STOCHASTIC EQUATIONS IN INFINITE DIMENSIONS

Now in its second edition, this book gives a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional spaces, typically Hilbert and Banach spaces. In the first part the authors give an exposition of the main properties of probability measures on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof.

This revised edition includes two brand new chapters surveying recent developments in the field and an even more comprehensive bibliography, making this book an essential and up-to-date resource for all those working in stochastic differential equations.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the **Encyclopedia of Mathematics and Its Applications** cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit www.cambridge.org/mathematics.

- 106 A. Markoe Analytic Tomography
- 107 P. A. Martin Multiple Scattering
- 108 R. A. Brualdi Combinatorial Matrix Classes
- 109 J. M. Borwein and J. D. Vanderwerff Convex Functions
- 110 M.-J. Lai and L. L. Schumaker Spline Functions on Triangulations
- 111 R. T. Curtis Symmetric Generation of Groups
- 112 H. Salzmann et al. The Classical Fields
- 113 S. Peszat and J. Zabczyk Stochastic Partial Differential Equations with Lévy Noise
- 114 J. Beck Combinatorial Games
- 115 L. Barreira and Y. Pesin Nonuniform Hyperbolicity
- 116 D. Z. Arov and H. Dym J-Contractive Matrix Valued Functions and Related Topics
- 117 R. Glowinski, J.-L. Lions and J. He Exact and Approximate Controllability for Distributed Parameter Systems
- 118 A. A. Borovkov and K. A. Borovkov Asymptotic Analysis of Random Walks
- 119 M. Deza and M. Dutour Sikirić Geometry of Chemical Graphs
- 120 T. Nishiura Absolute Measurable Spaces
- 121 M. Prest Purity, Spectra and Localisation
- 122 S. Khrushchev Orthogonal Polynomials and Continued Fractions
- 123 H. Nagamochi and T. Ibaraki Algorithmic Aspects of Graph Connectivity
- 124 F. W. King Hilbert Transforms I
- 125 F. W. King Hilbert Transforms II
- 126 O. Calin and D.-C. Chang Sub-Riemannian Geometry
- 127 M. Grabisch et al. Aggregation Functions
- 128 L. W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker Topics in Topological Graph Theory
- 129 J. Berstel, D. Perrin and C. Reutenauer Codes and Automata
- 130 T. G. Faticoni Modules over Endomorphism Rings
- 131 H. Morimoto Stochastic Control and Mathematical Modeling
- 132 G. Schmidt Relational Mathematics
- 133 P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic
- 134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering
- 135 V. Berthé and M. Rigo (eds.) Combinatorics, Automata and Number Theory
- 136 A. Kristály, V. D. Rădulescu and C. Varga Variational Principles in Mathematical Physics, Geometry, and Economics
- 137 J. Berstel and C. Reutenauer Noncommutative Rational Series with Applications
- 138 B. Courcelle and J. Engelfriet Graph Structure and Monadic Second-Order Logic
- 139 M. Fiedler Matrices and Graphs in Geometry
- 140 N. Vakil Real Analysis through Modern Infinitesimals
- 141 R. B. Paris Hadamard Expansions and Hyperasymptotic Evaluation
- 142 Y. Crama and P. L. Hammer Boolean Functions
- 143 A. Arapostathis, V. S. Borkar and M. K. Ghosh Ergodic Control of Diffusion Processes
- 144 N. Caspard, B. Leclerc and B. Monjardet Finite Ordered Sets
- 145 D. Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations
- 146 G. Dassios Ellipsoidal Harmonics
- 147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory
- 148 L. Berlyand, A. G. Kolpakov and A. Novikov Introduction to the Network Approximation Method for Materials Modeling
- 149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation
- 150 J. Borwein et al. Lattice Sums Then and Now
- 151 R. Schneider Convex Bodies: The Brunn-Minkowski Theory (Second Edition)
- 152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)
- 153 D. Hofmann, G. J. Seal and W. Tholen (eds.) Monoidal Topology
- 154 M. Cabrera-García and Á. Rodriguez Palacios Non-Associative Normed Algebras I: The Vidav–Palmer and Gelfand–Naimark Theorems
- 155 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)

Encyclopedia of Mathematics and its Applications

Stochastic Equations in Infinite Dimensions

Second Edition

GIUSEPPE DA PRATO

Scuola Normale Superiore, Pisa

JERZY ZABCZYK Polish Academy of Sciences

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107055841

© Cambridge University Press 1992, 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1992 Reprinted with corrections 2008 Second edition 2014

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Da Prato, Giuseppe, author. Stochastic equations in infinite dimensions / Giuseppe Da Prato, Scuola Normale Superiore, Pisa, Jerzy Zabczyk, Polish Academy of Sciences. – Second edition. pages cm. – (Encyclopedia of mathematics and its applications) Includes bibliographical references and index. ISBN 978-1-107-05584-1 (hardback) 1. Stochastic partial differential equations. I. Zabczyk, Jerzy, author. II. Title. QA274.25.D4 2014 519.2'2 – dc23 2013049903 ISBN 978-1-107-05584-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Contents

	Prefac	:e		<i>page</i> xiii
	Introd	luction:	motivating examples	1
	0.1	Lifts of	f diffusion processes	1
	0.2	Markov	vian lifting of stochastic delay equations	2
	0.3	Zakaï's	equation	3
	0.4	Randor	n motion of a string	4
	0.5	Stochas	stic equation of the free field	6
	0.6	Equation	on of stochastic quantization	6
	0.7	Reactio	on-diffusion equation	8
	0.8	An exa	mple arising in neurophysiology	9
	0.9	Equation	on of population genetics	9
	0.10	Musiel	a's equation of the bond market	10
PAI 1	RT ON	E FOU	NDATIONS	13
1	1 1	Randor	n variables and their integrals	15
	1.1	Operat	or valued random variables	13
	1.2	Conditi	ional expectation and independence	26
2	Proba	bility me	easures	29
	2.1	Genera	l properties	29
	2.2	Gaussia	an measures in Banach spaces	36
		2.2.1	Fernique theorem	36
		2.2.2	Reproducing kernels	39
		2.2.3	White noise expansions	42
	2.3	Probab	ility measures on Hilbert spaces	46
		2.3.1	Gaussian measures on Hilbert spaces	46
		2.3.2	Feldman–Hajek theorem	50

Cambridge University Press
978-1-107-05584-1 - Encyclopedia of Mathematics and its Applications: Stochastic Equations
in Infinite Dimensions: Second Edition
Giuseppe Da Prato and Jerzy Zabczyk
Frontmatter
More information

vi Contents			Contents	
		2.3.3	An application to a general Cameron–Martin	59
		2.3.4	The Bochner theorem	60
2	Stock	actia nrad	000000	65
3	3.1	General	l concents	65
	3.2	Kolmos	gorov test	67
	33	Process	ses with filtration	71
	3.4	Marting	gales	73
	3.5	Stoppin	ng times and Markov processes	77
	3.6	Gaussia	an processes in Hilbert spaces	77
	3.7	Stochas	stic processes as random variables	78
4	The st	tochastic	integral	80
-	4.1	Wiener	processes	80
		4.1.1	Hilbert space valued Wiener processes	81
		4.1.2	Generalized Wiener processes on a Hilbert space	84
		4.1.3	Wiener processes in $U = L^2(\mathcal{O})$	86
		4.1.4	Spatially homogeneous Wiener processes	90
		4.1.5	Complements on a Brownian sheet	94
	4.2	Definiti	ion of the stochastic integral	95
		4.2.1	Stochastic integral for generalized Wiener	
			processes	100
		4.2.2	Approximations of stochastic integrals	102
	4.3	Propert	ties of the stochastic integral	103
	4.4	The Itô	formula	106
	4.5	Stochas	stic Fubini theorem	110
	4.6	Basic e	stimates	114
	4.7	Remark	ss on generalization of the integral	117
PAI	RT TW	O EXIS	STENCE AND UNIQUENESS	119
5	Linea	r equatio	ons with additive noise	121
	5.1	Basic c	oncepts	121
		5.1.1	Concept of solutions	121
		5.1.2	Stochastic convolution	123
	5.2	Existen	ce and uniqueness of weak solutions	125
	5.3	Continu	uity of weak solutions	129
		5.3.1	Factorization formula	129
	5.4	Regular	rity of weak solutions in the analytic case	134
		5.4.1	Basic regularity theorems	134
		5.4.2	Regularity in the border case	139
	5.5	Regular	rity of weak solutions in the space of	
		continu	ious functions	143

		Contents	vii
		5.5.1 The case when <i>A</i> is self-adjoint	143
		5.5.2 The case of a skew-symmetric generator	149
		5.5.3 Equations with spatially homogeneous noise	150
	5.6	Existence of strong solutions	156
6	Linea	r equations with multiplicative noise	159
	6.1	Strong, weak and mild solutions	159
		6.1.1 The case when B is bounded	164
	6.2	Stochastic convolution for contraction semigroups	166
	6.3	Stochastic convolution for analytic semigroups	168
		6.3.1 General results	168
		6.3.2 Variational case	1/1
	6.4	6.3.3 Self-adjoint case	172
	6.4	Maximal regularity for stochastic convolutions in L^p spaces	1/3
	6.5	6.4.1 Maximal regularity	1/3
	6.5	Existence of mild solutions in the analytic case	176
		6.5.1 Introduction	1/6
		6.5.2 Existence of solutions in the analytic case	1/0
	0.0	Existence of strong solutions	181
7	Existe	nce and uniqueness for nonlinear equations	186
	7.1	Equations with Lipschitz nonlinearities	186
		7.1.1 The case of cylindrical Wiener processes	196
	7.2	Nonlinear equations on Banach spaces: additive noise	200
		7.2.1 Locally Lipschitz nonlinearities	200
		7.2.2 Dissipative nonlinearities	204
		7.2.3 Dissipative nonlinearities by Euler approximations	207
		7.2.4 Dissipative nonlinearities and general initial	
		conditions	210
		7.2.5 Dissipative nonlinearities and general noise	213
	7.3	Nonlinear equations on Banach spaces: multiplicative noise	215
	7.4	Strong solutions	218
8	Marti	ngale solutions	220
	8.1	Introduction	220
	8.2	Representation theorem	222
	8.3	Compactness results	226
	8.4	Proof of the main theorem	229
PAI	RT THI	REE PROPERTIES OF SOLUTIONS	233
9	Mark	ov property and Kolmogorov equation	235
	9.1	Regular dependence of solutions on initial data	235
		9.1.1 Differentiability with respect to the initial condition	238

Cambridge University Press
978-1-107-05584-1 - Encyclopedia of Mathematics and its Applications: Stochastic Equations
in Infinite Dimensions: Second Edition
Giuseppe Da Prato and Jerzy Zabczyk
Frontmatter
More information

viii	Contents		
		9.1.2 Comments on stochastic flows	245
	9.2	Markov and strong Markov properties	247
		9.2.1 Case of Lipschitz nonlinearities	247
		9.2.2 Markov property for equations in Banach spaces	252
	9.3	Kolmogorov's equation: smooth initial functions	253
		9.3.1 Bounded generators	254
		9.3.2 Arbitrary generators	256
	9.4	Further regularity properties of the transition semigroup	259
		9.4.1 Linear case	259
		9.4.2 Nonlinear case	266
	9.5	Mild Kolmogorov equation	271
		9.5.1 Solution of (9.75)	272
		9.5.2 Identification of $v(t, \cdot)$ with $P_t \varphi$	274
	9.6	Specific examples	278
10	Absolu	ute continuity and the Girsanov theorem	282
	10.1	Absolute continuity for linear systems \sim	282
		10.1.1 The case $B = B = I$	287
	10.2	Girsanov's theorem and absolute continuity for nonlinear	
		systems	291
		10.2.1 Girsanov's theorem	291
	10.3	Application to weak solutions	296
11	Large	time behavior of solutions	300
	11.1	Basic concepts	300
	11.2	The Krylov–Bogoliubov existence theorem	304
		11.2.1 Mixing and recurrence	307
		11.2.2 Regular, strong Feller and irreducible semigroups	307
	11.3	Linear equations with additive noise	308
		11.3.1 Characterization theorem	310
		11.3.2 Uniqueness of the invariant measure and asympotic	
		behavior	313
		11.3.3 Strong Feller case	314
	11.4	Linear equations with multiplicative noise	317
		11.4.1 Bounded diffusion operators	317
	11.7	11.4.2 Unbounded diffusion operators	322
	11.5	General linear equations	324
	11.0	Dissipative systems	320 227
		11.6.1 Regular coefficients	327
	117	11.0.2 Discontinuous coemcients	328 222
	11./	1 ne compact case	332 222
		11.7.1 Finite trace whener processes	225
		11.7.2 Cylinarical wiener processes	330

Cambridge University Press
978-1-107-05584-1 - Encyclopedia of Mathematics and its Applications: Stochastic Equations
in Infinite Dimensions: Second Edition
Giuseppe Da Prato and Jerzy Zabczyk
Frontmatter
More information

			Contents	ix
12	Small	noise asy	mptotic behavior	339
	12.1	Large de	eviation principle	339
		12.1.1	Formulation and basic properties	341
		12.1.2	Lower estimates	341
		12.1.3	Upper estimates	342
		12.1.4	Change of variables	343
	12.2	LDP for	a family of Gaussian measures	344
	12.3	LDP for	Ornstein–Uhlenbeck processes	347
	12.4	LDP for	semilinear equations	350
	12.5	Exit pro	blem	351
		12.5.1	Exit rate estimates	353
		12.5.2	Exit place determination	358
		12.5.3	Explicit formulae for gradient systems	363
13	Survey	of specif	fic equations	368
	13.1	Countab	le systems of stochastic differential equations	368
	13.2	Delay ec	quations	369
	13.3	First ord	ler equations	369
	13.4	Reaction	n-diffusion equations	370
		13.4.1	Spatially homogeneous noise	370
		13.4.2	Skorohod equations in infinite dimensions	371
	13.5	Equation	ns for manifold valued processes	372
	13.6	Equation	ns with random boundary conditions	372
	13.7	Equation	n of stochastic quantization	373
	13.8	Filtering	equations	375
	13.9	Burgers	equations	375
	13.10	Kardar, I	Parisi and Zhang equation	376
	13.11	Navier-S	Stokes equations and hydrodynamics	377
		13.11.1	Existence and uniqueness for $d = 2$	377
		13.11.2	Existence and uniqueness for $d = 3$	378
		13.11.3	Stochastic magneto-hydrodynamics equations	379
		13.11.4	The tamed Navier-Stokes equation	380
		13.11.5	Renormalization of the Navier-Stokes equation	380
		13.11.6	Euler equations	380
	13.12	Stochast	cic climate models	380
	13.13	Quasi-ge	eostrophic equation	381
	13.14	A growt	h of surface equation	381
	13.15	Geometr	ric SPDEs	382
	13.16	Kuramo	to–Sivashinsky equation	382
	13.17	Cahn–H	illiard equations	383
	13.18	Porous n	nedia equations	384
	13.19	Kortewe	g-de Vries equation	386

Cambridge University Press
78-1-107-05584-1 - Encyclopedia of Mathematics and its Applications: Stochastic Equations
n Infinite Dimensions: Second Edition
Giuseppe Da Prato and Jerzy Zabczyk
rontmatter
Aore information

х			Contents	
		13.19.1	Existence and uniqueness	386
		13.19.2	Soliton dynamic	386
	13.20	Stochasti	ic conservation laws	386
	13.21	Wave equ	uations	387
		13.21.1	Spatially homogeneous noise	388
		13.21.2	Symmetric hyperbolic systems	389
		13.21.3	Wave equations in Riemannian manifolds	389
	13.22	Beam eq	uations	389
	13.23	Nonlinea	ar Schrödinger equations	390
		13.23.1	Existence and uniqueness	390
		13.23.2	Blow-up	391
14	Some r	ecent dev	velopments	392
	14.1	Complen	nents on solutions of equations	392
		14.1.1	Stochastic PDEs in Banach spaces	392
		14.1.2	Backward stochastic differential equations	393
		14.1.3	Wiener chaos expansions	395
		14.1.4	Hida's white noise approach	395
		14.1.5	Rough paths approach	396
		14.1.6	Equations with fractional Brownian motion	398
		14.1.7	Equations with Lévy noise	398
		14.1.8	Equations with irregular coefficients	399
		14.1.9	Yamada–Watanabe theory in infinite dimensions	399
		14.1.10	Numerical methods for SPDEs	399
	14.2	Some res	sults on laws of solutions	400
		14.2.1	Applications of Malliavin calculus	400
		14.2.2	Fokker–Planck and mass transport equations	401
		14.2.3	Ultraboundedness and Harnack inequalities	402
		14.2.4	Gradient flows in Wasserstein spaces and Dirichlet	402
	14.2	Agreento	IOTIIIS	402
	14.5	Asympto 1/ 3 1	More on invariant measures	403
		14.3.1	More on large deviations	404
		14.3.3	Stochastic resonance	404
		14.3.4	Averaging	404
		14.3.5	Short time asymptotic	405
Арр	endix A	Linear d	leterministic equations	406
	A.1	Cauchy p	problems and semigroups	406
	A.2	Basic pro	operties of C_0 -semigroups	407
	A.3	Cauchy p	problem for nonhomogeneous equations	409
	A.4	Cauchy p	problem for analytic semigroups	412
	A.3	Example	of deterministic systems	419

Cambridge University Press
978-1-107-05584-1 - Encyclopedia of Mathematics and its Applications: Stochastic Equations
in Infinite Dimensions: Second Edition
Giuseppe Da Prato and Jerzy Zabczyk
Frontmatter
More information

	Contents	xi
Appendix B	Some results on control theory	428
B.1	Controllability and stabilizability	428
B.2	Comparison of images of linear operators	429
B.3	Operators associated with control systems	431
Appendix C	Nuclear and Hilbert–Schmidt operators	436
Appendix D	Dissipative mappings	440
D.1	Subdifferential of the norm	440
D.2	Dissipative mappings	442
D.3	Continuous dissipative mappings	444
D 11 11		
Bibliography		446
Index		491

Preface

This book is devoted to stochastic evolution equations on infinite dimensional spaces, mainly Hilbert and Banach spaces. These equations are generalizations of Itô stochastic equations introduced in the 1940s by Itô [423] and in a different form by Gikhman [347].

First results on infinite dimensional Itô equations started to appear in the mid-1960s and were motivated by the internal development of analysis and the theory of stochastic processes on the one hand, and by a need to describe random phenomena studied in the natural sciences like physics, chemistry, biology, engineering as well as in finance, on the other hand.

Hilbert space valued Wiener processes and, more generally, Hilbert space valued diffusion processes, were introduced by Gross [363] and Daleckii [183] as a tool to investigate the Dirichlet problem and some classes of parabolic equations for functions of infinitely many variables. An infinite dimensional version of an Ornstein–Uhlenbeck process was introduced by Malliavin [518, 519] as a tool for stochastic study of the regularity of fundamental solutions of deterministic parabolic equations.

Stochastic parabolic type equations appeared naturally in the study of conditional distributions of finite dimensional processes in the form of the so called nonlinear filtering equation derived by Fujisaki, Kallianpur and Kunita [330] and Liptser and Shiryayev [501] or as a linear stochastic equation introduced by Zakaï [737]. Another source of inspiration was provided by the study of stochastic flows defined by ordinary stochastic equations. Such flows are in fact processes with values in an infinite dimensional space of continuous or even more regular mappings acting in a Euclidean space. They are solutions of the corresponding backward and forward stochastic Kolmogorov like equations; see Krylov and Rozovskii [469], Carverhill and Elworthy [146], Kunita [476] and Pardoux [577]. Stochastic partial differential equations on Hilbert spaces. Such studies are the subject of the monograph [220] by the authors. Let us also mention that the idea of treating delay equations [258, 392], also proved to be useful for stochastic delay equations (Vinter [698], Chojnowska-Michalik [164]).

xiv

Preface

As far as applications are concerned, stochastic evolution equations have been motivated by such phenomena as wave propagation in random media (Keller [445], Frish [318]) and turbulence (Novikov [560], Chow [166]). Important motivations came also from biological sciences, in particular from population biology (Dawson [225], Fleming [311]). One has to mention also the early control theoretic applications of Wang [707], Kushner [481] and Bensoussan and Viot [60]. Since the early days, the number of specific equations studied in the literature has increased considerably and we could even say that we are witnessing an explosion of interest in the subject. In particular, stochastic versions of various equations such as reaction-diffusion, wave, beam, Burgers, Musiela, Navier–Stokes, Kardar–Parisi–Zhang, Kuramoto–Sivashinsky, Cahn–Hilliard, Korteweg–de Vries, Schrödinger, Landau–Lifshitz–Gilbert, to mention only a few, have been the subject of numerous studies. In this book we treat only some of them. However, descriptions and bibliographical comments on most of them are given in Chapters 13 and 14 and in the Introduction which is devoted to motivating examples.

Basic theoretical questions on existence and uniqueness of solutions were asked and answered, under various sets of conditions, in the 1970s and 1980s and are still of great interest today. An important contribution is due to Pardoux, who, in his thesis [576], obtained fundamental results on stochastic nonlinear partial differential equations (PDEs) of monotone type; see also Krylov and Rozovskii [469]. Basic results on weak solutions are due to Viot; see his thesis [695], and papers [696, 697]. Early important contributions are also due to Bensoussan and Temam [58, 59] and Dawson [226]. More recently, interesting results have been obtained on SPDEs with random boundary conditions. For first contributions see Sowers [654] and Da Prato and Zabczyk [218]. Early papers used the Wiener process as a model of noise and stochastic perturbations. The number of studies devoted to equations with different noise processes is increasing. In particular, equations with fractional Brownian motion and with Lévy processes are attracting much attention; see Duncan, Maslowski and Duncan-Pasik [269, 270], Maslowski and Nualart [534] and the recent monograph by Peszat and Zabczyk [596]. Important contributions on numerical solutions have been published. New approaches and original points of view like Hida's white noise approach, the rough paths approach or Wiener chaos expansions, are appearing. They are all discussed in Chapter 14.

The aim of this book is to present basic results on stochastic evolution equations in a rather systematic and self-contained way. We discuss topics covered traditionally by books on ordinary stochastic differential equations: stochastic calculus, existence and uniqueness results, continuous and regular dependence on initial data, Markov property, equations for transition probabilities of Kolmogorov type, absolute continuity of laws induced by solutions on the spaces of trajectories, and asymptotic properties.

The book systematically uses the theory of linear semigroups. Semigroup theory is an important part of mathematics, having several connections with the theory of partial differential equations. Semigroups have been successfully applied to treat

Preface

semilinear equations; see for instance [401, 512]. The assumption, which we will often make in this book, that the linear part of the equation is the infinitesimal generator of a linear semigroup, is equivalent to the minimal requirement that the equation under study, in its simplest form, has a unique solution continuously depending on the initial data. The semigroup formulation allows a uniform treatment of parabolic, hyperbolic and delay equations. In numerous situations results obtained by more specialized PDE methods can be recovered by the semigroup approach. Early contributions using that approach include some sections of the book by Balakrishnan [32], papers by Curtain and Falb [176] and by Métivier and Pistone [543], and the thesis by Chojnowska-Michalik [163].

A different method for studying stochastic partial differential equations, the so called *variational approach*, was introduced by Pardoux [575] and Krylov and Rozovskii [469]. We do not treat this method in this book. For a recent presentation see the monograph by Prévot and Röckner [602].

In several parts of the book an important role is played by control theory. In particular, control theoretic results are used in the study of transition semigroups, invariant measures and large deviations.

The book is divided into three main parts devoted respectively to foundations of the theory, existence and uniqueness results, and properties of solutions. Analytical results needed in the book, not always easily available in the literature, are gathered in the appendices. Appendix A is devoted to the semigroup treatment of linear deterministic evolutionary problems, so can be regarded as a kind of introduction to the book. Appendices B, C and D concern, respectively, control theory, nuclear and Hilbert–Schmidt operators, and dissipative mappings.

In Part I we recall the measure theoretic foundations of probability theory and give a self-contained exposition of the basic properties of probability measures on separable Banach and Hilbert spaces, needed in what follows. In particular, we prove the Fernique theorem on exponential moments of Gaussian measures, the Bochner characterization of measures on Hilbert spaces, and the Feldman–Hajek theorem on absolute continuity of Gaussian measures. We also introduce reproducing kernels of Gaussian measures and apply this concept to expansions of white noise. In Chapter 3 we list commonly used concepts and theorems from the theory of stochastic processes. We take for granted several results on finite dimensional stochastic processes, in particular classical martingale inequalities. We introduce infinite dimensional Wiener processes and analyze a specific case including spatially homogeneous ones. Finally, we construct the stochastic integral with respect to infinite dimensional Wiener processes and establish Itô's formula and the stochastic Fubini theorem. Maximal inequalities for stochastic integrals are treated in a detailed way.

In Part II we proceed to the main subject of the book, stochastic equations of the form

$$dX = (AX + F(X))dt + B(X)dW(t), \quad x(0) = x,$$
(1)

xv

xvi

Preface

where A is a linear operator, generally unbounded, acting on a Hilbert space H, and F and B are nonlinear, in general discontinuous mappings acting on appropriate spaces. Moreover W is a Wiener process on a Hilbert space U and $x \in H$.

Part II is devoted to existence and uniqueness of solutions. In Chapter 5 we set F = 0, *B* constant and establish existence of weak solutions. We elaborate on the factorization method introduced in [205] and use it to prove the time continuity of the weak solution under broad conditions. Continuity with respect to spatial variables is treated as well. Distribution valued Ornstein–Uhlenbeck processes are also investigated. We give more refined regularity results in the case when *A* generates an analytic semigroup. In Chapter 6, *F* is again 0 but *B* is linear. We first derive sharp estimates for stochastic convolution

$$W^{\Phi}_{A}(t) = \int_{0}^{t} S(t-s)\Phi(s)dW(s), \quad t \ge 0,$$

where Φ is an operator valued process and $S(\cdot)$ is the contraction semigroup generated by A. We deal with estimates in a wide class of Banach spaces and also include some maximal regularity results from [206]. With good estimates in hand, we establish existence of solutions to (1) by a fixed point argument. We also present a method, applicable only in special situations, of transforming the Itô equation into a deterministic one with random coefficients, which can be treated pathwise. Chapter 7 is devoted to nonlinear equations. We first prove existence and uniqueness when F and B are Lipschitz continuous in H, and then turn to more general B to cover equations with a Nemytskiĭ nonlinearity. The case when F and B are locally Lipschitz continuous or dissipative on a suitable Banach space $E \subset H$ is treated as well. Chapter 8 is devoted to martingale solutions solving the martingale problem, also called weak solutions. We give a proof of the Viot theorem, in the so called compact case, based on the above mentioned factorization method.

Part III of the book is devoted to qualitative properties of solutions. In Chapter 9 we establish continuous dependence of solutions on the initial data and the Feller and Markov properties by an adaptation of finite dimensional methods. We indicate a large class of equations for which the transition semigroup is strongly Feller and for which the Kolmogorov equation can be solved for an arbitrary bounded Borel initial function. The important Bismut–Elworthy–Li formula is derived here and it is used to establish differentiability of solutions to Kolmogorov equations for a wide family of equations. Chapter 10 is on absolute continuity of laws corresponding to solutions of two different equations. We first give a detailed treatment of linear equations based on the Feldman–Hajek theorem. Next we prove the Girsanov theorem and give sufficient conditions for absolute continuity for nonlinear equations. We also establish existence of martingale solutions to equations with irregular drifts by Girsanov's method. Two following chapters concern the asymptotic properties of solutions. Existence and uniqueness of invariant measures and mean square stability are treated first. A careful analysis is carried out for linear equations with an additive and/or multiplicative

Preface

xvii

noise. Nonlinear equations are treated under two types of hypothesis: dissipativity and compactness. Chapter 12 examines the asymptotic properties of solutions when $B(X) = \varepsilon B$, where *B* is a fixed bounded operator from *U* to *H* and ε is small. We establish the large deviation principle for laws of solutions and apply the resulting estimates to the so called exit problem. We generalize finite dimensional results of Freidlin–Wentzell and derive specific asymptotic formulae for so called gradient systems.

As already mentioned, the book covers only basic results of the theory and a number of specific equations are not treated. A comprehensive discussion of the literature and new developments is postponed to Chapters 13 and 14.

In particular we have not covered stochastic equations in nuclear spaces, which have appeared in the study of fluctuation limits of infinite particle systems. They are discussed by Itô [425]; see also Kallianpur and Pérez-Abreu [435]. We do not consider time dependent systems although several extensions to this case are possible. Nor do we discuss quasi-linear equations or equations with stochastic boundary conditions and variational inequalities. Each of those subjects would require several additional chapters. For the same reason we do not report on recent results on the corresponding Fokker–Planck equations, the theory of Dirichlet forms and its applications for solving equations with very irregular coefficients (see Ma and Röckner [516] and the references therein) or on potential theoretic concepts like the Martin boundary (see Föllmer [313]). We do not treat stochastic equations with Lévy noise (see [599] and references therein).

The present book is the second edition of *Stochastic Equations in Infinite Dimensions* published in 1992. We now describe the changes incorporated in the new edition.

There are no major changes in Chapter 1 on random variables or in Chapter 2 on probability measures. We have improved a theorem on white noise expansions, stating it for an arbitrary complete basis in the reproducing kernel. Estimates on the moments of Gaussian measures are derived in more detail and the proof of the Feldman–Hajek theorem is presented, we believe, in a clearer way.

In Chapter 3 we have added the Kolmogorov–Loève–Chentsov theorem on existence of a Hölder continuous version of a random field on bounded open subsets of \mathbb{R}^d with a proof based on the Garsia, Rademich and Rumsay lemma.

In Chapter 4 on stochastic processes we have expanded sections on infinite dimensional Wiener processes. We devote more space to Wiener processes with general, non-trace-class, covariances and discuss specific examples of Wiener processess in $L^2(\mathcal{O})$. We also elaborate an important case of spatially homogeneous Wiener processes. Maximal inequalities for stochastic integrals are treated in a systematic and complete way.

In Chapter 5 we describe in more detail the so called factorization method, a tool to establish time regularity of the solution and existence of invariant measures. At the moment of writing the first edition the method, introduced in the paper [205]

xviii

Preface

by Da Prato, Kwapień and Zabczyk, was fairly new. Since then it has found many applications, some explained in the present edition. In this chapter we also give a new proof of convergence of solutions to equations with Yosida approximations of the linear part of the drift. Existence of regular solutions to equations with higher order operators is treated as well. A section on strong solutions is thoroughly reworked.

A novelty in Chapter 6 is a section on maximal regularity for stochastic convolutions in L^p and $W^{k,p}$ spaces based on a paper by Da Prato and Lunardi [206].

In Chapter 7 on existence and uniqueness of solutions, we add general results which allow us to treat stochastic parabolic equations with Nemytskiĭ diffusion operators. The section on dissipative nonlinearities is extended as well.

Chapter 8 on martingale solutions remains basically as it was.

In Chapter 9 on Markov properties and Kolmogorov equations, we have essentially simplified the proof of differentiability of solutions with respect to initial data. We have also included explicit formulae for higher derivatives of Ornstein–Uhlenbeck transition semigroups. We also expand the section on mild Kolmogorov equations.

Chapters 10–12 are essentially unchanged, although we have tried to simplify the presentation and eliminate some misprints. For more recent results on large time behavior of solutions we refer to our book [220]. Additional results on large deviations can be found in the monograph by Feng and Kurtz [289].

Chapters 13 and 14 are new and are devoted respectively to a survey of results on specific equations and to a description of new developments.

There exist several excellent books on ordinary stochastic differential equations, which provide inspiration for infinite dimensional theory. Earlier books include those by Gikhman and Skorokhod [348], Has'minskii [394], Ikeda and Watanabe [418], Elworthy [280] and more recently Protter [609], Øksendal [567] and Applebaum [23].

Several books on infinite dimensional theory were published before 1992, for example Walsh [702], Belopolskaya and Daleckij [52], Rozovskii [633] and Métivier [542]. More recent are books by Chow [169], Grecksch and Tudor [360], Prévot and Röckner [602], Sanz-Solé [637], Dalang, Khoshnevisan, Mueller, Nualart and Xiao [180], Holden, Øksendal, Ubøe and Zhang [407], Peszat and Zabczyk [599], Kotelenez [458], Veraar [693], internet lecture notes by Hairer [385] and van Neerven's Internet seminar [686]. They all emphasize different aspects of the theory.

It is our pleasure to thank our colleagues and collaborators, Z. Brzeźniak, S. Cerrai, A. Chojnowska-Michalik, A. Debussche, F. Flandoli, M. Fuhrman, B. Goldys, D. Gątarek, M. Gubinelli, S. Peszat, E. Priola, G. Tessitore, L. Tubaro and L. Zambotti for reading some parts of the book and for useful comments. Our special thanks go to Professor Kai Liu from the University of Liverpool, who sent us a very long list of misprints, mistakes and suggestions which helped us to improve the presentation in a considerable way.

Finally we would like to thank the team of the Cambridge University Press, in particular Vania Cunha, for help and understanding.