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1

Geometrical structures in (Q)FT

Part I of this book is introductory in nature. Its purpose is to motivate our geometric
approach to supersymmetric field theory. We show how geometric structures arise
in classical and quantum field theories on quite general grounds. In Chapter 1 we
consider the basic geometric structures which hold independently of supersymme-
try. In Chapter 2 we specialize to the supersymmetric case (rigid and local) where
more elegant structures emerge. Not being part of the technical body of the book,
these chapters are rather elementary and sketchy. However, we show how dualities,
modularity, and other stringy patterns are universal features of field theory.

Throughout this book, by a field theory we shall mean a Lagrangian field theory,
that is, a classical or quantum system whose dynamics is described by a Lagrangian
L with no more than two derivatives of the fields.

1.1 (Gauged) σ–models

Most quantum field theories (QFTs) have scalar fields. Usually we can understand
a lot about the dynamics of a field theory just by studying its scalar sector. This
is a fortiori true if the theory has (enough) supersymmetries, since in this case all
other sectors are related to the scalar one by a symmetry. The understanding of
the scalars’ geometry is relevant even for theories, like quantum chromodynamics
(QCD), that do not have fundamental scalar fields in their microscopic formulation.
At low energy, QCD is well described by an effective scalar model whose fields
represent pions (the lightest particles in the hadronic spectrum). Historically, this
effective theory was the original σ–model. It encodes all current algebra of QCD,
and its phenomenological predictions are quite a success [303, 304, 305]. Our first
goal is to generalize this model. We begin by considering a theory with only scalar
fields. In the next section we will add fields in arbitrary (finite) representations of
the Lorentz group.
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4 Geometrical structures in (Q)FT

1.1.1 The target space M
We consider a general field theory in D space–time dimensions whose Lagrangian
description contains only scalar fields which we denote as φi, with i =
1, 2, . . . , n. Let us write down the most general local, Hermitian, Poincaré–
invariant Lagrangian having (at most) two derivatives; for D 
= 2 it has the
form

L = −1

2
gij(φ) ∂μφ

i ∂μφj + terms with no derivative (1.1)

for some (field–dependent) real symmetric matrix gij(φ). For D = 2 we may
add the P and T odd term bij(φ) εμν ∂μφi ∂νφ

j with bij(φ) antisymmetric. For the
moment we limit ourselves to P–invariant models and set bij = 0.

Unitarity requires the kinetic terms to be positive, so gij(φ) is a positive–definite
matrix. Physical quantities are independent of the fields we use to parametrize the
configuration, that is, observables are invariant under field reparametrizations of
the form

φi → ϕi = ϕi(φ). (1.2)

Written in terms of the new fields ϕi, the Lagrangian takes the form

L = −1

2
g̃ij(ϕ) ∂μϕ

i ∂μϕj + · · · (1.3)

where

g̃ij(ϕ) ≡ ∂φ
k

∂ϕi
gkl
∂φl

∂ϕj
. (1.4)

The above equations have a simple geometric interpretation: the fields φi are local
coordinates on a (smooth) manifold M and gij is a Riemannian metric for M,
which correctly transforms under diffeomorphisms as a symmetric tensor, Eq.
(1.4). This interpretation allows us to describe the situation in more geometric
terms: we have two manifolds, the target one M, which can have a non–trivial
topology,1 and the space–time manifold � (which, for the moment, we take to be
just Minkowski space RD−1,1). A classical field configuration is a (smooth) map


 : �→M (1.5)

which in local coordinates is given by the functions φi(xμ). The Lagrangian L is
simply the trace (with respect to the space–time metric ημν) of the pull–back (i.e.,
induced) metric 
∗g.

1 Hence the fields φi are, in general, only locally defined on M.
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1.1 (Gauged) σ–models 5

(Q)FTs defined by maps � →M and the Lagrangian

L = −1

2
gij(φ) ∂μφ

i ∂μφj (1.6)

are called σ–models. We stress again that in such models all physical quantities,
being reparametrization-independent, should be differential–geometric invariants
of the Riemannian manifold (M, g). This simple observation, which we call the
Geometric Principle, is quite powerful.

Example: the renormalization group β–functions

To show the power of the Geometric Principle, we discuss the one–loop β–
functions of the σ–model. We take D = 2, the space–time dimension in which
the model is power–counting renormalizable. We may consider the most gen-
eral Lagrangian of the form (1.1), since the interactions with no derivative (the
potential) is a soft term that does not affect the β–functions of the derivative cou-
plings. We introduce the Planck constant, h̄, as a loop–counting device; recall that
in perturbative QFT the k–loop contribution to the β–function scales like h̄k−1.
The action is

S = − 1

2h̄

∫
�

gij ∂μφ
i∂μφj d2z. (1.7)

We see that a rescaling h̄ → λ h̄ is equivalent to gij → λ−1gij, so the weak-
coupling limit h̄→ 0 is just the large volume limit for M,

vol(M) ∝ h̄− dimM/2. (1.8)

A general σ–model has an infinite number of coupling constants, gi1i2···il ,

S = − 1

2h̄

∫
d2z

∞∑
l=2

gi1i2···il φ
i3φi4 · · · φil ∂μφ

i1∂μφi2 ,

namely, the Taylor coefficients2 of the metric gij(φ). We can conveniently assemble
the infinite set of β–functions into a symmetric tensor, βij(φ), whose Taylor coef-
ficients are the β–functions of the couplings gi1i2···il . The renormalization group
(RG) flow then takes the form

μ
∂

∂μ

gij(φ)

h̄
= βij(φ). (1.9)

2 Assuming the metric is of class Cω .
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6 Geometrical structures in (Q)FT

The Geometric Principle implies that βij(φ) is a covariant symmetric tensor on
M made out of the metric gij and its derivatives. Moreover, βij(φ) should vanish
for a flat metric, since in that case the QFT is free. Therefore, βij(φ) is a symmetric
tensor which has an expansion as a sum of products of Riemann tensor covariant
derivatives,∇i1 · · · ∇isR

j
klm, with the indices contracted in a suitable way using the

effective inverse metric h̄ gij. Since∇i1 · · · ∇isR
j
klm is invariant under gij �→ h̄−1gij,

all h̄ dependence arises from the inverse metric contractions. Counting indices to
be contracted, we see that a term in this expansion scales with the volume as

h̄r+s−1, (1.10)

where r is the number of Riemann tensors and 2s the total number of covariant
derivatives. Since the one–loop contribution scales as h̄0, this leaves only one
possibility: one Riemann tensor and no derivative. Thus

βij|one loop = c1 Rij + c2 gij R, (1.11)

for some constants c1, c2. We claim that c2 = 0 while c1 is a universal coefficient
that does not depend on dimM. Indeed, take M = Rn ×N . The fields of the flat
factor are free, and then βij|Rm = 0, whereas Eq. (1.11) gives βij|Rm = c2 R δij. So
c2 = 0. On the other hand, βij|N = c1 Rij cannot depend on m≡ the number of flat
directions, since they correspond to decoupled free fields. Hence c1 is independent
of dimM, and it may be computed using any convenient manifold.

The fixed points of the RG flow need not correspond to zeros of the β–
function, i.e., to metrics such that βij = 0; more generally, they may correspond
to a flow which acts on the metric as a diffeomorphism, so that the action is
scale-independent up to field redefinitions. This requires

βij = £v gij, (1.12)

where v is a vector field on M and £v denotes the Lie derivative [325] along v. In
the one–loop approximation, the LHS is proportional to the Ricci tensor, and the
metrics which solve equation (1.12) are precisely the Ricci solitons [95].

As we shall see in Chapter 2, the σ–model admits a supersymmetry (SUSY)
completion. The above discussion for the β–function extends to the SUSY case.

1.1.2 Symmetries, gaugings, and Killing vectors

The geometry says more. Assume our Lagrangian field theory is invariant under a
continuous symmetry group G which acts on the scalar fields φi. G should be, in
particular, a symmetry of the two–derivative terms in L, Eq. (1.1), hence it should
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1.1 (Gauged) σ–models 7

leave invariant the metric gij; that is, G should be a subgroup of the isometry group
Iso(M) of the Riemannian manifold M.

The corresponding infinitesimal symmetries, φi → φi + εA KA
i(φ), are gen-

erated by vector fields KA
i ∂i (A = 1, 2 . . . , dim G) which satisfy the Killing

condition

£KA gij ≡ ∇iKAj + ∇jKAi = 0, (1.13)

as well as the algebra

£KA KB = [KA, KB] = fAB
CKC, (1.14)

where fAB
C are the structure constants of g (the Lie algebra of G).

The existence of a non–trivial group of isometries – in particular a non–Abelian
group – is a strong requirement on the geometry of M. For instance, by the
Bochner theorem, if M is compact and has negative Ricci curvature, it has no
Killing vectors [163].

Gauging a subgroup of Iso(M)

One may wish to gauge a subgroup G of the isometry group Iso(M). The minimal
coupling of the gauge vector fields AA

μ to the scalars is also dictated by the geome-
try of M through the corresponding Killing vectors KA

i ∂i. To gauge the symmetry,
one replaces in L the ordinary derivative by the covariant one:

∂μφ
i → Dμφ

i := ∂μφi − AA
μ KA

i. (1.15)

The infinitesimal gauge transformation then reads

δφi = �A KA
i, (1.16)

δAA
μ = ∂μ�A + f A

BC AB
μ �

C, (1.17)

where the parameters �A are arbitrary functions in space–time. Then

δDμφ
i = �A(∂jKA

i) Dμφ
j

+ AB
μ�

C[KB
j∂jKC

i − KC
j∂jKB

i]− fBC
AAB
μ�

C KA
i

= �A(∂jKA
i) Dμφ

j.

(1.18)
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8 Geometrical structures in (Q)FT

The covariance3 of Dμφi follows from the closure of the gauge algebra, Eq. (1.14),
while the invariance of the kinetic term gijDμφiDμφj requires £(�AKA) gij = 0, i.e.,
the Killing condition (1.13). Indeed, from Eq. (1.18)

δ(gijDμφ
iDμφj) = �A(∇iKA j +∇jKA i)Dμφ

iDμφj. (1.19)

We summarize what we have learned in the following statement:

General Lesson 1.1 The physics of the (gauged) σ–model is controlled by the
differential geometry of the target manifold M.

The physics is invariant under general reparametrizations of the target space in
the same sense that General Relativity is invariant under reparametrizations of the
space–time manifold. In General Relativity this invariance is often stated in the
form of the equivalence principle [296]. The same principle holds for target space
as well:

Corollary 1.2 (target space equivalence principle) Any physical quantity which
is local in M and depends only on the metric and its first derivative may be safely
computed using a flat target space.

In Section 1.3 we shall see the deep reason why the target space behaves as a
physical space–time.

Exercise 1.1.1 Using Feymann graphs, compute the universal coefficient c1

in Eq. (1.11) for the σ–model (1.7). Check its universality.

1.2 Adding fields of arbitrary spin

1.2.1 Couplings and geometric structures on M
We have seen in Section 1.1.2 that the scalars’ couplings to gauge vectors are
specified by a set of vector fields KA on the manifold M which satisfy certain
differential–geometric constraints. This is a first example of a general pattern:
all the couplings in a Lagrangian may be identified with suitable differential–
geometric structures on the scalar manifold M. To make our point, we work out
the details of a specific example, in which only scalars and spin–1/2 fermions

3 Note that Dμφi transforms under an infinitesimal gauge transformation of parameter �A as the differentials
dφi ∈ �1(M) under the infinitesimal diffeomorphism generated by the vector field �A KA

i∂i . Indeed,

£�AKA
dφi ≡ (

d i�AKA
+ i�AKA

d
)
dφi = d(�A KA

i) ≡ �A(∂jKA
i)dφj.
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1.2 Adding fields of arbitrary spin 9

are present. The reader can easily convince herself that the arguments are pretty
general, and work, mutatis mutandis, for fields of arbitrary (finite) spin.

General 2D model with fermions.

Let us consider the general theory with scalars φi, and fermions ψa, where i =
1, 2, . . . , n, and a = 1, 2, . . . , m. We choose D = 2, which is the number of dimen-
sions in which these models have the more interesting applications (as world-sheet
theories of some superstring [200]) and in which they make sense quantum
mechanically. The arguments, however, are manifestly dimension–independent
(apart from questions of existence as quantum field theories).

Limiting ourselves to power–counting renormalizable theories, the most general
Lagrangian is

L =− 1

2
gij(φ) ∂μφ

i∂μφj + bij(φ) εμν∂μφ
i∂νφ

j + V(φ)

+ ihab(φ) ψ̄aγ μ∂μψ
b + ih̃ab(φ) ψ̄aγ3γ

μ∂μψ
b

+ kabi(φ) ψ̄aγ μψb∂μφ
i + k̃abi(φ) ψ̄aγ μγ3ψ

b∂μφ
i (1.20)

+ yab(φ) ψ̄aψb + ỹab(φ) ψ̄aγ3ψ
b

+ sabcd(φ) ψ̄aψcψ̄bψd + · · ·

where the couplings

gij(φ), bij(φ), V(φ), hab(φ), h̃ab(φ), kabi(φ),

k̃abi(φ), yab(φ), ỹab(φ), sabcd(φ), . . .
(1.21)

are arbitrary functions of the scalar fields φi. Each term in the Lagrangian (1.20)
may be interpreted as a geometric structure on M. We already know that gij(φ) is
a Riemannian metric. The coupling bij(φ) is antisymmetric in the indices i, j and
hence can be seen as a differential 2–form b = 1

2 bij(φ) dφi∧ dφj on M. The value
of this contribution to the action S for a given field configuration 
:� → M is
given by the very geometrical (in fact functorial) formula∫

�


∗b. (1.22)

This, in particular, implies that – up to space–time boundary phenomena – the
physics should be invariant under the target space gauge invariance

b→ b+ dξ (1.23)
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10 Geometrical structures in (Q)FT

for all 1–forms ξ on M. Indeed, under this variation of the bij(φ) coupling, the
action changes as

S→ S+
∫
�


∗dξ = S+
∫
�

d
∗ξ = S+
∫
∂�


∗ξ , (1.24)

so b→ b+ dξ is a symmetry whenever we are allowed to ignore boundary terms
in the action, e.g. if the space–time � is closed. In such a situation, the physics
should depend only on the gauge–invariant field–strength 3–form of b, H = db,
as well as on the harmonic projection of b. In particular, when H = 0 – i.e., b is
closed – the physics depends only on the cohomology class of b, and the coupling∫

∗b is purely topological: it measures the class [
∗b] as a multiple of the funda-

mental class of �; then
∫

∗b does not change under continuous deformations of

the map 
.
The next coupling, V(φ), is easy. It is just a scalar field on M. In many situations

V(φ) is required to satisfy further geometric conditions. For instance, to gauge the
isometry associated to a Killing vector K, we must have

£KV = 0, (1.25)

which is the geometric statement of gauge invariance. Other geometric structures
related to the scalar potential will be presented in Chapters 6, 7, 8.

To discuss the other couplings, we change notation and use Majorana–Weyl
fermions, ψa± = ±γ3ψ

a±, which are the minimal spinors in 2D. Writing

h±ab = hab ± h̃ab, (1.26)

the second line of Eq. (1.20) reads

i h+ab ψ
a
+∂−ψ

b
+ + (+ ↔ −), (1.27)

where, without loss of generality, we may assume the matrices h±ab to be sym-
metric, since their antisymmetric part gives, up to a total derivative, terms of the
form ψa+ψb+ ∂−h+ab which contribute to the third line of Eq. (1.20). The Hermitian
conjugate of (1.27) is

−i(h+ab)∗(∂−ψb
+)ψa

+ + (+ ↔ −). (1.28)

Unitarity requires h±ab to be positive–definite real symmetric matrices. The geo-
metric interpretation of this last condition is obvious: the chiral fermions ψa± are
sections of vector bundles4 over �, which are the pull–backs
∗V± of real vector

4 For the moment we take � to be flat Minkowski/Euclidean space. For the general case, see General Lesson 1.3
below.
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