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1 Preliminary notions

Elementary particles are at the deepest level of the structure of matter. Students have

already met the upper levels, namely the molecules, the atoms and the nuclei. These

structures are small and their physics is properly described by non-relativistic quantum

mechanics, by the Schrödinger equation. It is not relativistic because the speeds of the

electrons in a molecule or in an atom and of the protons and neutrons in a nucleus are much

smaller than the speed of light.

Protons and neutrons contain quarks, which have very small masses, corresponding to

rest energies much smaller than their kinetic energy, and their speed is close to that of light.

The structure of the nucleons, and more generally of the hadrons that we shall discuss, is

described by relativistic quantum mechanics. The relevant equation, the Dirac equation,

will be recalled.

The relativity theory is important in particle physics also for a different reason: the study

of elementary particles requires experiments with beams accelerated at very high energies.

There are two reasons for this: (a) the creation of new particles by, for example, annihilat-

ing a particle–antiparticle pair requires an initial energy large enough to be converted in the

mass–energy of the new particle; (b) to study the internal structure of an object we must

probe it with adequate resolving power, which increases with the energy of the probe, as

we shall discuss.

In this chapter the student will learn the basic notions that will be necessary for her/his

further study.

We shall start be recalling the fundamental elements of relativity, building on what

students already know. The fundamental concepts of energy, momentum and mass, the

relations amongst them and their transformations between reference systems, in particular

the laboratory and centre of mass frame, will be clearly discussed. The students are urged

to work on several numerical problems, which may be found at the end of the chapter,

together with an introduction to the methods to solve them. This is the only way to master,

in particular, relativistic kinematics.

Experiments on elementary particles study their collisions and decays. This chapter

continues introducing the basic concepts appearing in their description. We shall then

introduce the different types of particles (hadrons, quarks and leptons) and their funda-

mental interactions. Here and in the following we proceed, when appropriate, by succes-

sive approximations. Indeed, this is the way in which experimental science itself makes its

progress.

The basic components of a collision experiment are a beam of high-energy particles,

protons, antiprotons, electrons, neutrinos, etc., and a target on which they collide. The

student will find in this chapter a basic description of the sources of such particles, which
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are the naturally occurring cosmic rays, used in the first years of the research, and the

different types of accelerators. The products of a collision or of a decay, which are also

elementary particles, are detected and their properties (energy, momentum, charge) meas-

ured with suitable ‘detectors’. The progress of our knowledge is fully linked to the

experimental ‘art’ of detector design and development. Detectors are made of matter, solid,

liquid or gaseous. Consequently, a fair degree of knowledge of the interactions of charged

and neutral high-energy particles with matter, with its atoms and molecules, is necessary to

understand how detectors work and this is introduced in this chapter. This chapter

introduces the principal types of detector and the principles of their operation. In later

chapters the detectors’ systems as implemented in important experiments will be described.

We shall see here, in particular, how to measure the energy, momentum and mass of a

particle, in the different energy ranges and situations in which they are met.

1.1 Mass, energy, linear momentum

Elementary particles have generally very high speeds, close to that of light. Therefore, we

recall a few simple properties of relativistic kinematics and dynamics in this section and in

the next three.

Let us consider two reference frames in rectilinear uniform relative motion S(t,x,y,z) and

S0(t0,x0,y0,z0). We choose the axes as represented in Fig. 1.1. At a certain moment, which we

take as t0 ¼ t¼ 0, the origins and the axes coincide. The frame S0 moves relative to S with

speed V, in the direction of the x-axis.

We introduce the following two dimensionless quantities relative to the motion in S

of the origin of S0

β �
V

c
ð1:1Þ

and

γ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p , ð1:2Þ

called the ‘Lorentz factor’. An event is defined by the four-vector of the co-ordinates (ct,r).

Its components in the two frames (t,x,y,z) and (t0,x0,y0,z0) are linked by the Lorentz

transformations (Lorentz 1904, Poincaré 1905) as

x0 ¼ γ x� βctð Þ
y0 ¼ y

z0 ¼ z

ct0 ¼ γ ct � βxð Þ:

ð1:3Þ

The Lorentz transformations, when joined to the rotations of the axes, form a group that E.

Poincaré, who first recognised this property in 1905, called the proper Lorentz group. The

group contains the parameter c, a constant with the dimensions of the velocity. A physical

2 Preliminary notions

www.cambridge.org/9781107050402
www.cambridge.org


Cambridge University Press
978-1-107-05040-2 — Introduction to Elementary Particle Physics
Alessandro Bettini 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

entity moving at speed c in a reference frame moves with the same speed in any other.

In other words, c is invariant under Lorentz transformations. It is the propagation speed of

all the fundamental perturbations: light and gravitational waves (Poincaré 1905).

The same relationships are valid for any four-vector. Of special importance is the

energy–momentum vector (E/c, p) of a free particle

px0 ¼ γ px � β
E

c

0

@

1

A

py 0 ¼ py
pz0 ¼ pz

E0

c
¼ γ

E

c
� βpx

0

@

1

A:

ð1:4Þ

Notice that the same ‘Lorentz factor’ γ appears both in the geometric transformations (1.3)

and in those of dynamic quantities (1.4).

The transformations that give the components in S as functions of those in S0, the inverse

of (1.3) and (1.4), can be most simply obtained by changing the sign of the speed V.

The norm of the energy–momentum is, as for all the four-vectors, an invariant; the

square of the mass of the system multiplied times the invariant factor c4

m2c4 ¼ E2 � p2c2: ð1:5Þ

This is a fundamental expression: it is the definition of the mass. It is, we repeat, valid only

for a free body but is, on the other hand, completely general for point-like bodies, such as

elementary particles, and for composite systems, such as nuclei or atoms, even in the

presence of internal forces.

The most general relationship between the linear momentum (we shall call it simply

momentum) p, the energy E and the speed v is

p ¼
E

c2
v, ð1:6Þ

which is valid both for bodies with zero and non-zero mass.

For massless particles, (1.5) can be written as

pc ¼ E: ð1:7Þ

x x'

y y'

r,t r',t'

O O'

VS S'

P

Fig. 1.1. Two reference frames in rectilinear relative motion.
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The photon mass is exactly zero. Neutrinos have non-zero but extremely small masses in

comparison with the other particles. In the kinematic expressions involving neutrinos, their

mass can usually be neglected.

If m 6¼ 0 the energy can be written as

E ¼ mγc2, ð1:8Þ

and (1.6) takes the equivalent form

p ¼ mγv: ð1:9Þ

We call the reader’s attention to the fact that one can find in the literature, and not only in

that addressed to the general public, concepts that arose when the theory was not yet well

understood and that are useless and misleading. One of these is the ‘relativistic mass’,

which is the product mγ, and the dependence of mass on velocity. The mass is a Lorentz

invariant, independent of the speed; the ‘relativistic mass’ is simply the energy divided

by c2 and as such the fourth component of a four-vector; this of course, is if m 6¼ 0, while

for m¼ 0 relativistic mass has no meaning at all. Another related term to be avoided is the

‘rest mass’, namely the ‘relativistic mass’ at rest, which is simply the mass.

The concept of mass applies, to be precise, only to stationary states, i.e. to the eigenstates

of the free Hamiltonian, just as only monochromatic waves have a well-defined frequency.

Even the barely more complicated wave, the dichromatic wave, does not have a well-

defined frequency. We shall see that there are two-state quantum systems, such as K0 and B0,

which are naturally produced in states different from stationary states. For the former states

it is not proper to speak of mass and of lifetime. As we shall see, the nucleons (as protons

and neutrons are collectively called) are made up of quarks. The quarks are never free and

consequently the definition of quark mass presents difficulties, which we shall discuss later.

Example 1.1 Consider a source emitting a photon with energy E0 in the frame of the source.

Take the x-axis along the direction of the photon. What is the energy E of the photon in a

frame in which the source moves in the x direction at the speed υ¼ βc? Compare this with

the Doppler effect.

Call S0 the frame of the source. Remembering that photon energy and momentum are

proportional, we have p0x ¼ p0 ¼ E0=c. The inverse of the last equation in (1.4) gives

E

c
¼ γ

E0

c
þ βp0x

� �

¼ γ
E0

c
1þ βð Þ

and we have

E

E0

¼ γ 1þ βð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

1þ β

1� β

s

:

The Doppler effect theory tells us that, if a source emits a light wave of frequency ν0, an

observer who sees the source approaching at speed υ¼ βc measures the frequency ν, such

that
ν

ν0
¼

ffiffiffiffiffiffiffiffiffiffiffi

1þ β

1� β

s

. This is no wonder; in fact quantum mechanics tells us that E¼ hν. □
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1.2 The law of motion of a particle

The ‘relativistic’ law of motion of a particle was found by Planck in 1906 (See Planck

1906). As in Newtonian mechanics, a force F acting on a particle of mass m 6¼ 0 results in a

variation in time of its momentum. Newton’s law in the form F¼ dp/dt (the form used by

Newton himself) is also valid at high speed, provided the momentum is expressed by

Eq. (1.9). The expression F¼ma, used by Einstein in 1905, on the contrary, is wrong. It is

convenient to write explicitly

F ¼
dp

dt
¼ mγaþ m

dγ

dt
v: ð1:10Þ

Taking the derivative, we obtain

m
dγ

dt
v ¼ m

d 1�
υ2

c2

� ��1=2

dt
v ¼ �m

1

2
1�

υ2

c2

� ��3=2

�2
υ

c2
at

� �

v ¼ mγ3 a�βð Þβ:

Hence

F ¼ mγaþ mγ3 a�βð Þβ: ð1:11Þ

We see that the force is the sum of two terms, one parallel to the acceleration and one

parallel to the velocity. Therefore, we cannot define any ‘mass’ as the ratio between

acceleration and force. At high speeds, the mass is not the inertia to motion.

To solve for the acceleration we take the scalar product of the two members of Eq. (1.11)

with β. We obtain

F �β ¼ mγa�βþ mγ3β2a�β ¼ mγ 1þ γ2β2
� �

a�β ¼ mγ3a�β:

Hence

a�β ¼
F�β

mγ3

and, by substitution into (1.11),

F� F�βð Þβ ¼ mγa:

The acceleration is the sum of two terms, one parallel to the force, and one parallel to

the speed.

Force and acceleration have the same direction in two cases only: (1) force and velocity

are parallel: F¼mγ3a; (2) force and velocity are perpendicular: F¼mγa. Notice that the

proportionality constants are different.

In order to have simpler expressions in subnuclear physics the so-called ‘natural units’

are used. We shall discuss them in Section 1.5, but we anticipate here one definition:

without changing the unit of time of the S.I., we define the unit of length in such a way that

c¼ 1. In other words, the unit length is the distance the light travels in a second in vacuum,
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www.cambridge.org/9781107050402
www.cambridge.org


Cambridge University Press
978-1-107-05040-2 — Introduction to Elementary Particle Physics
Alessandro Bettini 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

namely 299 792 458 m, a very long distance. With this choice, in particular, mass, energy

and momentum have the same physical dimensions. We shall often use as their unit the

electronvolt (eV) and its multiples.

1.3 The mass of a system of particles, kinematic invariants

The mass of a system of particles is often called ‘invariant mass’, but the adjective is

useless; the mass is always invariant.

The expression is simple only if the particles of the system do not interact amongst

themselves. In this case, for n particles of energies Ei and momenta pi, the mass is

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � P2
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

Ei

 !2

�
X

n

i¼1

pi

 !2
v

u

u

t : ð1:12Þ

Consider the square of the mass, which we shall indicate by s, obviously an invariant

quantity

s ¼ E2 � P2 ¼
X

n

i¼1

Ei

 !2

�
X

n

i¼1

pi

 !2

: ð1:13Þ

Notice that s cannot be negative

s � 0: ð1:14Þ

Let us see its expression in the ‘centre of mass’ (CM) frame, which is defined as the

reference in which the total momentum is zero. We see immediately that

s ¼
X

n

i¼1

E*
i

 !2

, ð1:15Þ

where E*
i are the energies in the CM. In words, the mass of a system of non-interacting

particles is also its energy in the CM frame.

Consider now a system made up of two non-interacting particles. It is the simplest

system, and also a very important one. Figure 1.2 defines the kinematic variables.

The expression of s is

s ¼ E1 þ E2ð Þ2 � p1 þ p2ð Þ2 ¼ m2
1 þ m2

2 þ 2E1E2 � 2p1�p2 ð1:16Þ

and, in terms of the velocity, β¼ p/E

s ¼ m2
1 þ m2

2 þ 2E1E2 1� β1�β2ð Þ: ð1:17Þ

Clearly in this case, and as is also true in general, the mass of a system is not the sum of the

masses of its constituents, even if these do not interact. It is also clear from Eq. (1.12) that

energy and momentum conservation implies that the mass is a conserved quantity: in a
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reaction such as a collision or decay, the mass of the initial system is always equal to that of

the final system. For the same reason, the sum of the masses of the bodies present in the

initial state is generally different from the sum of the masses of the final bodies.

Example 1.2 We find the expressions for the mass of the system of two photons of the same

energy E, if they move in equal or in different directions.

The energy and the momentum of the photon are equal, because its mass is zero, p¼E.

The total energy Etot¼ 2E.

If the photons have the same direction then the total momentum is ptot¼ 2E and

therefore the mass is m¼ 0.

If the velocities of the photons are opposite, Etot¼ 2E, ptot¼ 0, and hence m¼ 2E.

In general, if θ is the angle between the velocities, p2tot ¼ 2p2 þ 2p2 cos θ ¼

2E2 1þ cos θð Þ and hence m2 ¼ 2E2(1 � cos θ). □

Notice that the system does not contain any matter, but only energy. Contrary to

intuition, mass is not a measure of the quantity of matter in a body.

Now consider one of the basic processes of subnuclear physics: collisions. In the initial

state two particles, a and b, are present; in the final state we may have two particles (not

necessarily a and b) or more. Call these c, d, e, . . .. The process is

aþ b ! cþ d þ eþ � � � : ð1:18Þ

If the final state contains only the initial particles, then the collision is said to be elastic:

aþ b ! aþ b: ð1:19Þ

We specify that the excited state of a particle must be considered as a different particle.

The time spent by the particles in interaction, the collision time, is extremely short and

we shall think of it as instantaneous. Therefore, the particles in both the initial and final

states can be considered as free.

We shall consider two reference frames, the CM frame already defined above and the

laboratory frame (L). The latter is the frame in which, before the collision, one of the

particles (called the target) is at rest, while the other (called the beam) moves against it. Let

a be the beam particle, ma its mass, pa its momentum and Ea its energy; let b be the target

mass and mb its mass. Figure 1.3 shows the system in the initial state.

In L, s is given by

s ¼ Ea þ mbð Þ2 � p2a ¼ m2
a þ m2

b þ 2mbEa: ð1:20Þ

p1
,E1

p
2 ,E

2

m1

m2 θ

Fig. 1.2. System of two non-interacting particles.

7 1.3 The mass of a system of particles, kinematic invariants

www.cambridge.org/9781107050402
www.cambridge.org


Cambridge University Press
978-1-107-05040-2 — Introduction to Elementary Particle Physics
Alessandro Bettini 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

In practice, the energy of the projectile is often, but not always, much larger than both the

projectile and the target masses. If this is the case, we can approximate Eq. (1.20) by

s ’ 2mbEa Ea � ma,mbð Þ: ð1:21Þ

We are often interested in producing new types of particles in the collision, and therefore

we are also interested in the energy available for such a process. This is obviously the total

energy in the CM, which, as seen in (1.21), grows proportionally to the square root of the

beam energy.

Let us now consider the CM frame, in which the two momenta are equal and opposite, as

in Fig. 1.4. If the energies are much larger than the masses, E*
a �ma and E*

b �mb, the

energies are approximately equal to the momenta: E*
a � p*a and E*

b � p*b. Hence, they are

equal to each other, and we call them simply E*. The total energy squared is

s ¼ E*
a þ E*

b

� �

� 2E*ð Þ2, ð1:22Þ

where the approximation at the last member is valid for E*� ma, mb. We see that the total

centre of mass energy is proportional to the energy of the colliding particles. In the CM

frame, all the energy is available for the production of new particles; in the L frame only

part of it is available, because momentum must be conserved.

Now let us consider a collision with two particles in the final state: this is two-body

scattering

aþ b ! cþ d: ð1:23Þ

Figure 1.5 shows the initial and final kinematics in the L and CM frames. Notice in

particular that, in the CM frame, the final momentum is in general different from the initial

momentum; they are equal in absolute value only if the scattering is elastic.

pa,Ea
ma

mb

Fig. 1.3. The laboratory frame (L).

pa
*,Ea

* pb
*,Eb

*ma mb

Fig. 1.4. The centre of mass reference frame (CM).

ma,pa,Ea

m c
,p c

,E c

m
d ,p

d ,E
d

mb

θad

θac

L

*
ma,pa,E

a mb,pb,Eb

m c
,p c

,E c

m d
,p d

,E d θad

θ
ac

* *

*

*

*
*

**

*

CM

Fig. 1.5. Two-body scattering in the L and CM frames.

8 Preliminary notions

www.cambridge.org/9781107050402
www.cambridge.org


Cambridge University Press
978-1-107-05040-2 — Introduction to Elementary Particle Physics
Alessandro Bettini 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Because s is an invariant it is equal in the two frames; because it is conserved it is equal

in the initial and final states. We have generically in any reference frame

s ¼ Ea þ Ebð Þ2 � pa þ pbð Þ2 ¼ Ec þ Edð Þ2 � pc þ pdð Þ2: ð1:24Þ

These properties are useful to solve a number of kinematic problems, as we shall see in the

‘Problems’ section later in this chapter.

In two-body scattering, there are two other important kinematic variables that have the

dimensions of the square of an energy: the a–c four-momentum transfer t, and the a–d four-

momentum transfer u. The first is defined as

t � Ec � Eað Þ2 � pc � pað Þ2: ð1:25Þ

It is easy to see that the energy and momentum conservation implies

t ¼ Ec � Eað Þ2 � pc � pað Þ2 ¼ Ed � Ebð Þ2 � pd � pbð Þ2: ð1:26Þ

In a similar way

u � Ed � Eað Þ2 � pd � pað Þ2 ¼ Ec � Ebð Þ2 � pc � pbð Þ2: ð1:27Þ

The three variables are not independent. It easy to show (see Problems) that

sþ t þ u ¼ m2
a þ m2

b þ m2
c þ m2

d : ð1:28Þ

Notice, finally, that

t � 0, u � 0: ð1:29Þ

1.4 Systems of interacting particles

Let us now consider a system of interacting particles. We immediately stress that its

total energy is not in general the sum of the energies of the single particles, E 6¼
X

n

i¼1

Ei,

because the field responsible for the interaction itself contains energy. Similarly, the

total momentum is not the sum of the momenta of the particles, P 6¼
X

n

i¼1

pi, because the

field contains momentum. In conclusion, Eq. (1.12) does not in general give the mass

of the system. We shall restrict ourselves to a few important examples in which the

calculation is simple.

Let us first consider a particle moving in an external, given field. This means that we can

consider the field independent of the motion of the particle.

Let us start with an atomic electron of charge qe at a distance r from a nucleus of

charge Zqe. The nucleus has a mass MN�me, hence it is not disturbed by the electron
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motion. The electron then moves in a constant potential ϕ ¼ �
1

4πε0

Zqe
r
. The electron

energy (in S.I. units) is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ec

4 þ p2c2
q

�
1

4πε0

Zq2e
r

� mec
2 þ

p2

2me

�
1

4πε0

Zq2e
r

,

where, in the last expression, we have taken into account that the atomic electron speeds

are much smaller than c. The final expression is valid in non-relativistic situations, as the

case in an atom and it is the Newtonian expression of the energy, apart from the irrelevant

constant mec
2.

Let us now consider a system composed of an electron and a positron. The positron, as

we shall see, is the antiparticle of the electron. It has the same mass and opposite charge.

The difference to the hydrogen atom is that there is no longer a fixed centre of force.

We must consider not only the two particles but also the electromagnetic field in which

they move, which, in turn, depends on their motion. If the energies are high enough,

quantum processes happen at an appreciable frequency: the electron and the positron can

annihilate each other by producing photons; inversely, a photon of the field can ‘material-

ise’ in a positron–electron pair. In these circumstances, we can no longer speak of a

potential.

In conclusion, the concept of potential is non-relativistic: we can use it if the speeds

are small in comparison to c or, in other words, if energies are much smaller than the

masses. It is correct for the electrons in the atoms, to first approximation, not for the quarks

in the nucleons.

Example 1.3 Consider the fundamental level of the hydrogen atom. The energy needed to

separate the electron from the proton is ∆E¼ 13.6 eV. The mass of the atom is smaller than

the sum of the masses of its constituents by this quantity: mH þ ΔE ¼ mp þ me. The

relative mass difference is

�
mH � mp � me

mH

¼
13:6

9:388	 108
¼ 1:4	 10�8:

This quantity is extremely small, justifying the non-relativistic approximation. □

Example 1.4 The processes we have mentioned above of electron–positron annihilation and

pair production can take place only in the presence of another body. If not, energy and

momentum cannot be conserved simultaneously. Let us now consider the following

processes.

• γ ! eþ þ e�. Let Eþ be the energy and let pþ be the momentum of eþ, and E– and

p– those of e�. In the initial state s¼ 0; in the final state s¼ (EþþE�)
2
–(p1þ p�)

2¼

2me
2þ 2(EþE� – pþp� cosθ) >2me

2> 0. This reaction cannot occur.

• eþ þ e� ! γ. This is just the inverse reaction, and it cannot occur either.
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