Principles of LED Light Communications

Towards Networked Li-Fi

Balancing theoretical analysis and practical advice, this book describes all the underlying principles required to build high-performance indoor optical wireless communication (OWC) systems based on visible and infrared light, alongside essential techniques for optimizing systems by maximizing throughput, reducing hardware complexity, and measuring performance effectively.

It provides a comprehensive analysis of information rate-, spectral-, and powerefficiencies for single- and multi-carrier transmission schemes, and novel analysis of non-linear signal distortion, enabling the use of off-the-shelf LED technology. Other topics covered include cellular network throughput and coverage, static resource partitioning and dynamic interference-aware scheduling, realistic light propagation modeling, OFDM, optical MIMO transmission, and non-linearity modeling.

Covering practical techniques for building indoor optical wireless cellular networks supporting multiple users, and guidelines for 5G cellular system studies, in addition to physical layer issues, this is an indispensable resource for academic researchers, professional engineers, and graduate students working in optical communications.

Svilen Dimitrov is a researcher at the German Aerospace Center (DLR) in Oberpfaffenhofen, Germany. He is involved as a project manager in the European project on Broadband Access via Integrated Terrestrial and Satellite Systems (BATS), aiming at the development of terabit/s satellite communication systems with optical feeder links.

Harald Haas is Chair of Mobile Communications at the University of Edinburgh, and Chief Scientific Officer of pureVLC Ltd. He first coined Li-Fi, listed in *Time Magazine's* 50 Best Inventions of 2011, and covered by international media channels such as the BBC, NPR, CNBC, the *New York Times, Wired UK, NewScientist*, and *The Economist*. His TED talk on the subject has been viewed more than one and a half million times, and in 2012 he received a prestigious Fellowship from the Engineering and Physical Sciences Research Council (EPSRC), UK. In 2014, he was selected by EPSRC and the Royal Academy of Engineering as one of ten RISE (Recognizing Inspirational Scientists and Engineers) leaders in the UK. Cambridge University Press 978-1-107-04942-0 - Principles of LED Light Communications: Towards Networked Li-Fi Svilen Dimitrov and Harald Haas Frontmatter <u>More information</u> Cambridge University Press 978-1-107-04942-0 - Principles of LED Light Communications: Towards Networked Li-Fi Svilen Dimitrov and Harald Haas Frontmatter More information

Principles of LED Light Communications

Towards Networked Li-Fi

SVILEN DIMITROV

German Aerospace Center (DLR), Oberpfaffenhofen

HARALD HAAS University of Edinburgh

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107049420

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Dimitrov, Svilen.
Principles of LED light communications: towards networked Li-Fi / Svilen Dimitrov, Harald Haas. pages cm
Includes bibliographical references and index.
ISBN 978-1-107-04942-0 (Hardback)
1. Optical communications. 2. Wireless LANs. 3. Light emitting diodes. I. Haas, Harald. II. Title.
TK5103.59.D56 2015
621.382'7-dc23 2014034786
ISBN 978-1-107-04942-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

Contents

	'nyms	page 1x
Note	ition	xii
Intro	duction	1
1.1	History of OWC	1
1.2	Advantages of OWC	3
1.3	Application areas	4
1.4	Li-Fi	5
	1.4.1 Modulation	5
	1.4.2 Multiple access	6
	1.4.3 Uplink	7
	1.4.4 The attocell	8
	1.4.5 Cellular network	9
1.5	Challenges for OWC	9
1.6	Summary	11
Opti	cal wireless communication	12
2.1	Introduction	12
2.2	System setup	13
2.3	Communication scenarios	14
	2.3.1 Line-of-sight communication	15
	2.3.2 Non-line-of-sight communication	15
2.4	2.3.2 Non-line-of-sight communication Optical front-ends	15 16
2.4	2.3.2 Non-line-of-sight communicationOptical front-ends2.4.1 Transmitter	15 16 16
2.4	2.3.2 Non-line-of-sight communicationOptical front-ends2.4.1 Transmitter2.4.2 Receiver	15 16 16 18
2.4 2.5	2.3.2 Non-line-of-sight communicationOptical front-ends2.4.1 Transmitter2.4.2 ReceiverOptical wireless channel	15 16 16 18 20
2.4 2.5	 2.3.2 Non-line-of-sight communication Optical front-ends 2.4.1 Transmitter 2.4.2 Receiver Optical wireless channel 2.5.1 Channel model 	15 16 16 18 20 21
2.4 2.5	 2.3.2 Non-line-of-sight communication Optical front-ends 2.4.1 Transmitter 2.4.2 Receiver Optical wireless channel 2.5.1 Channel model 2.5.2 Path loss 	15 16 16 18 20 21 21
2.4 2.5	 2.3.2 Non-line-of-sight communication Optical front-ends 2.4.1 Transmitter 2.4.2 Receiver Optical wireless channel 2.5.1 Channel model 2.5.2 Path loss 2.5.3 Delay spread and coherence bandwidth 	15 16 16 18 20 21 21 21 26
2.4 2.5	 2.3.2 Non-line-of-sight communication Optical front-ends 2.4.1 Transmitter 2.4.2 Receiver Optical wireless channel 2.5.1 Channel model 2.5.2 Path loss 2.5.3 Delay spread and coherence bandwidth 2.5.4 Channel equalization 	15 16 16 18 20 21 21 21 26 27
2.42.52.6	 2.3.2 Non-line-of-sight communication Optical front-ends 2.4.1 Transmitter 2.4.2 Receiver Optical wireless channel 2.5.1 Channel model 2.5.2 Path loss 2.5.3 Delay spread and coherence bandwidth 2.5.4 Channel equalization Cellular network: a case study in an aircraft cabin 	15 16 18 20 21 21 21 26 27 29

V

vi	Contents	
	2.6.2 Cabin setup: propagation paths, cellular configuration, and	22
	wavelength reuse	32
	2.6.5 Cabin geometry and materials	36
	2.6.5 Photobiological safety	38
	2.6.6 Estimation of line-of-sight path loss and shadowing	39
	2.6.7 Estimation of non-line-of-sight path loss and shadowing	42
	2.6.8 Signal-to-interference ratio maps	49
	2.7 Summary	55
3	Front-end non-linearity	57
	3.1 Introduction	57
	3.2 Generalized non-linear transfer function	58
	3.3 Pre-distortion	59
	3.4 Non-linear distortion of Gaussian signals	61
	3.4.1 Analysis of generalized non-linear distortion	61
	3.4.2 Analysis of double-sided signal clipping distortion	65
	3.5 Summary	71
4	Digital modulation schemes	72
	4.1 Introduction	72
	4.2 Optical signals	72
	4.3 Single-carrier modulation	77
	4.3.1 Pulse position modulation: <i>M</i> -PPM	78
	4.3.2 Pulse amplitude modulation: <i>M</i> -PAM	80
	4.3.3 BER performance with pre-distortion in AWGN	82
	4.4 Multi-carlier modulation $4.4.1$ Optical OEDM with M OAM: DCO OEDM and ACO OEDM	04 84
	4.4.2 BER performance with generalized non-linear distortion in AWG	N 89
	4.4.3 BER performance with pre-distortion in AWGN	91
	4.5 Summary	94
5	Spectral efficiency and information rate	95
	5.1 Introduction	95
	5.2 Constraints on the information rate in OWC	96
	5.2.1 Link impairments	97
	5.2.2 On the maximization of information rate	98
	5.3 Modulation schemes in the flat fading channel with AWGN	99
	5.3.1 Biasing optimization of Gaussian signals	100
	5.3.2 Maximum spectral efficiency without an average optical power	
	constraint	103
	5.3.3 Spectral efficiency with an average optical power constraint	106

		Contents	vii
	5.4	Information rate of OFDM-based modulation with non-linear distortion	110
		5.4.1 Biasing optimization of Gaussian signals	111
		5.4.2 Maximum information rate without an average optical power	
		constraint	113
		5.4.3 Information rate with an average optical power constraint	115
	5.5	Modulation schemes in the dispersive channel with AWGN	120
		5.5.1 Biasing optimization of Gaussian signals	121
		5.5.2 DC-bias penalty	122
		5.5.3 Equalizer penalty	124
		5.5.4 Maximum spectral efficiency without an average optical power	105
	5.6	constraint	125
	5.6	Summary	127
6	MIN	10 transmission	130
	6.1	Introduction	130
	6.2	System model	131
	6.3	MIMO techniques	133
		6.3.1 Repetition coding	133
		6.3.2 Spatial multiplexing	135
		6.3.3 Spatial modulation	136
		6.3.4 Computational complexity	138
	6.4	BER performance	139
		6.4.1 Varying the separation of transmitters	139
		6.4.2 Varying the position of receivers	145
		6.4.3 Power imbalance between transmitters	146
		6.4.4 Link blockage	147
	6.5	Summary	150
7	Thro	oughput of cellular OWC networks	151
	7.1	Introduction	151
	7.2	System throughput using static resource partitioning	152
		7.2.1 Signal-to-interference-and-noise ratio modeling	153
		7.2.2 Adaptive modulation and coding	156
		7.2.3 System throughput of optical OFDM in an aircraft cabin	157
	7.3	Interference coordination in optical cells using busy burst signaling	160
		7.3.1 System model	161
		7.3.2 Interference coordination in optical cells	162
		7.3.3 Busy burst principle	164
			165
		7.3.4 Contention avoidance among neighboring cells	165
		7.3.4 Contention avoidance among neighboring cells7.3.5 User scheduling and fair reservation mechanism	165 168

Contents		
7.3	7 System throughput with busy burst signaling	170
7.3.	8 System throughput with busy burst signaling and fair reservation	110
	mechanism	178
7.4 Sur	nmary	181
Reference	es	183
Index		197
	Contents 7.3. 7.4 Sur Reference Index	Contents 7.3.7 System throughput with busy burst signaling 7.3.8 System throughput with busy burst signaling and fair reservation mechanism 7.4 Summary References Index

Acronyms

3D	3-dimensional
4G	4th generation
AC	alternating current
ACI	adjacent channel interference
ACO-OFDM	asymmetrically clipped optical orthogonal frequency
	division multiplexing
ADC	analog-to-digital converter
AGC	automatic gain control
AMC	adaptive modulation and coding
AP	access point
AWGN	additive white Gaussian noise
AZ	azimuth
BB	busy burst
BER	bit-error ratio
BPSK	binary phase shift keying
BRDF	bi-directional reflectance distribution function
CAD	computer-aided design
CCDF	complementary cumulative distribution function
CCI	co-channel interference
CDMA	code division multiple access
CESAR	cellular slot access and reservation
CLT	central limit theorem
СР	cyclic prefix
CSMA/CD	carrier sense multiple access with collision detection
DAC	digital-to-analog converter
DC	direct current
DCO-OFDM	direct-current-biased optical orthogonal frequency
	division multiplexing
DFE	decision-feedback equalizer
DMT	discrete multi-tone
DSL	digital subscriber line
DSP	digital signal processor
E/O	electrical-to-optical

iх

X	Acronyms	
	EL	elevation
	FDD	frequency division duplexing
	FDMA	frequency division multiple access
	FEC	forward error correction
	FFE	feed-forward equalizer
	FFT	fast Fourier transform
	FOV	field of view
	FSO	free-space optical
	HPA	high-power amplifier
	ICI	inter-carrier interference
	IEEE	Institute of Electrical and Electronics Engineers
	IFFT	inverse fast Fourier transform
	IM/DD	intensity modulation and direct detection
	IP	Internet protocol
	IR	infrared
	IrDA	Infrared Data Association
	ISI	inter-symbol interference
	LDPC	low density parity check
	LED	light emitting diode
	Li-Fi	light fidelity
	LOS	line-of-sight
	LTE	long term evolution
	<i>M</i> -PAM	multi-level pulse amplitude modulation
	M-PAPM	multi-level pulse amplitude and position modulation
	M-PPM	multi-level pulse position modulation
	<i>M</i> -OAM	multi-level quadrature amplitude modulation
	MAC	medium access control
	Mbps	megabits per second
	MCRT	Monte Carlo ray-tracing
	MIMO	multiple-input-multiple-output
	MLSD	maximum likelihood sequence detection
	MMSE	minimum mean squared error
	MRC	maximum ratio combining
	NIR	near infrared
	NLOS	non-line-of-sight
	O/E	ontical-to-electrical
	O-OFDM	optical orthogonal frequency division multiplexing
	OFDM	orthogonal frequency division multiplexing
	OFDM-TDMA	OFDM time division multiple access
	OFDMA	orthogonal frequency division multiple access
	OFDMA_TDD	OFDMA time division duplexing
	OOK	on_off keving
	OSTRC	orthogonal space-time block codes
	OWC	ontical wireless communication
	Unc	opucar whereas communication

Acronyms

P/S	parallel-to-serial
PAM-DMT	pulse amplitude modulation discrete multi-tone
PAPR	peak-to-average-power ratio
PD	photodiode
PDF	probability density function
PDU	protocol data unit
PEP	pairwise error probability
PIM	pulse interval modulation
PIN	positive-intrinsic-negative
PLC	power line communication
PoE	power-over-Ethernet
PSD	power spectral density
PSU	passenger service unit
PWM	pulse width modulation
QoS	quality of service
RC	repetition coding
RF	radio frequency
RGB	red, green, and blue
RMS	root mean square
Rx	receiver
S/P	serial-to-parallel
SE	spectral efficiency
SER	symbol-error rate
SFO-OFDM	spectrally factorized O-OFDM
SIMO	single-input-multiple-output
SINR	signal-to-interference-and-noise ratio
SIR	signal-to-interference ratio
SISO	single-input-single-output
SM	spatial modulation
SMP	spatial multiplexing
SNR	signal-to-noise ratio
TDD	time division duplexing
TDMA	time division multiple access
TIA	transimpedance amplifier
Tx	transmitter
UE	user equipment
U-OFDM	unipolar orthogonal frequency division multiplexing
VLC	visible light communication
VLCC	Visible Light Communications Consortium
WDD	wavelength division duplexing
WDM	wavelength division multiplexing
WDMA	wavelength division multiple access
Wi-Fi	wireless fidelity
WLAN	wireless local area network
ZF	zero forcing

Notation

*	linear convolution operator
*	linear discrete convolution operator
$\left[\cdot\right]^{T}$	transpose operator
$\ \cdot\ _{F}$	Frobenius norm
[·]	floor operator
[·]	ceiling operator
$mod(\cdot, \cdot)$	modulus of a congruence
а	variable related to the RMS delay spread of the channel, D
Α	photosensitive area of the PD
A_0	reference area of 1 m ²
b	bit sequence, reservation indicator
b	bit loading vector in OFDM
В	signal bandwidth
B _c	coherence bandwidth of the optical wireless channel
BER	generalized BER of M-PAM and M-QAM O-OFDM
BER _{PAM}	BER of <i>M</i> -PAM
BER _{RC}	BER of RC
BER _{SM}	BER of SM
BER _{SMP}	BER of SMP
BOTTOM	shifted bottom clipping level
С	speed of light
c(t)	chip
c	chip vector
С	mutual information/information rate
Cov [·]	covariance operator
d	distance between the transmitter and the receiver on the direct
	path
d_1	distance between the transmitter and the reflective surface
d_2	distance between the receiver and the reflective surface
$d_{\mathrm{H}}(\cdot, \cdot)$	Hamming distance of two bit sequences
$d_{\rm ref}$	reference distance
$d_{\rm s}$	distance between an intended symbol and the closest interfering
	symbol

Notation

xiii

$d_{\rm tot}$	total distance (including the reflections) a ray travels
d_{Tx}	spacing of the individual transmitters in the optical array
D	RMS delay spread of the channel
E[·]	expectation operator
$E(d_{\rm ref})$	irradiance at a reference distance d_{ref}
$E_{\rm b(elec)}$	average electrical bit energy
Eeve	irradiance of the eye
$E_{\rm s(elec)}$	average electrical symbol energy
f	frequency variable
f	OFDM frame vector
Ĩ	distorted replica of the OFDM frame vector at the receiver
f _{info}	vector with the information-carrying subcarriers
$\widetilde{\mathbf{f}}_{info}$	distorted replica of the vector with the information-carrying
	subcarriers
$F(\cdot)$	non-linear transfer function of the transmitter
F_{OE}	O/E conversion factor for the intended signal
$F_{\text{OE,I}}$	O/E conversion factor for the interfering signal
$F_{O,S}$	factor for the useful optical symbol power in the intended signal
gh(elec)	electrical path gain
gh(opt)	optical path gain
g_{I}	optical path gain between an interfering transmitter and the
	receiver
gs	optical path gain between the intended transmitter and the
	receiver
$G_{\rm B}$	bandwidth utilization factor
$G_{\rm DC}$	DC-bias gain
$G_{\rm EQ}$	equalizer gain
$G_{\rm GC}$	Gray coding gain
G _{OC}	gain of the optical concentrator
G _T	utilization factor for the information-carrying time
G _{TIA}	gain of the TIA
h	impulse response vector of the optical wireless channel
h(t)	impulse response of the optical wireless channel
$h_{\rm norm}(t)$	normalized impulse response of the optical wireless channel
$h_{n_{\rm r}n_{\rm t}}$	optical channel gain between transmitter $n_{\rm t}$ and receiver $n_{\rm r}$
H H	optical channel matrix in a MIMO setup
$\mathbf{H}_{d_{\mathrm{Tx}}}$	optical channel matrix for a given spacing of transmitters
$\mathbf{H}_{d_{\mathrm{Tx}}}$	induced link blocks
H(f)	Induced link blockage
$\Pi(J)$	Fourier transform of $h_{(1)}$
$n_{\text{norm}}(J)$	Fourier mailstorial of $n_{\text{norm}}(l)$
ı	an interfering transmitter
Ic	forward current
*I	for ward current

xiv No	tation
--------	--------

Iin	input current
Imax	maximum forward current
Imax norm	normalized maximum forward current
Imin	minimum forward current
Imin norm	normalized minimum forward current
Iout	output current
i	index of a polynomial function $\psi(\cdot)$, index of a reflecting ray
ĵ	index of a normalized clipping level, λ
J	number of normalized clipping levels
k	time-domain sample index in OFDM, index of a ray reflection
k _B	Boltzmann's constant
$k_{\rm c}$	chunk time index
ĸ	attenuation factor of the non-linear distortion for the
	information-carrying subcarriers
K _C	size of coordination cluster of adjacent APs
l	symbol index
L	number of symbols per transmission vector
т	subcarrier index
m _c	chunk frequency index
М	modulation order
$M_{\rm SE}$	modulation and coding scheme
$\hat{M}_{\rm SE}$	modulation scheme associated with an <i>a priori</i> SINR estimate
\bar{M}_{SE}	modulation scheme of higher order to be used in the next frame
n	integer polynomial order
nos	number of OFDM symbols per chunk
n _r	index of a receiver/PD in the optical array
n _{sc}	number of subcarriers per chunk
n _{spec}	Lambertian mode number of the specular reflection
n _t	index of a transmitter/LED in the optical array
n _{Tx}	Lambertian mode number of the transmitter
Ν	number of subcarriers, FFT size
N_0	power spectral density of the AWGN
NA	number of APs
N _C	number of chunks
N _{CP}	number of CP samples in OFDM
NLOS	number of rays directly impinging on the PD
N _{NLOS}	number of rays which undergo one or multiple reflections
Nr	number of receivers/PDs in the optical front-end
N _{rays}	number of rays
N _{refl}	number of reflections
IV _S	average number of neighboring symbols
/v _t	number of transmitters/LEDs in the optical front-end
р 	scanng factor for the current/optical power levels in <i>M</i> -PAM
р	power loading vector in OFDM

Rb R_{load}

$p_S(s)$	PDF of the clipped OFDM symbol
$p_{\hat{\mathbf{s}}}(\hat{s})$	PDF of the unfolded clipped ACO-OFDM symbol
$p_{\mathbf{v}}$	probability density function of the received signal y
P _{avg,norm}	normalized average optical power constraint
$P_{\rm bb,elec}$	electrical power of the BB signal at a receiver
$P_{\rm b(elec)}$	average electrical bit power
Pbg	optical power of the background illumination
Pelec	dissipated electrical power
Peve	optical power irradiating the eye pupil
P _{I.elec}	total interference electrical power
P _{Lelec.th}	threshold interference electrical power
P _{I.opt}	optical power of an interfering transmitter
PLOS	received optical power from the direct rays
P _{max,norm}	normalized maximum optical power constraint
P _{min.norm}	normalized minimum optical power constraint
P _{N,elec}	electrical noise power
P _{NLOS}	received optical power from the reflecting rays
Popt	radiated optical power
$P_{\rm opt}^{\rm bb}$	radiated optical power of the BB signal
$P_{\rm opt}^{\rm PAM}$	optical power level of an <i>M</i> -PAM symbol for an infinite
υρι	non-negative linear dynamic range
$P^{\rm SM}$	optical power level in SM for an infinite non-negative
- opt	linear dynamic range
$P_{\rm D}$	ontical power at receiver
P _{S alac}	intended electrical symbol power
Ps ont	optical power of the intended transmitter
$P_{s(elec)}$	average electrical symbol power
$P_{s(opt)}$	average optical symbol power
$P_{\tilde{s}(opt)}$	effective received optical symbol power in a MIMO setup
$\widetilde{P}_{s(opt)}$ n	average optical power assigned to transmitter n_t in a
- s(opt), <i>n</i> t	MIMO setup with power imbalance
PEPsm	PEP of SM
PEPSMP	PEP of SMP
PL(d)	path loss at distance d
Рт	optical power of the transmitter
q	elementary electric charge, i.e. $q = 1.6 \times 10^{-19} \text{ C}$
$Q(\cdot)$	CCDF of a standard normal distribution
\tilde{r}	radius in a spherical coordinate system
r _{eve}	radius of the eye pupil
r _{FOV}	FOV radius at distance of 20 cm
R	coding rate

Notation

bit rate

load resistance

(vi	Notation	
	$R_{\text{LED}}(\theta, n_{\text{Tx}})$	generalized Lambertian radiation pattern of the LED
	$R_{\rm s}$	symbol rate
	$R_{ m th}$	user reservation threshold
	S	user score for fair resource reservation
	s(t)	symbol
	$\hat{s}(t)$	unfolded ACO-OFDM symbol
	$\overline{s}(t)$	unfolded and debiased ACO-OFDM symbol
	S	symbol vector
	$\widetilde{\mathbf{s}}$	distorted replica of the symbol vector at the receiver
	S	number of subbands of subcarriers, number of groups of cells
	$S_{\rm PD}$	responsivity of the PD
	SE	spectral efficiency of the modulation schemes for OWC
	SE_M	spectral efficiency of a modulation and coding scheme
	SINR	electrical SINR in O-OFDM
	SNR	electrical SNR in O-OFDM
	SNR _{Rx}	electrical SNR at the receiver side in a MIMO setup
	SNR _{Tx}	electrical SNR at the transmitter side in a MIMO setup
	t	time variable
	Т	absolute temperature
	$T_{\rm s}$	symbol duration in PPM and PAM
	$T_{\rm OF}$	transmittance of the optical filter
	TOP	shifted top clipping level
	u	dummy integration variable
	U	number of users
	U_{A}	number of users served by an AP
	U(t)	unit step function
	v(t)	impulse response of the pulse shaping filter
	V(f)	Fourier transform of $v(f)$
	$V_{ m f}$	forward voltage
	w(t)	AWGN at the receiver
	W	AWGN vector at the receiver
	$w_{\rm clip}(t)$	uncorrelated non-Gaussian time-domain non-linear
		distortion noise
	W	AWGN vector at the frequency domain subcarriers
	\mathbf{W}_{clip}	additive Gaussian non-linear distortion noise at the
	×	information-carrying subcarriers
	x(t)	biased information-carrying signal
	Х	biased information-carrying signal vector
	x	decoded signal vector at the receiver
	$x_{\rm Rx}$	position offset of the receiver array on the X-axis
	Х	direction in a Cartesian coordinate system
	y(t)	received signal
	У	received signal vector
	<i>y</i> _{Rx}	position offset of the receiver array on the Y-axis
		- · · · · · · · · · · · · · · · · · · ·

	Notation	xvii
Y	direction in a Cartesian coordinate system	
Z.	counter in summation of $W(f)$	
Ζ	direction in a Cartesian coordinate system	
$Z_{\mathbf{x}}$	length of the biased information-carrying signal vector	
Z _h	length of the impulse response vector of the optical wireless channel	
α	scaling factor for the signal power	
$lpha_{ m A}$	AP associated with UE $\mu_{\rm U}$	
$\beta_{\rm A}$	AP associated with UE $v_{\rm U}$	
$\beta_{\rm DC}$	DC-bias current	
γ	electrical SINR at receiver	
Ŷ	a priori estimate of the electrical SINR at receiver	
$\gamma_{b(elec)}$	undistorted electrical SNR per bit at the transmitter	
Γ	electrical SINR target	
$\Gamma_{b(elec)}$	effective electrical SNR per bit at the receiver	
Γ_{\min}	minimum electrical SINR target	
δ	optical power imbalance factor between the individual	
	transmitters	
$\delta(t)$	Dirac delta function	
$\Delta_{d_{\mathrm{Tx}}}^{\mathrm{SNR}_{\mathrm{Rx}}}$	penalty on the received electrical SNR for a given spacing of transmitters	
$\widehat{\Lambda}^{SNR_{Rx}}$	penalty on the received electrical SNR for a given spacing of	
Δd_{Tx}	transmitters with induced link blockage	
C	user indicator for access of an idle chunk	
د ۲	shadowing component index of user	
5 n	fraction of the light reflected in a diffuse I ambertian fashion	
n A	zenith angle in a spherical coordinate system	
0 A	angle subtended by the even pupil and the origin at $d = 20$ cm	
deve decivities	FOV semi-angle of receiver	
$\theta_{\rm FOV,KX}$	FOV semi-angle of transmitter	
$\theta_{\rm inc}$	incident angle of the incoming light/ray at the reflective	
ine	surface	
$\theta_{\rm obs}$	observation angle of the outgoing light/ray from the	
	reflective surface	
θ_{Rx}	incident angle of the receiver from the reflective surface	
$\theta_{\rm Rx,d}$	incident angle of the receiver on the direct path	
θ_{Tx}	observation angle of the transmitter towards the reflective	
	surface	
$\theta_{\mathrm{Tx,d}}$	observation angle of the transmitter on the direct path	
ĸ	factor of standard deviations quantifying the DC bias in	
	DCO-OFDM	
λ	normalized clipping level, wavelength	
λ_{bottom}	normalized bottom clipping level	
	*	

Cambridge University Press 978-1-107-04942-0 - Principles of LED Light Communications: Towards Networked Li-Fi Svilen Dimitrov and Harald Haas Frontmatter More information

xviii	Notation	
	λ_{top}	normalized top clipping level
	$\Lambda(f)$	variable related to $V(f)$ and $H(f)$ by (2.20)
	μ	mean of the clipped DCO-OFDM symbol
	$\mu_{ m U}$	UE associated with AP α_A
	$\nu_{\rm U}$	UE associated with AP β_A
	ξ	path loss exponent
	$\Xi(\cdot)$	piecewise polynomial transfer function of the transmitter
	π	number pi, $\pi \approx 3.14$
	ρ	reflection coefficient of the reflective surface
	σ	standard deviation of the OFDM time-domain signal
	$\sigma_{ m AWGN}$	standard deviation of the AWGN
	$\sigma_{ m clip}$	standard deviation of the non-linear distortion noise
	$\sigma_{ m shad}$	standard deviation of log-normal shadowing
	τ	dummy integration variable
	ϕ	azimuth angle in a spherical coordinate system
	$\phi(\cdot)$	PDF of a standard normal distribution
	$\Phi(\cdot)$	linearized transfer function of the transmitter denoting
		the double-sided signal clipping
	$\psi(\cdot)$	polynomial function of non-negative integer order, n
	Ψ	user priority penalty factor
	$\Psi(\cdot)$	normalized non-linear transfer function of the transmitter
	$\hat{\Psi}(\cdot)$	unfolded normalized non-linear transfer function in
		ACO-OFDM
	\mathcal{A}	set of chunks assigned to a user
	$\#\mathcal{A}$	number of chunks assigned to a user
	${\cal G}$	group of APs/cells
	$\mathcal{G}_{eta_{A}}$	group of APs β_A
	\mathcal{I}	integral structure for calculation of the non-linear distortion
		parameters
	\mathcal{M}	set of supported modulation schemes
	$\#\mathcal{M}$	cardinality of \mathcal{M}
	$\mathcal{N}(\mu, \sigma^2)$	normal distribution with mean μ and variance σ^2 of
		the unclipped OFDM symbol
	$\mathcal{R}(heta, oldsymbol{\phi})$	BRDF
	$\mathcal{R}_{in}(\theta,\phi,\lambda)$	portion of the BRDF related to the incoming light