e Informática from Universidade de Aveiro. We would also like to acknowledge to project CREATION(EXCL/EEI-TEL/0067/2012).

Abbreviations

ADC	analog-to-digital converter
AFB	analogue filter bank
AGC	analog gain control
AMI	advanced metering infrastructure
ASIC	application-specific integrated circuit
ASSP	application-specific standard product
BER	bit-error rate
CEPT	European Conference of Postal and Telecommunication Administrations
CIFB	cascade of integrator with distributed feedback
CMOS	complementary metal oxide semiconductor
CMRS	commercial radio service
CR	cognitive radio
CSDR	cognitive and software defined radio
DAC	digital-to-analog converter
DCR	direct conversion receiver
DFB	digital filter bank
DFT	discrete Fourier transform
DPD	digital pre-distortion
DSP	digital signal processor (processing)
DTT	digital terrestrial TV
DTV	digital television
DUC	digital up-conversion
EC	European Commission
ECA	European Common Allocation
ECC	Electronic Communications Committee
EIRP	equivalent isotropic radiated power
ENOB	effective number of bits
ERP	effective radiated power
EVM	error vector magnitude
FCC	Federal Communications Commission
FDD	frequency division duplex
FET	field effect transistor

finite impulse response

FIR

xviii List of abbreviations

FPGA	field programmable gate array
GPP	general-proposed processors
HAAT	height above average terrain
HAGL	height above ground level
HDTV	high definition TV
HFB	hybrid filter banks
IC	integrated cicuit
IF	intermediate frequency
IFVGA	IF variable gain amplifier
IRR	image rejection ratio
ISM	industrial, scientific, and medical
LCM	low common multiple
LCP	liquid crystal polymer
LNA	low noise amplifier
LO	local oscillator
LP	low pass
LPF	low-pass filter
LSB	lower sideband
LTCC	low-temperature co-fired ceramic
LTE	long-term evolution
MER	modulation error ratio
MVPD	multi-channel video programming distributor
NF	noise figure
NTF	noise transfer function
OFDM	orthogonal frequency-division multiplexing
OMUX	output multiplexer
OSR	oversampling ratio
PA	power amplifier
PAPR	peak-to-average power ratio
PLMRS	private land mobile service
PMSE	programme making and special events
POCS	projections on to convex sets
PQN	pseudo quantization noise
PU	primary user
PWM	pulse width modulation
QAM	quadrature amplitude modulation
QBPS	quadrature bandpass sampling
RAN	radio access network
RF	radio frequency
RFIC	radio frequency integrated circuits
RFID	radio frequency identification
RFVGA	RF variable gain power amplifier
RSC	Radio Spectrum Committee
RSPG	Radio Spectrum Policy Group

List of abbreviations

хіх

SASP	sampled analog signal processor
SAW	surface acoustic wave
SDR	software-defined radio
SFB	synthesis filter bank
SFDR	spurious-free dynamic range
SIW	surface integrated waveguide
SMPA	switched-mode power amplifier
SNR	signal-to-noise ratio
SU	secondary user
SQNR	signal-to-quantization noise ratio
SSB	single sideband
STF	signal transfer function
TDD	time-division duplex
TVBD	TV band devices
TVWS	TV white spaces
USB	upper sideband
VCO	voltage-controlled oscillator
VGA	variable gain amplifier
VNA	vector network analyzer
VSA	vector spectrum analyzer
WCDMA	wideband code division multiple access
WiMAX	Worldwide Interoperability for Microwave Access
WSD	white space device