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BrownianMotion, Langevin and

Fokker–Planck Equations

In this chapter the reader can find the basic ingredients of elementary kinetic theory and

of the mathematical approach to discrete and continuous stochastic processes, all that is

necessary to establish a solid ground for nonequilibrium processes concerning the time

evolution of physical systems subject to a statistical description. In fact, from the first

sections we discuss problems where we deal with the time evolution of average quantities,

such as in the elementary random walk model of diffusion. We also illustrate the bases of

transport phenomena that allow us to introduce the concept of transport coefficients, which

will be reconsidered later in the framework of a more general theory (see Chapter 2). Then

we focus on the theory of Brownian motion, as it was originally formulated by Albert

Einstein, and how this was later described in terms of the Langevin and of the Fokker–

Planck equations, specialized to a Brownian particle. The peculiar new ingredient that

was first introduced in the Langevin formulation is noise, which epitomizes the effect of

incoherent fluctuations of the Brownian particle due to the interaction with the solvent

particles, which are subject to a thermal motion. Averaging over thermal noise allows

one to obtain a statistical inference on the diffusive behavior of a Brownian particle.

The Fokker–Planck formulation tells us that we can obtain an equivalent description by

considering the evolution of the space-time probability function of a Brownian particle,

rather than averaging over its noisy trajectories.

The mathematical formulation of stochastic processes in discrete space and time

(Markov chains) is illustrated, together with many examples and applications, including

random walk processes and the Monte Carlo procedure. This important mathematical

theory provides us with the tools for a general formulation of stochastic processes in

continuous space and time. This is not at all a straightforward step, since the presence of

noise needs a suitable mathematical procedure, when passing to a continous time descrip-

tion. In particular, we have to establish a consistent relation between infinitesimal time

and noise increments, which allows for two possible different formulations of continuous

time Langevin–like equations. In this general framework we can derive also the Fokker–

Planck equation for general stochastic processes, rather than for the mere description of

the diffusive motion of the Brownian particle. We discuss some interesting applications of

this equation to point out the physical importance of this general formulation of stochastic

processes and, specifically, its relevance for nonequilibrium processes. In the last part of

this chapter we introduce a description of those stochastic processes that do not exhibit

a standard diffusive behavior. More precisely, we discuss the so-called continuous time

random walk model and we focus our considerations on processes named Lévy flights

and Lévy walks, which play an increasing importance in the modern applications of

nonequilibrium processes.
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2 Brownian Motion, Langevin and Fokker–Planck Equations

1.1 Introduction

The idea that thermodynamics could be related to a mechanical theory of matter dealing

with a large number of particles, i.e., atoms and molecules, was speculated on from the

very beginning of kinetic theory on the middle of the nineteenth century. In a historical

perspective, we could say that such an idea was a natural consequence of the formulation of

the first principle of thermodynamics by the German natural philosopher Julius Robert von

Mayer, establishing the equivalence between mechanical work and heat. This was checked

experimentally in the famous experiment by James Prescott Joule and many contemporary

physicists, among which Rudolf Clausius, August Karl Krönig, William Thomson (Lord

Kelvin), James Clerk Maxwell, and Ludwig Eduard Boltzmann devoted a good deal of

their efforts to develop the foundations of kinetic theory.

The reader should consider that these scientists were assuming the validity of the

atomic hypothesis, despite no direct experimental evidence of the existence of atoms

and molecules available at that time. Accordingly, the reader should not be surprised

that such a nowadays “obvious” concept was strongly opposed by a large part of the

scientific community in the last decades of the nineteenth century, as a reaction to a

mechanistic foundation of science that, on the one hand, supported a materialistic and,

apparently, deterministic basis of natural phenomena and, on the other hand, raised serious

conceptual paradoxes, most of which related to the time reversibility of mechanical laws.

In fact, the other cornerstone of thermodynamics is the second principle, which amounts to

establishing the irreversibility of thermodynamic processes, due to the natural tendency of

thermodynamic systems to evolve toward a well-defined equilibrium state in the absence

of energy supplied by some external source.

The mechanistic approach to thermodynamics was pushed to its extreme consequences

in the work by Ludwig Eduard Boltzmann. His celebrated transport equation represents

a breakthrough in modern science and still today we cannot avoid expressing our

astonishment about the originality and deep physical intuition of the Austrian physicist.

Despite being inspired by a specific model, namely the ideal gas, the main novelty of

Boltzmann’s equation was that it represents the evolution of a distribution function, rather

than the trajectories of individual particles in the gas. Boltzmann realized quite soon that

the only way to describe the behaviour of a large number of particles (a mole of a gas

contains an Avogadro number of particles, approximately equal to NA ≃ 6.022×1023) was

to rely on a statistical approach, where the laws of probability had to be merged into the

description of physical laws. We want to point out that the success of Boltzmann’s equation

is not limited to establishing the foundations of equilibrium statistical mechanics. In fact, it

also provides a description of the evolution toward equilibrium by the derivation of hydro-

dynamic equations associated with the conservation of mechanical quantities, i.e., number,

momentum, and energy of particles. They are found to correspond to the continuity

equation and to two more phenomenological equations, i.e., the Navier–Stokes and the heat

ones. These equations provide a mathematical basis for the theory of transport phenomena

and a physical definition of transport coefficients in terms of basic quantities of kinetic

theory, such as the mean free path, the average speed of particles, the heat capacity, etc.
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3 Introduction

On top of that, since 1827 the experiment performed by English botanist Robert

Brown describing the phenomenon known as Brownian motion challenged the scientific

community. In fact, a pollen particle suspended in water (or any similar solvent) was found

to exhibit an erratic motion that, apparently, could not be reconciled with any standard

mechanical description. Even assuming the atomistic hypothesis and modeling the motion

of the pollen particle as a result of collisions with the atoms of the solvent seemed to

fail to provide a convincing explanation. In fact, at the microscopic level one might argue

that elastic collisions with the atoms of the solvent could transmit a ballistic motion to

the pollen particle. However, the conclusion would be that the combined effect of all of

these collisions, occurring for symmetry reasons in any direction, vanishes to zero. On the

contrary, the experimental observation of the erratic motion of the pollen particle indicated

that the distance of the particle from its original position grew over sufficiently long

time intervals as the square root of time, thus showing the diffusive nature of its motion.

Repeating many times the same experiment, where the pollen particle, the solvent, and the

temperature of the solvent are the same, the particle in each realization follows different

paths, but one can perform a statistical average over these realizations that enforces the

conclusion that the particle exhibits a diffusive motion.

The universal character of this phenomenon was confirmed by the experimental

observations that a diffusive behavior was found also when the type of Brownian

particle, the solvent, and the temperature were changed, yielding different values of the

proportionality constant between time and the average squared distance of the particle

from its initial position. A convincing explanation of Brownian motion had to wait for the

fundamental contribution of Albert Einstein, which appeared in 1905, the same year as his

contributions on the theories of special relativity and the photoelectric effect. Einstein’s

phenomenological theory of Brownian motion, relying on simple physical principles,

inspired the French scientist Paul Langevin, who proposed a mechanistic approach. The

basic idea was to write a Newton-like ordinary differential equation where, for the first

time, a force was attributed a stochastic nature. In fact, the microscopic forces exerted by

the solvent particles through elastic collisions with the Brownian particle are represented

as uncorrelated fluctuations in space and time, whose square amplitude is assumed to be

proportional to the thermal energy; according to kinetic theory, this amounts to the solvent

temperature T, provided the Brownian particle is at thermodynamic equilibrium with the

solvent. Some years later Adriaan Daniël Fokker and Max Planck proposed an alternative

formulation of the Brownian particle problem, based on a partial differential equation,

describing the evolution of the probability distribution of finding a Brownian particle at

position x at time t, in the same spirit of Boltzmann’s equation for an ideal gas. In fact, the

Fokker–Planck equation was derived as a master equation, where the rate of change in time

of the distribution function depends on favorable and unfavorable processes, described

in terms of transition rates between different space-time configurations of the Brownian

particle. Making use of some simplifying assumptions, this equation was cast into a form

where the diffusive nature of the problem emerges naturally, while it allows one to obtain

an explicit solution of the problem.

On the side of mathematics, at the end of the nineteenth century the Russian Andrej

Andreevič Markov developed a new mathematical theory concerning stochastic processes,
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4 Brownian Motion, Langevin and Fokker–Planck Equations

nowadays known as Markov chains. The original theory takes advantage of some

simplifying assumptions, like the discreteness of space and time variables as well as

of the numerability of the possible states visited by the stochastic process. It was the

first time a dynamical theory was assumed to depend on random uncorrelated events,

typically obeying the laws of probability. Despite the scientific motivations of Markov,

which were quite different from those that moved the above-mentioned physicists to

tackle the problem of Brownian motion, some decades later a more general theory of

stochastic processes in continuous space and time emerged from the fruitful combination

of these different scientific pathways. This allowed the scientific community to unveil the

great potential contained in this theory, which could be applied to a wide spectrum of

mathematical and physical problems concerning the evolution in time of statistical systems

and thus providing the conceptual foundations of nonequilibrium statistical mechanics.

Typical modern aspects of this field of physics are contained in the theory of continuous

time random walk, discussed at the end of this chapter. It provides the mathematical

tools for describing a wide range of stochastic processes, which overtake the limits of

standard diffusive behavior, allowing for subdiffusive and superdiffusive regimes. These

have been recently recognized as almost ubiquitous in nature, since they have been found

to characterize a wide range of phenomena of interest not only for physics, but also

for biology, chemistry, geology, finance, sociology, etc. All the following chapters will

be devoted to an illustration of the many aspects concerning nonequilibrium statistical

mechanics and their relevance for physical science. The introductory and pedagogical

character of this book cannot allow us to account for the interdisciplinary potential of this

approach, which overtakes, by far, any other domain of modern physics.

1.2 Kinetic Theory

1.2.1 The Ideal Gas

The basic model for understanding the mechanical foundations of thermodynamics is the

ideal gas of Boltzmann. It is a collection of N identical particles of mass m that can be

represented geometrically as tiny homogeneous spheres of radius r. One basic assumption

of the ideal gas model is that we are dealing with a diluted system; i.e., the average distance

δ between particles is much larger than their radius,

δ =
(

1

n

)
1
3

≫ r, (1.1)

where n = N/V is the density of particles in the volume V occupied by the gas.1 In

the absence of external forces particles move with constant velocity2 until they collide

1 For a real gas of hydrogen molecules at room temperature (300 K) and atmospheric pressure (1 atm),

δ ∼ 10−6 m and r ∼ 10−10 m.
2 One could argue that at least gravity should be taken into account, but its effects are generally negligible in

standard conditions. An example where gravity has relevant, measurable effects will be studied in Section 1.4:

it is the Brownian motion of colloidal particles; see Fig. 1.6.
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5 Kinetic Theory

σ

|v|	t

Fig. 1.1 Illustration of the concept of cross section. The black dots in the cylinder spanned by the cross sectionσ represent the

centers of molecules hit in the time interval	t by a molecule moving at speed v.

pairwise, keeping their total momentum and energy constant (elastic collisions3). It can be

easily realized that in such a diluted system multiple collisions are such rare events that

they can be neglected for practical purposes.

Now we want to answer the following question: what is the rate of these collisions and

the average distance run by a particle between subsequent collisions? We can estimate

these quantities by considering that a particle moving with velocity v in a time interval 	t

can collide with the particles that are contained in a cylinder of basis σ = 4πr2 (called

cross section) and height |v|	t; see Fig. 1.1. For the sake of simplicity we can assume that

all the particles inside the cylinder are at rest with respect to the moving particle, so that

we can estimate the number of collisions as

Ncoll = nσ |v|	t. (1.2)

Accordingly, the number of collisions per unit time is given by the expression

Ncoll

	t
= nσ |v| (1.3)

and the average time between collisions reads

τ ≡ 	t

Ncoll

= 1

nσ |v| . (1.4)

A quantitative estimate of τ can be obtained by attributing to |v| the value 〈v〉 of the

equilibrium average of the modulus of the velocity of particles, v, in the ideal gas, according

to Maxwell’s distribution (see Fig. 1.2),

P(v) = 4√
π

( m

2T

)3/2
v2 exp

(

−mv2

2T

)

, (1.5)

3 This hypothesis amounts to assuming that the particles of the gas are rigid spheres, that they do not suffer

any deformation in the collision process. In fact, in a real gas the energy transferred to the internal degrees of

freedom of the molecules can be practically neglected in standard conditions.
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6 Brownian Motion, Langevin and Fokker–Planck Equations

P

v

Fig. 1.2 The Maxwell distribution, Eq. (1.5). We indicate, from left to right, the most likely velocity vmax, the average velocity

〈v〉, and the square root of the average square velocity, 〈v2〉1/2, whose expressions are given in Eq. (1.6).

where T is the temperature of the ideal gas at equilibrium. Using such distribution, we

obtain the expressions

vmax =
√

2T

m
, 〈v〉 =

√

8T

πm
= 2√

π
vmax, 〈v2〉1/2 =

√

3T

m
=

√

3

2
vmax, (1.6)

for the most likely velocity, the average velocity and the square root of the average square

velocity, respectively.

We can now rewrite (1.4) as

τ = 1

nσ 〈v〉 (1.7)

and determine the average distance run by a particle between two collisions, i.e., its mean

free path, by the expression

λ = 〈v〉τ = 1

nσ
. (1.8)

This formula corresponds to the case of a single moving particle colliding with target

particles that are supposed to be immobile. But this is not the case, because in reality

the target particles also move and a better estimate of τ and λ can be obtained using the

formula

τ = 1

nσ 〈vr〉
, (1.9)

where vr is the modulus of the relative velocity vr, which follows the distribution

Pr(vr) =
√

2

π

( m

2T

)3/2
v2

r exp

(

−mv2
r

4T

)

. (1.10)

This formula is a consequence of the general observation that the sum (or the difference) of

two Gaussian variables is a Gaussian variable whose variance is the sum of their variances.
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7 Kinetic Theory

In this case, vr = v1 − v2, with v1,2 satisfying the Maxwell distribution (1.5) and the

doubling of the variance explains why the exponent (mv2/2T) in Eq. (1.5) now becomes

(mv2
r /4T). Then, the prefactor changes accordingly, in order to keep Pr(vr) normalized.

With Eq. (1.10) at hand, we can evaluate

〈vr〉 =
√

16T

πm
=

√
2〈v〉 (1.11)

and obtain

τ = 1√
2nσ 〈v〉

, (1.12)

from which we can evaluate the mean free path,

λ = 〈v〉τ = 1√
2nσ

. (1.13)

It is worth noting that the ratio between λ and τ gives 〈v〉, not 〈vr〉, because one particle

travels an average distance λ in time τ .

We can finally use the formula (1.13) to evaluate the mean free path for a gas at room

temperature and pressure. In this case λ is typically O(10−7m), which is three orders of

magnitude larger than the typical size r of a particle, O(10−10m).

1.2.2 RandomWalk: A Basic Model of Difusion

We consider an ideal gas at thermal equilibrium with a heat bath at temperature T. If

we fix our attention on one particle, we observe that collisions with the other particles

produce a stepwise irregular trajectory, i.e., a sort of random walk. Beyond this qualitative

observation we would like to obtain a quantitative description of this random walk. In

principle the problem could be tackled by applying the laws of classical mechanics. In

practice such a program is unrealistic, because one should know not only the initial velocity

of the particle under examination, but also the velocities of all the particles that it will

collide with. Such a computation is practically unfeasible, if we have to deal with a very

large number of particles, like those contained in a mole of a gas.

In order to overcome such a difficulty we can introduce a suitable model, based on

simplifying hypotheses. We assume that in between two collisions the observed particle

keeps constant the modulus of its velocity, v. Moreover, the distance run by the particle

between two collisions is also assumed to be constant and equal to ℓ. Finally, the direction

along which the particle moves after a collision is completely uncorrelated with the one

it was moving along before the collision. The latter hypothesis amounts to assuming

that collisions can actually be considered as random events, thus contradicting the fully

mechanical, i.e., deterministic, origin of the problem.4 Without prejudice of generality, we

4 We want to point out that in this way we introduce a statistical concept into the description of a purely

mechanical process. This conceptual step has been at the origin of a long-standing debate in the scientific

community over more than a century. Nowadays, it has been commonly accepted and it is a cornerstone

of modern science. Anyway, this basic assumption still today relies more on its effectiveness in predicting

observed phenomena, rather than on its logical foundations. On the other hand, the need of a stochastic approach
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8 Brownian Motion, Langevin and Fokker–Planck Equations
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Fig. 1.3 Plot of a one-dimensional randomwalk, corresponding to ℓ = 1.

assume that the selected particle at time t = 0 is at the origin of a Cartesian reference frame

and we call X(t) the vector that identifies its position at time t. After having gone through

N collisions, we can write

X =
N

∑

i=1

xi, (1.14)

where xi is the ith segment run by the particle after the ith collision (|xi| = ℓ, ∀i), whose

direction is random, i.e. uniformly distributed in the solid angle 4π . It is intuitive to

conclude that as N → ∞ the average value X/N → 0. For d = 1, in Fig. 1.3 we plot

the resulting space-time trajectory, corresponding to ℓ = 1.

As for the square displacement, we can write

X 2 ≡ X · X =
N

∑

i=1

N
∑

j=1

xi · xj =
N

∑

i=1

N
∑

j=1

ℓ2 cos(θij) (1.15)

where θij is the angle in between the directions of segments xi and xj. Since ℓ is a constant

we can write the previous expression in a more convenient form,

X 2 = ℓ2
N

∑

i=1

⎛

⎝

N
∑

j=1

cos(θij)

⎞

⎠ . (1.16)

If j = i, then θij = 0, i.e. cos(θij) = 1, and the previous equation can be written

X 2 = ℓ2
N

∑

i=1

⎛

⎝1 +
∑

j=i

cos(θij)

⎞

⎠ . (1.17)

could be also justified by invoking the contribution of dynamical details, such as the finite size of the particles

or their internal rotational or vibrational degrees of freedom, that are usually neglected.

www.cambridge.org/9781107049543
www.cambridge.org


Cambridge University Press
978-1-107-04954-3 — Nonequilibrium Statistical Physics
Roberto Livi , Paolo Politi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

9 Kinetic Theory

The values taken by cos(θij) can be thought as random numbers, distributed in the

interval [−1, +1]. If we compute the average of X 2 over a very large number of different

realizations (replicas) of this random walk the sum
∑

j=i cos(θij) is negligible and one can

finally write

〈X 2〉 = ℓ2N, (1.18)

where the symbol 〈 〉 denotes the average over replicas. Notice that the larger the number

of replicas, the better the statistical estimate 〈X 2〉 for any N.

This result can be generalized by assuming the less strict hypothesis that the length

of runs in between subsequent collisions is distributed according to some normalized

distribution g(ℓ). A “real” example in two dimensions is discussed later on, in the context

of Brownian motion (see Section 1.4, Fig. 1.5). If xi = ℓix̂i, where x̂i is the unit vector in

the direction of xi, we can write

〈xi · xj〉 = 〈ℓiℓj〉〈x̂i · x̂j〉 = 〈ℓ2
i 〉δij (1.19)

and

〈X 2〉 = 〈ℓ2〉N. (1.20)

If g(ℓ) is a Poisson distribution, which corresponds to independent random events,

g(ℓ) = 1

λ
exp

(

− ℓ

λ

)

, (1.21)

where λ is the mean free path defined in Eq. (1.13), we have to substitute ℓ2 with 〈ℓ2〉 =
2λ2 in Eq. (1.18), thus obtaining

〈X 2〉 = 2λ2N. (1.22)

Notice that λN = L = 〈v〉t is the total length run by the particle after N collisions, so we

can write

〈X 2〉 = 2λ〈v〉t. (1.23)

This relation indicates that in the random walk, the particle that was at the origin at time

t = 0 is found at time t at an average distance from the origin,
√

〈X 2〉, that grows

proportionally to
√

t. The proportionality constant between 〈X 2〉 and t is usually written

as 2λ〈v〉 = 2dD, where D is the diffusion coefficient of the random walk in d space

dimensions. Diffusion in real situations is quite a slow process. For instance, if we consider

air molecules at T = 20◦C we have 〈v〉 ∼ 450 m/s, while λ ∼ 0.06µm. Accordingly, a

diffusing air molecule in these conditions runs a distance of 1 m in approximately 5 h

and a distance of 10 m in approximately 20 days (a quasi-static situation, if convective or

turbulent motions do not occur).
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10 Brownian Motion, Langevin and Fokker–Planck Equations

1.3 Transport Phenomena

The random walk model of a particle in an ideal gas is the appetizer of the general problem

of transport processes. They concern a wide range of phenomena in hydrodynamics,

thermodynamics, physical chemistry, electric conduction, magnetohydrodynamics, etc.

They typically occur in physical systems (gases, liquids, or solids) made of many particles

(atoms or molecules) in the presence of inhomogeneities. Such a situation can result

from nonequilibrium conditions (e.g., the presence of a macroscopic gradient of density,

velocity, or temperature), or simply from fluctuations around an equilibrium state.

The kinetic theory of transport phenomena provides a unified description of these

apparently unlike situations. It is based on the assumption that even in nonequilibrium

conditions gradients are small enough to guarantee that local equilibrium conditions still

hold. In particular, the kinetic approach describes the natural tendency of the particles to

transmit their properties from one region to another of the fluid by colliding with the other

particles and eventually establishing global or local equilibrium conditions.

The main success of the kinetic theory is the identification of the basic mechanism

underlying all the above-mentioned processes: the transport of a microscopic quantity (e.g.,

the mass, momentum or energy of a particle) over a distance equal to the mean free path λ

of the particles, i.e. the average free displacement of a particle after a collision with another

particle (see Eq. (1.13)). By this definition we are implicitly assuming that the system

is a fluid, where each particle is supposed to interact with each other by collisions and

propagate freely between successive collisions, the same conditions that we have discussed

for the ideal gas model in Section 1.2.1.

Here we assume that we are dealing with a homogeneous isotropic system, where λ, the

mean free path, is the same at any point and in any direction in space. Without prejudice

of generality we consider a system where a uniform gradient of the quantity A(x) is

established along the z-axis, and A(x, y, z) = A(x′, y′, z) = A(z) for any x, x′, y, and y′. In

particular, we assume that A(z) is a microscopic quantity, which slowly varies at constant

rate along the coordinate z of an arbitrary Cartesian reference frame. We consider also a unit

surface S1 located at height z and perpendicular to the z-axis; see Fig. 1.4(a). Any particle

crossing the surface S1 last collided at an average distance ± λ along the z-axis, depending

on the direction it is moving. The net transport of the quantity A(z) through S1 amounts to

the number of crossings of S1 from each side in the unit time. Consistently with the assump-

tion of local equilibrium we attribute the same average velocity 〈v〉 to all particles crossing

S1. Isotropy and homogeneity of the system imply also that one-third of the particles move

on average along the z-axis, half of them upward and half downward. Accordingly, S1 is

crossed along z in the unit time interval by 1
6

n〈v〉 particles in each direction.

The net flux of A(z) through S1 is given by

�(A) = 1

6
〈v〉 [n(z − λ)A(z − λ ) − n(z + λ)A(z + λ ) ] . (1.24)

Since n and A vary weakly on the scale λ, one can use a first-order Taylor expansion and

rewrite Eq. (1.24) as
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