VEGETATION DYNAMICS

Understanding ecosystem structure and function requires familiarity with the techniques, knowledge and concepts of the three disciplines of plant physiology, remote sensing and modelling. This is the first textbook to provide the fundamentals of these three domains in a single volume. It applies cross-disciplinary insights to multiple case studies in vegetation and landscape science. A key feature of these case studies is an examination of relationships among climate, vegetation structure and vegetation function, to address fundamental research questions. This book is for advanced students and researchers who need to understand and apply knowledge from the disciplines of plant physiology, remote sensing and modelling. It allows readers to integrate and synthesise knowledge to produce a holistic understanding of the structure, function and behaviour of forests, woodlands and grasslands.

DEREK EAMUS is a professor at the University of Technology Sydney (UTS). He is an internationally recognised plant ecophysiologist and ecohydrologist, specialising in plant water relations, the carbon and water balances of native woodlands and forests and forging cross-disciplinary links between our understanding of processes at cellular, whole plant and canopy scales. He has published more than 185 research publications in diverse journals, including *Nature, Nature Climate Change, Remote Sensing of Environment, Oecologia, Global Change Biology* and *Agricultural and Forest Meteorology*.

ALFREDO HUETE is a professor and geospatial ecologist at UTS. He uses remote sensing to examine ecosystem functioning, phenology and vegetation health, with an emphasis on extreme climate events. He has twenty-five years' experience in satellite earth observation for NASA and is a member of the EOS MODIS Science Team. The satellite products he developed are among the most widely used by the scientific and resource management communities. He has published several high-impact papers in journals such as *Nature, Science* and the *Proceedings of the National Academy of Sciences*.

QIANG YU is a professor at UTS and formerly at the Chinese Academy of Science, where he was awarded a professorship in the prestigious "Hundred Talents Program". His principle research interests are modelling of stomatal function, leaf and canopy photosynthesis and transpiration, carbon and water fluxes, and climate impacts on agriculture. He is the lead author of the China Agricultural Ecosystem Model. He has published more than 100 research papers in environmental modelling, climatology, ecology, agronomy and water resources.

VEGETATION DYNAMICS A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling

DEREK EAMUS

University of Technology Sydney

ALFREDO HUETE

University of Technology Sydney

QIANG YU University of Technology Sydney

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107054202

© Derek Eamus, Alfredo Huete and Qiang Yu 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Names: Eamus, Derek, author. | Huete, Alfredo, author. | Yu, Qiang, 1962– author. Title: Vegetation dynamics : a synthesis of plant ecophysiology, remote sensing and modelling / Derek Eamus, University of Technology Sydney, Alfredo Huete, University of Technology Sydney, Qiang Yu, University of Technology Sydney. Description: New York, NY : Cambridge University Press, [2015] | Includes bibliographical references and index. Identifiers: LCCN 2015029272! ISBN 9781107054202 (hardback) | ISBN 9781107656666 (pbk.) Subjects: LCSH: Plant ecophysiology. | Vegetation dynamics – Remote sensing. | Vegetation dynamics – Mathematical models. Classification: LCC QK717.E16 2015 | DDC 581.7–dc23 LC record available at http://lccn.loc.gov/2015029272

ISBN 978-1-107-05420-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Section One Plant Ecophysiology

1	An I	ntroduction to Biogeography: Broad-Scale Relationships	
	Amo	ongst Climate, Vegetation Distribution and Vegetation Attributes	3
	1.1	Large-Scale Patterns in Climate	3
	1.2	Climate Classification Systems	10
	1.3	Atmospheric and Oceanic Circulation Influence	
		Regional Climates	14
	1.4	Biome Classification Systems	22
	1.5	Classifying Vegetation by Function and Form	26
	1.6	Global Traits of Leaf Attributes and Leaf Function	32
	1.7	Leaf Lifespan: "Live Fast Die Young" Interpreted Through	
		Cost-Benefit Analysis	37
	1.8	Root Depth as a Function of PFTs	39
	1.9	References	41
2	An I	ntroduction to Plant Structure and Ecophysiology	43
	2.1	Leaf Anatomy and Leaf Attributes	43
	2.2	Vascular Tissues	49
	2.3	Root Anatomy	56
	2.4	Stomatal, Mesophyll and Canopy Conductances	57
	2.5	Photosynthetic Processes: Leaf-Scale	78
	2.6	GPP, NPP and NEE	89
	2.7	Optimisation Theory as Applied to Leaf-Scale CO ₂ and	
		Water Fluxes	93
	2.8	Water-Use-Efficiencies of Leaves and Canopies	97
	2.9	Trade-Off of N versus Water Allows Maintenance of	
		High Rates of Photosynthesis in Arid Sites	101

v

Cambridge University Press
978-1-107-05420-2 - Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling
Derek Eamus, Alfredo Hueten and Qiang Yu
Frontmatter
More information

vi	Contents	
	2.10 Nitrogen, Phosphorous and Drought	104
	2.11 References	106
3	Water Relations, Hydraulic Architecture and Transpiration by Plants	110
	3.1 Functions and Properties of Water	111
	3.2 The Water Relations of Plant Cells	113
	3.3 Water in the Atmosphere	119
	3.4 Daily and Seasonal Patterns of Leaf Water Potential	122
	3.5 Anisohydric versus Isohydric Leaves	124
	3.6 Transpiration at the Leaf and Plant Scale	126
	3.7 Hydraulic Architecture	132
	3.8 Field Studies of Hydraulic Architecture of Stands of Trees	145
	3.9 References	149
Sec	ction Two Remote Sensing	
4	An Overview of Remote Sensing	155
	4.1 Introduction	155
	4.2 A Framework of Remote Sensing	156
	4.3 Advantages of Remote Sensing	158
	4.4 Conclusions	164
	4.5 References	165
5	Fundamentals and Physical Principles of Remote Sensing	167
	5.1 Fundamentals of the Remote Sensing Signal	167
	5.2 Properties of Electromagnetic Radiation	168
	5.3 The Electromagnetic Spectrum	170
	5.4 Basic Energy Concepts	171
	5.5 Defining Spectral Units	173
	5.6 Defining Directional Quantities	175
	5.7 Introduction to Thermal Measurements	178
	5.8 The Role and Influence of the Atmosphere	180
	5.9 References	183
6	Satellite Sensors and Platforms	184
	6.1 Introduction	184
	6.2 Sensor Resolution	185
	6.3 Orbital Systems	191
	6.4 Hyperspectral Sensors	198
	6.5 Microwave Sensors	199
	6.6 Solar-Induced Chlorophyll Fluorescence	200
	6.7 LiDAR	200
	6.8 GRACE	201
	6.9 Airborne Sensors	201

ambridge University Press
78-1-107-05420-2 - Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling
erek Eamus, Alfredo Hueten and Qiang Yu
rontmatter
Iore information

	Contents	vii
	6.10 Continuity and Fusion of Data6.11 References	202 203
7	 Remote Sensing of Landscape Biophysical Properties 7.1 Introduction 7.2 Spectral Signatures 7.3 Landscape Optics 7.4 Canopy Biophysics 7.5 Conclusions 7.6 References 	206 206 215 217 231 232
Sec	tion Three Modelling	
8	 An Introduction to Modelling in Plant Ecophysiology 8.1 Introduction 8.2 Canopy Photosynthesis and Water Flow through the SPAC 8.3 References 	239 239 239 242
9	 Modelling Radiation Exchange and Energy Balances of Leaves and Canopies 9.1 Introduction 9.2 Solar Radiation 9.3 Canopy Light Environment 9.4 References 	244 244 244 252 256
10	 Modelling Leaf and Canopy Photosynthesis 10.1 Introduction 10.2 Models of Leaf-Scale Photosynthesis 10.3 Modelling the Biochemistry of Photosynthesis 10.4 Parameter Optimisation for Photosynthesis Models 10.5 Modelling Canopy Photosynthesis 10.6 References 	260 260 261 266 272 273 278
11	 Modelling Stomatal and Canopy Conductance 11.1 Introduction 11.2 Semi-Empirical Models of Stomatal Conductance 11.3 Models Based on Conservative Water-Use-Efficiency 11.4 Canopy Conductance/Resistance Models 11.5 References 	281 281 282 287 289 293
12	 Modelling Leaf and Canopy Transpiration and the Soil-Plant-Atmosphere Continuum 12.1 Introduction 12.2 Canopy Radiation Exchange 12.3 Transpiration at the Leaf-Scale 	296 296 296 297

Cambridge University Press	
978-1-107-05420-2 - Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modellin	g
Derek Eamus, Alfredo Hueten and Qiang Yu	
Frontmatter	
More information	

viii	Contents	
	12.4 Water Flow through the Soil-Plant-Atmosphere Continuum	
	and Evapotranspiration Models	299
	12.5 Microclimate Within and Over Canopies	306
	12.6 Soil Water and Heat Dynamics	310
	12.7 Dynamic Water and Heat Exchanges Across the SPAC	313
	12.8 Model Solution	315
	12.9 References	317
13	Coupling Models of Photosynthesis, Transpiration and	
	Stomatal Conductance and Environmental Controls of Leaf Function	321
	13.1 Introduction	321
	13.2 Leaf Temperature	321
	13.3 Numerical Solutions for Combined Leaf Models	323
	13.4 Uncoupling of Integrated Photosynthesis-Transpiration-Stomatal	
	Conductance Models	325
	13.5 A Modelling Perspective of Physiological Responses	226
	to Environmental Variables	326
	13.6 Environmental Controls of Diurnal Variation of Photosynthesis,	226
	Transpiration and Stomatal Conductance 13.7 References	336
	13.7 References	341
Sec	tion Four Case Studies	
14	Boreal Forests	347
	14.1 Introduction	347
	14.2 Coping with Freezing Winters: Photosynthetic C Gain	
	and Transpiration	347
	14.3 Climate and Vegetation Interactions in a Canadian	
	Boreal Forest: ET and WUE	353
	14.4 Controls of <i>ET</i> and Carbon Flux in a Scots Pine	
	(Pinus sylverstris) Forest	357
	14.5 Comparing Carbon Balances of Boreal Humid Evergreen	2.00
	Forests with Semi-Arid Boreal Forests	360
	14.6 Permafrost, ET and NPP	362
	14.7 Modelling Controls of ET in a Scots Pine Boreal Forest14.8 References	364
		366
15	Arid and Semi-Arid Grasslands	368
	15.1 Introduction	368
	15.2 Intra-Annual Patterns of Carbon Flux in Grasslands	368
	15.3 Inter-Annual Patterns of Carbon Flux in Grasslands	371
	15.4 Responses of Arid and Semi-Arid Zones to Pulses of Rainfall	377
	15.5 References	381

Cambridge University Press	
78-1-107-05420-2 - Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling	
Derek Eamus, Alfredo Hueten and Qiang Yu	
rontmatter	
Iore information	

	Contents	ix
16	Savannas	383
	16.1 Introduction	383
	16.2 What Are Savannas?	383
	16.3 Daily and Seasonal Patterns in C and Water Flux	384
	16.4 Modelling Seasonal Changes in Canopy C Uptake:	
	Application of Optimality Theory to Savannas	393
	16.5 Productivity Along Rainfall Gradients	396
	16.6 GPP, NEE and Respiration Differ in Their Response	
	to Temperature and Aridity	403
	16.7 Inter-Annual Variations in Rainfall and Productivity:	
	Comparisons Within a Single Site	404
	16.8 Woody Thickening and Atmospheric CO_2 Concentrations	408
	16.9 References	411
17	Seasonal Behaviour of Vegetation of the Amazon Basin	415
	17.1 Introduction	415
	17.2 Biogeography of the Amazon Basin	416
	17.3 Seasonality in Tropical Forest Function	419
	17.4 Field Phenology Studies	421
	17.5 Flux Tower Measurements in the Amazon	423
	17.6 Satellite-Based Studies of Landscape Seasonality	424
	17.7 Model Results	431
	17.8 Modelling, Remote Sensing, Ecophysiology and	10.1
	Drought in the Amazon	434
	17.9 Conclusions	437
	17.10 References	437
18	Tropical Montane Cloud and Rainforests	442
	18.1 Introduction	442
	18.2 Types of Tropical Montane Cloud and Rainforests	442
	18.3 The Climate of Tropical Montane Cloud Forests	444
	18.4 Leaf Structure Varies with Altitude	446
	18.5 Does Photosynthetic Capacity Vary with Altitude in	116
	Tropical Montane Trees?	446
	18.6 NPP and C Allocation Patterns in Tropical Montane	440
	Cloud Forests	448
	18.7 Transpiration, Evapotranspiration and Stomatal Conductance	450
	18.8 Remote Sensing of ET	450 453
	18.8 Remote Sensing of E1 18.9 Climatological Links Between Tropical Lowland and	455
	Montane Forests	455
	18.10 References	457
		1.07

Cambridge University Press	
78-1-107-05420-2 - Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling	
Derek Eamus, Alfredo Hueten and Qiang Yu	
Frontmatter	
Aore information	

х	Contents	
19	Groundwater Dependent Ecosystems	460
	19.1 Introduction	460
	19.2 Groundwater and Groundwater Dependent Ecosystems	460
	19.3 Classes of GDEs	463
	19.4 Identifying Groundwater Dependent Vegetation	464
	19.5 Ecophysiology of Terrestrial GDEs Subject to	
	Groundwater Abstraction	469
	19.6 Estimating Rates of Water-Use of GDEs	472
	19.7 Groundwater Recharge, Climate and Vegetation	478
	19.8 References	480
20	Global-Change Drought and Forest Mortality	484
	20.1 Introduction	484
	20.2 Global Change-Type Droughts	485
	20.3 Field Observations of Drought and Mortality	488
	20.4 Remotely Sensed Observations of Drought and Mortality	490
	20.5 Mechanisms that May Explain Tree Mortality	496
	20.6 Global Convergence in Vulnerability of Forests to Drought	502
	20.7 Modelling the Interactions Amongst Drought and	
	Increased Temperatures and VPD	503
	20.8 An Integrated View of Mortality	506
	20.9 Ecological Modelling of Mortality at Landscape Scales	506
	20.10 Summary	508
	20.11 References	508
Ind	ex	513

Preface

"Classical" plant physiology is the study of physiological processes of individual plants of a single species growing in pots in glasshouses, growth cabinets and controlled-environment chambers. Single-factor experiments are frequently used to manipulate one variable (e.g. water supply, temperature) in order to establish the response of individual processes (e.g. transpiration rate, phloem loading) or whole plants (e.g. growth rate) to that variable. It has been an immensely powerful science, contributing to increased food productivity and crop genetic selection for many decades.

Ecophysiology takes knowledge gained from plant physiological studies and applies them to plants growing "in the wild", in real landscapes. This adds several layers of complexity arising from (a) large spatial and temporal variations in multiple variables (e.g. rainfall, temperature, solar radiation); (b) the interactions amongst multiple variables; and (c) complexities arising from the fact that landscapes are composed of multiple species. Although manipulative experiments can be undertaken in ecophysiology (e.g. rainfall exclusion, and rainfall redistribution troughs), the majority of ecophysiological studies do not manipulate environmental variables. Rather, they allow natural seasonal and inter-annual variation to impact on the structure and function of natural vegetation and measure the response of individual leaves, plants (trees, grasses, etc.) and canopies and use statistical inferences and models to analyse these responses.

Modelling of plant function can similarly be undertaken at small (leaves; xylem function), intermediate (trees, canopies) and large scales (stands, regions, sub-continental, global) across a range of temporal scales (typically hours to centuries). These models incorporate plant physiological and ecophysiological data (e.g. light response curves of leaves, eddy covariance tower flux data) to model the function (e.g. gross primary productivity [GPP], net primary productivity [NPP], evapotranspiration [ET]) of landscapes and biomes.

Remote sensing (RS) uses air-borne and satellite platforms for remote surveillance of land and vegetation surfaces (e.g. reflectance of solar radiation across multiple wavebands, land surface temperature). Using these remotely sensed data, plant structural attributes (e.g. LAI) and functional attributes (e.g. NPP, ET) can be calculated. As is the case for modelling, RS as a discipline is increasingly using physiological

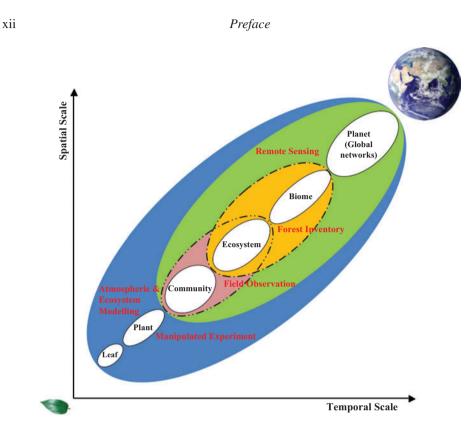


Figure I.1. A simplified conceptual representation of the different spatial and temporal scales of organisation (and study) encompassed in this textbook. Plant physiological and ecophysiological observations are mostly confined to cellular, leaf, whole plant, community and ecosystem spatial scales; most observations are made at sub-annual temporal scales and few observations have been made for longer than 15 years. In contrast, modelling can be undertaken from leaf-to-global-scales at almost any required temporal scale. Remote sensing is generally applied at community-to-global spatial scales and with weekly-to-decadal temporal scales.

and ecophysiological (e.g. canopy conductance, canopy gas fluxes, LAI) data to validate/test/compare remotely sensed estimates of landscape processes and vegetation structure. Figure I.1 provides a simplified representation of these three disciplines and their overlap.

Aims of This Book

The first aim of this book is to provide a relatively simple guide to some key aspects of plant physiology and plant ecophysiology, as they relate to the functional behaviour of natural landscapes, with particular emphasis on carbon (C) and water fluxes. This section should be of most value to those who are experienced modellers and remote sensing practitioners who need to increase their knowledge of plant physiology and ecophysiology. The focus on physiology pertaining to C and water fluxes is deliberate because these fluxes are two of the principal vegetation functions that drive

Preface

all downstream aspects of landscape function (e.g. catchment water balance, productivity, biogeochemical cycling). The second and third aims are to provide similar introductions to the disciplines of remote sensing (RS) and modelling of vegetation structure and function. It is likely that ecophysiologists will, at some point in their career, need to include aspects of these two disciplines in their work; similarly, modellers will increasingly use RS data in conjunction with ecophysiological information whilst RS practitioners increasingly need the ability to develop and apply models and incorporate/understand ecophysiological data in relation to the insights generated through remote sensing.

Thus, the final aim of this book is to provide some level of integration of the three disciplines. It is our contention that a full understanding of landscape function requires integration across these disciplines. We hope that this text may facilitate that integration.

Structure of the Content of the Book

The book has four sections. Section One contains the basic plant physiology and ecophysiology required to examine landscape carbon and water fluxes. The second section provides an overview of the techniques available in remote sensing, including consideration of the physical principles of remote sensing and the different platforms available to examine landscape structure and function. The third section provides descriptions of the basic modelling of vegetation and landscape processes across multiple scales. The final section contains seven case studies where data from ecophysiological, modelling and RS studies are presented and combined to provide a richer and deeper understanding of landscape structure and function. These case studies include (1) Carbon and water fluxes of five contrasting biomes (boreal forests, arid and semi-arid grasslands, tropical montane forests, Amazonian forest, savannas); (2) groundwater-dependent ecosystems; (3) and global drought and forest mortality.

We hope you enjoy the read.

xiii