

Optical Tweezers

Combining state-of-the-art research with a strong pedagogical approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics.

Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses and an invaluable guide to practitioners wanting to enter the field of optical manipulation.

The text is supplemented by the website www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable, research-grade software (OTS) for calculation of optical forces, digital video microscopy, optical tweezers calibration and holographic optical tweezers.

Philip H. Jones is a Reader in Physics at University College London, where he leads the Optical Tweezers research group.

Onofrio M. Maragò is a Researcher at the Istituto per i Processi Chimico-Fisici (CNR-IPCF) in Messina, Italy, where he leads the Optical Trapping research group.

Giovanni Volpe is an Assistant Professor at Bilkent University, where he is head of the Soft Matter Lab.

Optical Tweezers

Principles and Applications

PHILIP H. JONES ONOFRIO M. MARAGÒ GIOVANNI VOLPE

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107051164

© Philip H. Jones, Onofrio M. Maragò and Giovanni Volpe 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-05116-4 Hardback

Additional resources for this publication at www.cambridge.org/9781107051164

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Annie, Becky, Andrew, Antonella, Carmen and Joana For their love and patience

Contents

Pr	reface	page xv
1	Introduction	1
	1.1 A brief history of optical manipulation	2
	1.2 Crash course on optical tweezers	4
	1.3 Optical trapping regimes	6
	1.4 Other micromanipulation techniques	8
	1.5 Scope of this book	10
	1.6 How to read this book	11
	1.7 OTS - the Optical Tweezers Software	12
	References	13
	Part I Theory	17
2	Ray optics	19
	2.1 Optical rays	20
	2.2 Optical forces	24
	2.3 Scattering and gradient forces	26
	2.4 Counter-propagating beam optical trap	29
	2.5 Optical tweezers	31
	2.6 Filling factor and numerical aperture	34
	2.7 Non-uniform beams	36
	2.8 Non-spherical objects and the windmill effect	37
	Problems	40
	References	41
3	Dipole approximation	42
	3.1 The electric dipole in electrostatics	43
	3.2 Polarisability and the Clausius–Mossotti relation	45
	3.3 The electric dipole in an oscillating electric field	50
	3.4 Radiative reaction correction to the polarisability	52
	3.5 Cross-sections	54
	3.6 The optical theorem	56
	3.7 Optical forces	58
	3.7.1 Gradient force	61

viii Contents

		3.7.2 Scattering force	63
		3.7.3 Spin–curl force	64
	3.8	1 2	65
		Plasmonic particles	67
		Optical binding	70
		olems	73
	Refe	erences	75
4	Optio	cal beams and focusing	76
	4.1	Propagating electromagnetic waves	77
	4.2	Angular spectrum representation	79
	4.3	From near field to far field	81
	4.4	Paraxial approximation	83
		4.4.1 Gaussian beams	83
		4.4.2 Hermite–Gaussian beams	85
		4.4.3 Laguerre–Gaussian beams	87
		4.4.4 Non-diffracting beams	89
		4.4.5 Cylindrical vector beams	92
	4.5	Focusing	92
		Optical forces near focus	97
	4.7	Focusing near interfaces	100
		4.7.1 Aberrations	102
	. .	4.7.2 Evanescent focusing	102
		olems	104
	Refe	erences	105
5	Elect	romagnetic theory	106
	5.1	Conservation laws and the Maxwell stress tensor	107
		5.1.1 Angular momentum of light	111
	5.2	Light scattering	116
		5.2.1 Solution of the Helmholtz equation	116
		5.2.2 The scattering problem	123
		5.2.3 Multipole expansion	126
		5.2.4 Transition matrix	131
		5.2.5 Mie scattering	132
	5.3	Optical force and torque	137
		5.3.1 Optical force	137
		5.3.2 Optical torque	139
	5.4	Optical force from a plane wave	139
	5.5	Transfer of spin angular momentum to a sphere	143
	5.6	Optical force in an optical tweezers	146
	ъ.	5.6.1 Orbital angular momentum	149
		olems	151
	Refe	erences	152

ix Contents

6.1 T-matrix 6.1.1 Optical force 6.1.2 Optical torque 6.1.3 Amplitudes of a focused beam 6.1.4 Translation theorem 6.1.5 Rotation theorem 6.1.6 Clebsch—Gordan coefficients 6.1.6 Clebsch—Gordan coefficients 6.2 Metal spheres sustaining longitudinal fields 70 Radially symmetric spheres 71 Clusters of spheres 72 Clusters of spheres 73 Clusters of spheres 74 Clusters of spheres 75 Cl.2 Inclusions 76 Cl.3 Convergence 77 Cl.2 Discrete dipole approximation 78 Cl.3 Discrete dipole approximation 79 Cl.4 Flydid techniques 70 Problems 71 The physical picture 72 Mathematical models 73 Fluctuation—dissipation theorem, potential and equilibrium distribution 74 Brownian dynamics simulations 75 Photically trapped particle 76 Diffusion gradients 77 Viscoelastic media 78 Non-spherical particles and diffusion matrices 78 Problems 78 References 79 Potential Tregime 70 Clusters 70 Part II Practice 70 Part II Practice 70 Part II Practice	6	Comr	outational methods	154
6.1.1 Optical force 156 6.1.2 Optical torque 158 6.1.3 Amplitudes of a focused beam 160 6.1.4 Translation theorem 165 6.1.5 Rotation theorem 165 6.1.6 Clebsch-Gordan coefficients 188 6.2 Metal spheres sustaining longitudinal fields 170 6.3 Radially symmetric spheres 174 6.4 Clusters of spheres 174 6.4.1 Aggregates of spheres 174 6.4.2 Inclusions 176 6.4.3 Convergence 178 6.5 Discrete dipole approximation 179 6.6 Finite-difference time domain 180 6.7 Hybrid techniques 183 Problems 183 References 185 7 Brownian motion 188 7.1 The physical picture 189 7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2 Langevin equation 194 7.2.2 Langevin equation 195 7.3 Fluctuation-dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White	-	-		
6.1.2 Optical torque 6.1.3 Amplitudes of a focused beam 6.1.4 Translation theorem 6.1.5 Rotation theorem 6.1.6 Clebsch-Gordan coefficients 6.1.6 Clebsch-Gordan coefficients 6.2 Metal spheres sustaining longitudinal fields 6.3 Radially symmetric spheres 6.4 Clusters of spheres 6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 183 7 Brownian motion 180 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker-Planck equation 7.2.5 Free diffusion theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References 215 Part II Practice 226 8 Building an optical tweezers 227 8.1 The right location 228		0.1		
6.1.3 Amplitudes of a focused beam 6.1.4 Translation theorem 6.1.5 Rotation theorem 6.1.6 Clebsch—Gordan coefficients 6.2 Metal spheres sustaining longitudinal fields 6.2 Metal spheres sustaining longitudinal fields 6.3 Radially symmetric spheres 6.4 Clusters of spheres 6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 7 Brownian motion 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.2.5 Fluctuation–dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8 Part II Practice 8 Building an optical tweezers 8.1 The right location 222 8 Building an optical tweezers 8.1 The right location			•	
6.1.4 Translation theorem 6.1.5 Rotation theorem 6.1.6 Clebsch—Gordan coefficients 6.2 Metal spheres sustaining longitudinal fields 6.3 Radially symmetric spheres 6.4 Clusters of spheres 6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.7 Hybrid techniques Problems References 78 Brownian motion 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker—Planck equation 7.3 Fluctuation—dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8. Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References 8 Building an optical tweezers 8.1 The right location 222 8 Building an optical tweezers 8.1 The right location				
6.1.5 Rotation theorem 6.1.6 Clebsch—Gordan coefficients 6.2 Metal spheres sustaining longitudinal fields 6.2 Metal spheres sustaining longitudinal fields 6.3 Radially symmetric spheres 6.4 Clusters of spheres 6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 183 7 Brownian motion 180 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker—Planck equation 7.2.4 Fokker—Planck equation 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 200 7.5 Inertial regime 201 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References 215 Part II Practice 216 8 Building an optical tweezers 217 Part II Practice 226 8 Building an optical tweezers 227 8.1 The right location				
6.1.6 Clebsch-Gordan coefficients 6.2 Metal spheres sustaining longitudinal fields 6.2 Metal spheres sustaining longitudinal fields 6.3 Radially symmetric spheres 6.4 Clusters of spheres 6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 183 References 185 7 Brownian motion 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker-Planck equation 7.2.4 Fokker-Planck equation 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 200 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Part II Practice 8 Building an optical tweezers 8.1 The right location 222 8 Building an optical tweezers 8.1 The right location 222				
6.2 Metal spheres sustaining longitudinal fields 170 6.3 Radially symmetric spheres 172 6.4 Clusters of spheres 174 6.4.1 Aggregates of spheres 176 6.4.2 Inclusions 176 6.4.3 Convergence 178 6.5 Discrete dipole approximation 179 6.6 Finite-difference time domain 180 6.7 Hybrid techniques 183 Problems 183 References 185 7 Brownian motion 188 7.1 The physical picture 189 7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2 Langevin equation 194 7.2.1 Random walk 192 7.2.2 Free diffusion equation 195 7.3 Fluctuation—dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle				
6.3 Radially symmetric spheres 6.4 Clusters of spheres 6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 183 7 Brownian motion 188 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.2.4 Fokker–Planck equation 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 205 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References 219 Part II Practice 221 8 Building an optical tweezers 8.1 The right location 222 8 Building an optical tweezers 8.1 The right location 222		6.2	Metal spheres sustaining longitudinal fields	
6.4 Clusters of spheres 6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 188 7 Brownian motion 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.2.5 Fluctuation–dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 205 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location		6.3		
6.4.1 Aggregates of spheres 6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 185 7 Brownian motion 188 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.3 Fluctuation–dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion Part II Practice Part II Practice 8 Building an optical tweezers 8.1 The right location 179 179 179 179 179 179 179 179 179 17		6.4		
6.4.2 Inclusions 6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 183 References 185 7 Brownian motion 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.2 Houtation–dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References 215 Part II Practice 226 8 Building an optical tweezers 8.1 The right location			*	174
6.4.3 Convergence 6.5 Discrete dipole approximation 6.6 Finite-difference time domain 6.7 Hybrid techniques Problems References 183 References 185 7 Brownian motion 188 7.1 The physical picture 189 7.2 Mathematical models 7.2.1 Random walk 192 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker-Planck equation 7.2.4 Fokker-Planck equation 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 200 7.5 Inertial regime 205 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References 211 Part II Practice 222 8 Building an optical tweezers 221 8.1 The right location 222 8 Building an optical tweezers 222 8.1 The right location				
6.5 Discrete dipole approximation 179 6.6 Finite-difference time domain 180 6.7 Hybrid techniques 183 Problems 183 References 185 7 Brownian motion 188 7.1 The physical picture 189 7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2.1 Random walk 192 7.2.2.3 Free diffusion equation 194 7.2.4 Fokker—Planck equation 195 7.3 Fluctuation—dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces				178
6.6 Finite-difference time domain 6.7 Hybrid techniques 8 Problems 8 References 183 8 References 185 7 Brownian motion 7.1 The physical picture 7.2 Mathematical models 7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.3 Fluctuation–dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems 8 References 8 Building an optical tweezers 8.1 The right location 222 8 Building an optical tweezers 8.1 The right location 222		6.5	Discrete dipole approximation	179
Problems 183 References 185 7 Brownian motion 188 7.1 The physical picture 189 7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2 Langevin equation 194 7.2.3 Free diffusion equation 195 7.2.4 Fokker—Planck equation 197 7.3 Fluctuation—dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 218 8 Building an optical tweezers 221 8.1 The right location 222		6.6		180
7 Brownian motion 188 7.1 The physical picture 189 7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2 Langevin equation 194 7.2.3 Free diffusion equation 195 7.2.4 Fokker-Planck equation 197 7.3 Fluctuation-dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 8 Building an optical tweezers 221 8.1 The right location 222		6.7	Hybrid techniques	183
7 Brownian motion 188 7.1 The physical picture 189 7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2 Langevin equation 194 7.2.3 Free diffusion equation 195 7.2.4 Fokker-Planck equation 197 7.3 Fluctuation-dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 219 8 Building an optical tweezers 221 8.1 The right location 222		Prob	lems	183
7.1 The physical picture 189 7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2 Langevin equation 194 7.2.3 Free diffusion equation 195 7.2.4 Fokker–Planck equation 197 7.3 Fluctuation–dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 8 Building an optical tweezers 221 8.1 The right location 222		Refe	rences	185
7.2 Mathematical models 191 7.2.1 Random walk 192 7.2.2 Langevin equation 194 7.2.3 Free diffusion equation 195 7.2.4 Fokker–Planck equation 197 7.3 Fluctuation–dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 8 Building an optical tweezers 221 8.1 The right location 222	7	Brow	nian motion	188
7.2.1 Random walk 7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.3 Fluctuation–dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location 2222		7.1	The physical picture	189
7.2.2 Langevin equation 7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 7.3 Fluctuation–dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location 219 221 222 231 241 242 243 244 245 246 247 248 249 249 240 240 240 240 240 240		7.2	Mathematical models	191
7.2.3 Free diffusion equation 7.2.4 Fokker–Planck equation 197 7.3 Fluctuation–dissipation theorem, potential and equilibrium distribution 197 7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location 222			7.2.1 Random walk	192
7.2.4 Fokker-Planck equation 7.3 Fluctuation-dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 7.5 Inertial regime 7.6 Diffusion gradients 7.7 Viscoelastic media 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location			7.2.2 Langevin equation	194
7.3 Fluctuation—dissipation theorem, potential and equilibrium distribution 7.4 Brownian dynamics simulations 7.4.1 White noise 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location 222			7.2.3 Free diffusion equation	195
7.4 Brownian dynamics simulations 199 7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 219 8 Building an optical tweezers 221 8.1 The right location 222			7.2.4 Fokker–Planck equation	197
7.4.1 White noise 200 7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 219 8 Building an optical tweezers 221 8.1 The right location 222		7.3	Fluctuation-dissipation theorem, potential and equilibrium distribution	197
7.4.2 Optically trapped particle 202 7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 8 Building an optical tweezers 221 8.1 The right location 222		7.4	Brownian dynamics simulations	199
7.5 Inertial regime 205 7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 8 Building an optical tweezers 221 8.1 The right location 222			7.4.1 White noise	200
7.6 Diffusion gradients 207 7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 219 8 Building an optical tweezers 221 8.1 The right location 222			7.4.2 Optically trapped particle	202
7.7 Viscoelastic media 211 7.8 Non-spherical particles and diffusion matrices 212 7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems 216 References 217 Part II Practice 8 Building an optical tweezers 221 8.1 The right location 222		7.5	Inertial regime	205
7.8 Non-spherical particles and diffusion matrices 7.8.1 Free diffusion 7.8.2 External forces Problems References Part II Practice 219 8 Building an optical tweezers 8.1 The right location 212 213 214 215 216 217 217		7.6	Diffusion gradients	207
7.8.1 Free diffusion 213 7.8.2 External forces 215 Problems References Part II Practice 219 8 Building an optical tweezers 8.1 The right location 213 214 215 216 217 219		7.7	Viscoelastic media	211
7.8.2 External forces Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location 215 226 227 228		7.8	Non-spherical particles and diffusion matrices	212
Problems References Part II Practice 8 Building an optical tweezers 8.1 The right location 216 227 228			7.8.1 Free diffusion	213
Part II Practice 219 8 Building an optical tweezers 221 8.1 The right location 222			7.8.2 External forces	215
Part II Practice 219 8 Building an optical tweezers 221 8.1 The right location 222		Prob	lems	216
8 Building an optical tweezers 221 8.1 The right location 222		Refe	rences	217
8.1 The right location 222			Part II Practice	219
8.1 The right location 222	8	Build	ing an optical tweezers	221
		8.2		222

Contents

		8.2.1 Objectives	226
		8.2.2 Illumination schemes	232
	8.3	Sample preparation	236
	8.4	Optical beam alignment	239
		8.4.1 Lasers	244
		8.4.2 Lenses	246
		8.4.3 Mirrors	248
		8.4.4 Filters	248
		8.4.5 Polarisation control	249
	8.5	Optical trapping and manipulation	250
		8.5.1 Steerable optical tweezers	251
	8.6	Alternative set-ups	253
	Prob		253
	Refe	rences	253
9	Data	acquisition and optical tweezers calibration	255
	9.1	Digital video microscopy	256
		9.1.1 Digital cameras	261
	9.2	Interferometry	262
		9.2.1 Photodetectors	271
		9.2.2 Acquisition hardware	273
	9.3	Calibration techniques: An overview	273
	9.4	Potential analysis	274
	9.5	Equipartition method	276
	9.6	Mean squared displacement analysis	278
	9.7	Autocorrelation analysis	280
		9.7.1 Crosstalk analysis and reduction	280
	9.8	Power spectrum analysis	283
		9.8.1 Analytical least square fitting	286
		9.8.2 Hydrodynamic corrections	288
		9.8.3 Noise tests	290
	9.9	Drag force method	291
	Prob		293
	Refe	rences	294
10	Photo	onic force microscope	296
	10.1	Scanning probe techniques	297
	10.2	Photonic torque microscope	300
	10.3	Force measurement near surfaces	307
		10.3.1 Equilibrium distribution method	308
		10.3.2 Drift method	309
		Relevance of non-conservative effects	311
	10.5	Direct force measurement	312
	Prob	lems	316
	Refe	rences	317

xi Contents

11	1 Wavefront engineering and holographic optical twee	izers 319
	11.1 Basic working principle	320
	11.2 Computer-generated holograms	324
	11.2.1 Single steerable trap	325
	11.2.2 Random mask encoding	327
	11.2.3 Superposition of gratings and lens	es 328
	11.2.4 Gerchberg–Saxton algorithm	329
	11.2.5 Adaptive–additive algorithm	331
	11.2.6 Direct search algorithms	332
	11.3 Higher-order beams and orbital angular m	iomentum 332
	11.4 Continuous optical potentials	334
	11.5 Set-up implementation	335
	11.5.1 Spatial light modulators	338
	11.6 Alternative approaches	340
	11.6.1 Time-shared optical traps	340
	11.6.2 Generalised phase contrast	341
	Problems	342
	References	343
12	2 Advanced techniques	345
	12.1 Spectroscopic optical tweezers	346
	12.1.1 Fluorescence tweezers	347
	12.1.2 Photoluminescence tweezers	349
	12.1.3 Raman tweezers	349
	12.2 Optical potentials	350
	12.2.1 Periodic and quasi-periodic potent	ials 350
	12.2.2 Random potentials and speckle two	eezers 351
	12.3 Counter-propagating traps and optical fibr	re traps 353
	12.3.1 Optical stretcher	354
	12.3.2 Longitudinal optical binding	355
	12.4 Evanescent wave traps	356
	12.4.1 Evanescent tweezers	356
	12.4.2 Waveguides	357
	12.4.3 Optical binding	358
	12.4.4 Plasmonic traps	359
	12.5 Feedback traps	361
	12.6 Haptic optical tweezers	362
	References	365
	Part III Applicat	tions 369
13	3 Single-molecule biophysics	371
	13.1 DNA mechanics: Stretching	372
	13.2 DNA mechanics: Thermal fluctuations	374
	13.3 DNA mechanics: Torsional properties	376
	* *	

xii Contents

	13.4 Motor proteins	379
	13.5 Further reading	382
	References	383
14	Cell biology	385
	14.1 Cellular adhesion forces	386
	14.2 Adhesion and structure of bacterial pili	388
	14.3 Directed neuronal growth	389
	14.4 Further reading	392
	References	393
15	Spectroscopy	395
	15.1 Absorption and photoluminescence spectroscopy	396
	15.2 Raman spectroscopy	398
	15.3 Coherent anti-Stokes Raman spectroscopy	402
	15.4 Rayleigh spectroscopy and surface-enhanced Raman spectroscopy	402
	15.5 Further reading	404
	References	405
16	Optofluidics and lab-on-a-chip	409
	16.1 Optical sorting	410
	16.2 Monolithic integration	412
	16.3 Photonic crystal cavities	414
	16.4 Micromachines	415
	16.5 Further reading	417
	References	418
17	Colloid science	422
	17.1 Hydrodynamic interactions	423
	17.2 Electrostatic interactions	425
	17.3 Depletion interactions	426
	17.4 Further reading	430
	References	430
18	Microchemistry	433
	18.1 Liquid droplets	434
	18.2 Vesicle and membrane manipulation	435
	18.3 Vesicle fusion	438
	18.4 Further reading	439
	References	439
19	Aerosol science	441
	19.1 Optical tweezers in the gas phase	442
	19.2 Trapping and guiding	443

xiii Contents

	19.3 Photophoretic trapping and guiding	444
	19.4 Further reading	445
	References	446
20	Statistical physics	448
	20.1 Colloids as a model system for statistical physics	449
	20.2 Kramers rates	449
	20.3 Stochastic resonance	451
	20.4 Spurious drift in diffusion gradients	452
	20.5 Colloidal crystals and quasicrystals	455
	20.6 Random potentials and anomalous diffusion	455
	20.7 Further reading	459
	References	459
21	Nanothermodynamics	462
	21.1 Violation of the second law	463
	21.2 The Jarzynski equality	464
	21.3 Information-to-energy conversion	465
	21.4 Micrometre-sized heat engine	465
	21.5 Further reading	467
	References	468
22	Plasmonics	470
	22.1 Plasmonic nanoparticles	471
	22.2 Plasmonic substrates	474
	22.3 Plasmonic apertures	477
	22.4 Further reading	479
	References	480
23	Nanostructures	484
	23.1 Metal nanoparticles	485
	23.2 Semiconductor nanostructures	486
	23.3 Optical force lithography and placement	490
	23.4 Prospects for nanotweezers	492
	23.5 Further reading	492
	References	493
24	Laser cooling and trapping of atoms	498
	24.1 Laser cooling and optical molasses	499
	24.2 Atom trapping	504
	24.3 Optical dipole traps for cold atoms	506
	24.4 The path to quantum degeneracy	507
	24.5 Bose–Einstein condensation	508
	24.6 Evaporative cooling and Bose–Einstein condensation in dipole traps	513

xiv	Contents	
	24.7 Holographic optical traps for cold atoms	514
	24.8 Optical lattices	514
	24.9 Further reading	518
	References	518
	25 Towards the quantum regime at the mesoscale	524
	25.1 Cavity optomechanics: The classical picture	525
	25.2 Cavity optomechanics: The quantum picture	527
	25.3 Laser cooling of levitated particles	528
	25.4 Feedback cooling schemes	529
	25.5 Below the Doppler limit	531
	References	534
	Index	537

Preface

Since the first demonstration of optical tweezers approximately 30 years ago, they have become widespread both as a subject of research in their own right and as an enabling tool in fields as diverse as molecular biology, statistical physics, materials science and quantum physics. Currently the number of active research groups worldwide is in the hundreds – and counting. Furthermore, with the advent of commercially available optical tweezers and low-cost lab kits, optical tweezers experiments can now be found as a common instructional tool in advanced undergraduate and graduate laboratories. This broad interest gives rise to a pressing need for a reference textbook covering the principles and applications of optical tweezers. We began our journey of writing this book with the aim of filling this gap. Therefore we sought to write a textbook with a strong pedagogic approach to both the theory and practice of optical manipulation, supplemented by an overview of the current state of the art in optical manipulation research, and supported by exercises and problems. Eventually, this book saw the light of day.

This book comprises three parts. Part I covers the theory of optical tweezing, providing intuitive and rigorous explanations of the physics behind optical trapping and manipulation, an introduction to the numerical methods most commonly employed in the study of optical forces and torques, and a detailed explanation of the dynamics of optically trapped particles. Part II focuses on the experimental practice of optical manipulation, including both the implementation of a working optical tweezers set-up - complete with detailed step-bystep advice on its construction, on troubleshooting and on the acquisition and analysis of data – and instructions on how to develop more advanced optical manipulation techniques. Parts I and II both include numerous exercises to illustrate the concepts, ideas and techniques discussed, and each chapter ends with problems to solve as a starting point for further investigations. Finally, Part III provides an overview of some of the most exciting applications that optical tweezers have found in various fields, from the study of biological systems to the investigation of the quantum limit for trapped mesoscale objects. Furthermore, we have enhanced this book with an extensive supplementary material, available online for download from the book website at www.opticaltweezers.org. This includes, in particular, the comprehensive OTS - the Optical Tweezers Software toolbox, which we encourage readers to download, use and develop further.

Finally, we wish to thank all the colleagues and friends who have contributed to the writing of this book with their advice, input and encouragement. In particular, our special thanks go to Giuseppe Pesce for his help in writing Chapters 8, 9 and 11, Rosalba Saija for her constant advice on scattering theory and computational issues covered in Chapters 5 and 6, Agnese Callegari and S. Masoumeh Mousavi for their help in developing the OTS toolbox, Giorgio Volpe for his help in writing Chapter 7, and Juan José (Juanjo) Sáenz for

xvi Preface

his critical reading of several chapters. We have also received a lot of help and assistance from Ferdinando Borghese, Maria Grazia Donato, Barbara Fazio, Marco Grasso, Pietro Gucciardi, Antonella Iatí, Alessia Irrera, Fatemeh Kalantarifard, Alessandro Magazzù and Mite Mijalkov. We have greatly profited from discussions with Ennio Arimondo, Paolo Denti, Roberto Di Leonardo, Andrea C. Ferrari, Chris Foot, Simon Hanna, Alper Kiraz, Isabel Llorente Garcia, Oliver Morsch, Antonio Alvaro Ranha Neves, Ferruccio Renzoni, Maurizio Righini, Antonio Sasso, Salvatore Savasta, Stephen Simpson and Cirino Vasi. We would also like to acknowledge the students and postdoctoral researchers in our laboratories, whose hard work has permitted us to spare the time needed to write this book. It goes without saying that we claim full ownership of any remaining errors.

Phil Jones Onofrio Maragò Giovanni Volpe