SUPERSYMMETRIC FIELD THEORIES

Adopting an elegant geometrical approach, this advanced pedagogical text describes deep and intuitive methods for understanding the subtle logic of supersymmetry, while avoiding lengthy computations.

The book describes how complex results and formulae obtained using other approaches can be significantly simplified when translated to a geometric setting. Introductory chapters describe geometric structures in field theory in the general case, while detailed later chapters address specific structures such as parallel tensor fields, G-structures, and isometry groups. The relationship between structures in supergravity and period maps of algebraic manifolds, Kodaira–Spencer theory, modularity, and the arithmetic properties of supergravity, are also addressed.

Relevant geometric concepts are introduced and described in detail, providing a self-contained toolkit of useful techniques, formulae and constructions. Covering all the material necessary for the application of supersymmetric field theories to fundamental physical questions, this is an outstanding resource for graduate students and researchers in theoretical physics.

SERGIO CECOTTI is Associate Professor at Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.

SUPERSYMMETRIC FIELD THEORIES

Geometric Structures and Dualities

SERGIO CECOTTI

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107053816

© S. Cecotti 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

ISBN 978-1-107-05381-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

A Magda

Contents

	Pr	eface	xi
	INC	DIATIONS	X111
Pa	rt I	How geometric structures arise in supersymmetric	
	field	theories	1
1	Geor	netrical structures in (Q)FT	3
	1.1	(Gauged) σ -models	3
	1.2	Adding fields of arbitrary spin	8
	1.3	How strings come about	15
	1.4	Gauge dualities	16
	1.5	The emergence of modularity	27
	1.6	More dualities	34
2	Extended supersymmetry in diverse dimensions		42
	2.1	SUSY in diverse dimensions	42
	2.2	A little warm–up: $D = 2$	48
	2.3	SUSY and the topology of \mathcal{M}	51
	2.4	Extended supersymmetry in 3D	59
	2.5	The language of G -structures. Flat (G_1, G_2)-structures	67
	2.6	Local extended supersymmetry in 3D	69
	2.7	Connections with algebraic geometry	78
	2.8	Supersymmetry in $D = 4$ and 6 dimensions	79
	2.9	4D SUSY gauge theories. Special Kähler geometry	82
	2.10	4D supergravity	92
Part II Geometry and extended SUSY: more than eight supercharge		101	
3	Paral	lel structures and holonomy	103
	3.1	The holonomy group	103
	3.2	Symmetric Riemannian spaces	108

viii		Contents	
	3.3	Berger's theorem	115
	3.4	Parallel forms on \mathcal{M}	118
	3.5	Parallel spinors and holonomy	120
	3.6	G-structures and Spencer cohomology	123
	3.7	The holonomy groups of Lorentzian manifolds	125
4	4 SUSY/SUGRA Lagrangians and U-duality		129
	4.1	Determination of the scalar manifold \mathcal{M}	129
	4.2	Dimensional reduction and totally geodesic submanifolds	138
	4.3	Four-fermion couplings vs. holonomy	139
	4.4	Vector couplings in 4D SUGRA	143
	4.5	The gauge point of view	146
	4.6	The complete 4D Lagrangian: U-duality	147
	4.7	U-duality, Z-map, and Grassmannians	150
	4.8	6D chiral forms	154
	4.9	Arithmetics of U -duality. Global geometry of \mathcal{M}	155
5	σ-M	lodels and symmetric spaces	160
	5.1	Cartan connections on G	160
	5.2	Maurier–Cartan forms	164
	5.3	Invariant metrics on a compact group	166
	5.4	Chiral models	168
	5.5	Geometry of coset spaces G/H	169
	5.6	Symmetric spaces	171
	5.7	Classification of symmetric manifolds	174
	5.8	Totally geodesic submanifolds. Rank	177
	5.9	Other techniques	178
	5.10	An example: $E_{7(7)}/SU(8)$	178
	5.11	Symmetric and Iwasawa gauges	182
6	Killing spinors and rigid SUSY in curved spaces		185
	6.1	Review: space-time charges in General Relativity	185
	6.2	AdS space	187
	6.3	Killing spinors	189
	6.4	The geometry of Killing spinors	198
	6.5	Nester form of the space-time charges	205
	6.6	The AdS/Poincaré SUSY algebra	207
	6.7	Positive mass and BPS bounds	211
	6.8	SUGRA Ward identities	214

	Contents	ix
7	 Parallel structures and isometries 7.1 Rigid SUSY: momentum maps 7.2 <i>T</i>-tensors I 	220 220 227
	 7.3 Target space isometries in supergravity 7.4 Holonomy vs. isometries 7.5 The rigid case revisited Superconformal geometries 	230 231 236
	7.6 The Cartan–Kostant isomorphism 7.7 The covariant momentum map 7.8 T –tensors II. Generalized \mathcal{T} in SUGRA	240 243 246
8	Gauging and potential terms 8.1 Gaugings in rigid SUSY 8.2 \mathcal{N} -extended (rigid) CS gauge theories 8.3 Example: $\mathcal{N} = 4$ and the Gaiotto–Witten theorem 8.4 A <i>puzzle</i> and its resolution 8.5 World–volume theory of M2 branes: the ABJM model 8.6 Gauged supergravities 8.7 Symmetric target spaces 8.8 <i>Gauged</i> supergravity in $D \ge 4$ 8.9 An example: $\mathcal{N} = 3$ supergravity in 4D 8.10 Gauging maximal supergravity in D dimensions	248 248 250 258 261 265 266 274 280 286 287
Pa	rt III Special geometries	291
9	 Kähler and Hodge manifolds 9.1 Complex manifolds 9.2 Kähler metrics and manifolds 9.3 U(n) manifolds 9.4 Hodge theory in Kähler spaces 9.5 Hodge manifolds 9.6 Symmetric and homogeneous Kähler manifolds 	 293 293 300 304 305 312 314
10	$\mathcal{N} = 1$ supergravity in 4D 10.1 $\mathcal{N} = 2$ supergravity in 3D 10.2 $\mathcal{N} = 1$ D = 4 ungauged supergravity 10.3 SuperHiggs. Flat potentials 10.4 Gauged $\mathcal{N} = 1$ 4D supergravity	321 321 325 327 331
11	 Flag manifolds. Variations of Hodge structures 11.1 Hodge structures and Griffiths domains 11.2 Geometry of reductive homogeneous spaces <i>G/V</i> 11.3 Quick review of Kodaira–Spencer theory 	335 335 341 345

x Contents	
11.4 Variations of Hodge structures (VHS)	348
11.5 The case of a Calabi–Yau 3–fold	358
12 Four-dimensional $\mathcal{N} = 2$ supergravity	368
12.1 The four geometric structures of $\mathcal{N} = 2$ supergravity	368
12.2 $\mathbf{K} \cap \mathbf{V} \cap \mathbf{Z}$, or <i>projective</i> special Kähler geometry	369
12.3 Formulas in projective special coordinates	371
12.4 Aspects of projective special Kähler manifolds	376
12.5 Coupling hypermultiplets to $\mathcal{N} = 2$ supergravity	380
12.6 Compactifying type II supergravity on a CY manifold	382
12.7 Hypermultiplets: the <i>c</i> -map	387
Appendix G-structures on manifolds	390
References	394
Index	408

Preface

The focus of the present book is on the *geometric structures* underlying *all* supersymmetric field theories (classical and quantum). The language of geometric structures on smooth manifolds allows us to describe in a uniform and highly unified way all possible situations: rigid supersymmetry as well as local supergravity, in all space-time dimensions D, for all SUSY extensions \mathcal{N} , and all kinds of supersymmetries: superPoincaré, superconformal, and even rigid SUSY on general curved space-times.

This book evolved out of the lecture notes of a course in supergravity and supersymmetry taught at SISSA. The lectures were aimed at graduate students who already had a knowledge of supersymmetry and supergravity in the *standard* approaches (superfields, the Noether method, etc.), and the course was meant as an advanced (and perhaps deeper) topic. This explains why this book does not contain many materials that are fundamental tools for a physicist working in the field of supersymmetry but are more than adequately covered by existing books and reviews (see, e.g., the recent book *Supergravity* by D.Z. Freedman and A. van Proeyen (Cambridge University Press, 2012); our book instead focuses on the geometric aspects, with particular emphasis on the geometric structures that are *universal*, that is, that are present *mutatis mutandis* in all possible situations.

The geometric tools introduced in this book allow recovery of all the results obtained from the more classical approaches to SUSY, and typically more quickly and with less pain (however, for specific problems other viewpoints may be more efficient).

In our tale there are four main characters: (i) the Atiyah–Bott–Shapiro classification of Clifford modules; (ii) Berger's theorem on the Riemannian holonomy groups and the allied results on parallel tensor and spinor fields; (iii) Kostant theorem on the interplay of the holonomy and isometry groups, which describes the gauging of all SUSY field theories; (iv) Griffiths' theory of variations of Hodge structures, which gives a unifying view on the geometry of electromagnetic xii

Preface

dualities. We pay particular attention to their arithmetic aspects, which are crucial for the quantum theory (and have never been discussed previously, to the best of our knowledge).

In particular, we give a new (simpler and more intrinsic) interpretation of rigid special Kähler geometry as a *flat* (G, H)-structure on the scalars' manifold. We also discuss, in the appropriate geometric setting, some recent major break-throughs, such as the world-volume theory on a stack of M2-branes, including the Bagger-Lambert and ABJM models.

Some "phenomenological" topics, and some applications to other areas of theoretical physics, would deserve a more detailed discussion: perhaps it would be worthwhile to return to them in an enlarged (and corrected) second edition.

General references on supergravity include:

Van Nieuwenhuizen, P. (1981). Supergravity. Phys. Rept., 68, 189-398.

- Salam, A., and Sezgin, E. (1989). *Supergravity in Diverse Dimensions*, vols. 1, 2. World Scientific.
- Castellani, L., D'Auria, R., and Fré, P. (1991). *Supergravity and Superstrings: A Geometrical Perspective*, vols. 1, 2, 3. World Scientific.

Freedman, D.Z., van Proeyen, A. (2012). *Supergravity*. Cambridge University Press. Fré, P. (2013). *Gravity, A Geometrical Course*, vol. 2. Springer.

Organization of the book

The book is divided into three parts. The purpose of Part I is to motivate the geometric structure approach by showing how differential geometric structures naturally appear in field theory in non-supersymmetric theories (Chapter 1) as well as in the supersymmetric ones (Chapter 2). Parts II and III are the body of the book, where the theory is developed in detail. In particular, Part II is the technical core of the book, where the general results are deduced and then illustrated in detail for the class of field theories having more than eight supersymmetries. In Parts II and III the geometry is discussed in full detail. Chapters in which geometry is presented in a rather rigorous way (stating explicitly Definitions, Lemmas, Theorems, etc.) are followed by physical chapters in which the geometry of the previous chapter is used to construct and understand supergravity and supersymmetric theories. As a rule, starting from Chapter 3, odd-numbered chapters are purely geometric, while even-numbered ones contain physical applications and constructions. Part III applies the general result to the theories having fewer than nine supersymmetries. The even chapters of this third part are somewhat sketchy, since they have a substantial overlap with existing literature to which the reader is referred. In the Appendix we present a quick review of the language of G-structures on smooth manifolds.

Notations

The math symbols we use are defined in the text. Recurring symbols are:

- N, Z, Q, R, C, H, and O denote respectively the natural, integer, rational, real, complex numbers, the Hamilton quaternions, and the Cayley octaves; R[×], C[×], ... the multiplicative group of non-zero elements in R, C,
- V^{\vee} stands for the dual of the vector space V, \otimes for the tensor product of vector spaces, \odot for the *symmetric* tensor product of vector spaces, and \wedge for the *antisymmetric* one. The same notation applies to vector bundles.
- The algebra of $n \times n$ matrices with entries in the algebra \mathbb{F} is denoted $\mathbb{F}(n)$, the vector space of $n \times m$ matrices as $\mathbb{F}(n, m)$.
- $\mathbb{C}l(n)$ stands for the universal Clifford algebra in dimension n, $\mathbb{C}l^0(n)$ for its even subalgebra.
- If $G, H, K, L, \ldots, SU(n), SO(n), \ldots$ are Lie groups, the corresponding algebras are denoted as $\mathfrak{g}, \mathfrak{h}, \mathfrak{k}, \mathfrak{l}, \ldots, \mathfrak{su}(n), \mathfrak{so}(n), \ldots$.
- Sp(2n) denotes the symplectic group with fundamental representation of dimension 2n corresponding to Cartan's Lie algebra C_n .
- Given a smooth manifold \mathcal{M} , its universal cover is denoted $\widetilde{\mathcal{M}}$, its tangent bundle $T\mathcal{M}$ and its cotangent bundle $T^*\mathcal{M}$.
- The *k*th Betti number of the manifold \mathcal{M} is written $B_k(\mathcal{M})$, its Euler characteristic $\chi(\mathcal{M})$.
- The space of sections of the bundle/sheaf \mathcal{E} over U is written $\Gamma(U, \mathcal{E})$ or simply $\mathcal{E}(U)$.
- The space of smooth *k*-forms over U is denoted $\Lambda^k(U)$.
- The sheaf of (germs of) holomorphic *p*-forms is denoted Ω^p .