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Preface

After the era of bulk planar CMOS, trigate field-effect transistors (FinFETs), and fully
depleted silicon-on-insulator (SOI), the semiconductor industry is now moving into the
era of nanowire transistors. This book gives a comprehensive overview of the unique
properties of nanowire transistors. It covers the basic physics of one-dimensional
semiconductors, the electrical properties of nanowire devices, their fabrication, and
their application in nanoelectronic circuits.

The book is divided into seven chapters:

Chapter 1: Introduction serves as an introduction to the other chapters. The reader is
reminded of the exponential increase in complexity of integrated circuit electronics over
the last 50 years, better known as “Moore’s law.” Key to this increase has been the
reduction in transistor size, which has occurred in a smooth, evolutionary fashion up to
the first decade of the twenty-first century. Despite the introduction of technology
boosters such as metal silicides, high-x dielectric gate insulators, copper metallization,
and strained channels, evolutionary scaling reached a brick wall called “short-channel
effects” in the years 2010-2015. Short-channel effects are a fundamental device physics
showstopper and prevent proper operation of classical bulk MOSFETs at gate lengths
below 20 nm. The only solution to this problem is the adoption of new transistor
architectures such as fully depleted silicon-on-insulator (FDSOI) devices [1,2] or
trigate/FinFET devices [3]. Ballistic transport of channel carriers, which replaces clas-
sical drift-diffusion transport, is also introduced in this chapter.

Chapter 2: Multigate and nanowire transistors first explains the origin of the short-
channel effects that preclude the use of bulk MOS transistors for gate lengths smaller
than 20 nm. Based on Maxwell’s electrostatics equations, this chapter shows how the use
of multigate and gate-all-around nanowire transistor architectures will allow one to push
the limits of integration to gate lengths down to 5 nm and possibly beyond, provided the
diameters of the nanowires are decreased accordingly. In semiconductor nanowire with
diameters below approximately 10 nm (this value is temperature dependent and varies
from one semiconductor material to another), the coherence length of electrons and
holes can become comparable to or larger than the wire cross-sectional dimensions, and

! I.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd edition, Kluwer Academic Publishers/
Springer (2004).

2 0. Kononchuk and B.-Y. Nguyen (eds.), Silicon-on-Insulator (SOI) Technology Manufacture and
Applications, Woodhead Publishing (2014).

3 J.P. Colinge (ed.), FinFETs and Other Multi-Gate Transistors, Springer (2007).
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one-dimensional (1D) quantum confinement effects become observable. The formation
of 1D energy subbands in narrow nanowire transistors gives rise to several effects such
as an increase of energy band gap, oscillations of drain current when gate voltage is
increased, and oscillations of gate capacitance with gate voltage (quantum capacitance
effect). Some collateral effects can be predicted, such as a semimetal-to-semiconductor
transition in thin semimetal nanowires, and a MOSFET to single-electron transistor
transition in nanowire transistors with non-uniform channel properties.

Chapter 3: Synthesis and fabrication of semiconductor nanowires lists the dif-
ferent top-down and bottom-up techniques used to grow or etch and pattern nanowires.
Vertical nanowires can be grown by the VLS (vapor—liquid—solid) technique or confined
epitaxy, or formed using lithography and etching. Horizontal nanowires can also
be grown using the VLS technique, by patterning an SOI layer, or by patterning
heteroepitaxial layers, such as Si/SiGe/Si. Examples of nanowire transistor fabrication
processes are given. Chapter 3 also describes methods for smoothing and thinning
down silicon nanowires. The properties of heterojunction nanowires (core-shell
nanowires and axial heterojunctions) are described. Finally, strain effects in nanowires
are explored, including carrier mobility enhancement, Young’s modulus, and fracture
strength.

Chapter 4: Quantum mechanics in one dimension provides a résumé of the
physical description of one-dimensional systems in quantum mechanics. A brief sum-
mary of the principles of quantum mechanics is given. Particular emphasis is given to
topics that are related to describing nanowire transistors including momentum eigen-
states, energy dispersion, scattering states in one dimension, probability current density,
and transmission at potential energy barriers. A description of materials and nanowires
using the concept of electronic band structures is provided and calculation of simple
band structures is provided using simple examples such as a linear chain of atoms.
The relation of electronic band structures to the density of states and how the density of
states can be used to characterize three-dimensional (3D) bulk, two-dimensional (2D)
electron and hole gases, and (1D) nanowire material systems is presented.

Chapter 5: Nanowire electronic structure examines in greater detail the impact of
fabricating nanometer scale devices with one or more critical dimension comparable
to or smaller than the Fermi wavelength of the confined charge carriers. The crystal
structure of semiconductors commonly used in electronics such as silicon, germanium,
and gallium arsenide are introduced. Mention is made of two-dimensional materials
such as graphene and the transition metal dichalcogenides, and carbon nanotubes are
briefly discussed in relation to applications in electronics. Emphasis is placed on the
experimental measurement and theoretical calculation of electronic structure. Quantum
mechanical effects become apparent below 10 nm critical dimensions and below 6 nm
confinement and surface effects begin to dominate silicon nanowire properties. A greater
understanding of the dependence of orientation, surface chemistry, disorder, doping
effects, and other factors arising for nanopatterned materials is needed to optimize the
use of nanowires in transistor configurations. This chapter highlights how these factors
can influence electronic structure and demonstrates their impact with examples for
silicon nanowires with diameters below 10 nm.
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Chapter 6: Charge transport in quasi-1D nanostructures investigates how charge
carriers flow through nanowires. The operation of voltage sources as charge carrier
reservoirs interacting with nanowires is introduced, and the relationship of voltage to
current flow on the nanometer length scale leads to conductance quantization and the
Landauer conductance formula. Charge carrier mobility is introduced and the length
scales associated with scattering mechanisms leading to macroscopic mobilities are
outlined. For charge transport on length scales shorter than the scattering lengths,
ballistic and quasi-ballistic charge transport emerges. The chapter ends with a brief
introduction to the Green’s function approach to charge transport in nanowires as it
possesses the capability to describe charge transport from quantum ballistic to classical
drift and diffusion regimes.

Chapter 7: Nanowire transistor circuits describes the potential and performances
of nanowire transistors in logic, analog, and RF circuit applications. This includes an
in-depth analysis of SRAM and flash memory cells. New types of circuit architectures
are enabled by the use of nanowire devices, such as crossbar circuits and “nanoscale
application specific integrated circuits” (NASICs). The large surface area-to-volume
ratio of nanowires makes them ideal for sensing minute amounts of chemicals and
biochemicals. Nanowire transistors have proven to be efficient sensing devices, capable
of detecting chemicals in concentrations as low as a few tens of attomoles.
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