

ULTRASONIC GUIDED WAVES IN SOLID MEDIA

Ultrasonic guided waves are revolutionizing the approach to nondestructive testing (NDT) and structural health monitoring (SHM). Large area inspection from a single probe position is possible, even for hidden and coated structures. Both theoretical and practical aspects of the method are presented in this book, which students and researchers can use as a textbook or reference source.

This book is intended to bring people up to speed with the latest developments in the field, especially new work in ultrasonic guided waves. It is designed for students and for researchers and managers somewhat familiar with the field in order to serve as a baseline for further work already under way. This text also includes extended problems and a corresponding solutions manual as a resource for the reader. A wave propagation animations collection will be available on the book web site. Solutions are available for instructors on the Cambridge web site. Join Dr. Joseph L. Rose on an exciting journey to explore breakthroughs in the understanding and application of ultrasonic guided waves.

Dr. Joseph L. Rose is the Paul Morrow Professor in the Engineering Science and Mechanics Department of The Pennsylvania State University. He is also chief scientist and president of FBS, Inc., a company dedicated to technology transfer, product development, and consulting on ultrasonic guided waves in NDT and SHM. Dr. Rose received his PhD from Drexel University in 1970. He is the author of 20 patents, 4 textbooks, and more than 600 articles on ultrasonics; has served as principal adviser to more than 60 PhD and 100 MS students; and is a Fellow of ASNT, ASME, IEEE, and the British Society for Nondestructive Testing. In addition, Dr. Rose has received many awards including the SPIE Lifetime Achievement Award in recognition of sustained contributions to the advancement of NDT and SHM in 2011, the Pennsylvania State University Graduate Teaching Award in 2012, and the distinction of being a finalist in the *Discover* Magazine Award for innovation in aviation and aerospace in 1995.

Ultrasonic Guided Waves in Solid Media

Joseph L. Rose

The Pennsylvania State University

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the university's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107048959

© Joseph L. Rose 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Rose, Joseph L.

Ultrasonic guided waves in solid media / Joseph L. Rose, The Pennsylvania State University. pages cm

Includes bibliographical references and index.

ISBN 978-1-107-04895-9 (hardback)

1. Wave mechanics. 2. Ultrasonic testing. 3. Attenuation (Physics) I. Title.

OC174.2.R665 2014

534'.22-dc23 2013040589

ISBN 978-1-107-04895-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Nomenclature

Pr	eface		xix
Ac	know	ledgments	xxi
1	Inti	oduction	1
	1.1	Background	1
	1.2	A Comparison of Bulk versus Guided Waves	3
	1.3	What Is an Ultrasonic Guided Wave?	5
	1.4	The Difference between Structural Health Monitoring (SHM)	
		and Nondestructive Testing (NDT)	7
	1.5	Text Preview	7
	1.6	Concluding Remarks	12
	1.7	References	14
2	Dis	persion Principles	16
	2.1	Introduction	16
	2.2	Waves in a Taut String	16
		2.2.1 Governing Wave Equation	16
		2.2.2 Solution by Separation of Variables	17
		2.2.3 D'Alembert's Solution	19
		2.2.4 Initial Value Considerations	20
	2.3	String on an Elastic Base	21
	2.4	A Dispersive Wave Propagation Sample Problem	24
	2.5	String on a Viscous Foundation	25
	2.6	String on a Viscoelastic Foundation	26
	2.7	Graphical Representations of a Dispersive System	26
	2.8	Group Velocity Concepts	28
	2.9	Exercises	32
	2.10	References	35
3	Un	bounded Isotropic and Anisotropic Media	36
	3.1	Introduction	36
	3.2	Isotropic Media	36

page xiii

vi Contents

		3.2.1 Equations of Motion	36	
		3.2.2 Dilatational and Distortional Waves	38	
	3.3	The Christoffel Equation for Anisotropic Media	39	
		3.3.1 Sample Problem	42	
	3.4	On Velocity, Wave, and Slowness Surfaces	46	
	3.5	Exercises	50	
	3.6	References	52	
4	Ref	lection and Refraction	53	
	4.1	Introduction	53	
		Normal Beam Incidence Reflection Factor	53	
		Snell's Law for Angle Beam Analysis	58	
		Critical Angles and Mode Conversion	60	
		Slowness Profiles for Refraction and Critical Angle Analysis	63	
		Exercises	64	
	4.7	References	66	
5		lique Incidence		
		Background	67	
	5.2	Reflection and Refraction Factors	68	
		5.2.1 Solid–Solid Boundary Conditions	68	
		5.2.2 Solid–Liquid Boundary Conditions	71	
		5.2.3 Liquid–Solid Boundary Conditions	72 74	
		3 Moving Forward		
		Exercises	74	
	5.5	References	75	
6		ves in Plates		
		Introduction	76	
	6.2	The Free Plate Problem	78	
		6.2.1 Solution by the Method of Potentials	79	
		6.2.2 The Partial Wave Technique	82 84	
		Numerical Solution of the Rayleigh–Lamb Frequency Equations		
		Group Velocity		
		Wave Structure Analysis		
		Compressional and Flexural Waves Miscellaneous Topics	91 92	
	0.7	•	92	
		6.7.1 Lamb Waves with Dominant Longitudinal Displacements6.7.2 Zeros and Poles for a Fluid-Coupled Elastic Layer	102	
		6.7.3 Mode Cutoff Frequency	102	
	6.8	Exercises	103	
		References	104	
7	Sur	face and Subsurface Waves	107	
	7.1	Background	107	
	7.2	Surface Waves	107	
	7.2 7.3	Surface Waves Generation and Reception of Surface Waves	107 114	

Contents vii

	7.5	Exercises	117
	7.6	References	118
8	Finit	e Element Method for Guided Wave Mechanics	120
	8.1	Introduction	120
	8.2	Overview of the Finite Element Method	120
		8.2.1 Using the Finite Element Method to Solve a Problem	120
		8.2.2 Quadratic Elements	125
		8.2.3 Dynamic Problem	126
		8.2.4 Error Control	128
	8.3	FEM Applications for Guided Wave Analysis	129
		8.3.1 2-D Surface Wave Generation in a Plate	129
		8.3.2 Guided Wave Defect Detection in a Two-Inch Steel Tube	130
	8.4	Summary	132
	8.5	Exercises	133
	8.6	References	134
9	The	Semi-Analytical Finite Element Method	135
	9.1	Introduction	135
	9.2	SAFE Formulation for Plate Structures	136
	9.3	Orthogonality-Based Mode Sorting	140
	9.4	Group Velocity Dispersion Curves	141
	9.5	Guided Wave Energy	142
		9.5.1 Poynting Vector	142
		9.5.2 Energy Velocity	142
		9.5.3 Skew Effects in Anisotropic Plates	142
	9.6	Solution Convergence of the SAFE Method	143
	9.7	Free Guided Waves in an Eight-Layer Quasi-Isotropic Plate	143
	9.8	SAFE Formulation for Cylindrical Structures	145
	9.9	Summary	153
	9.10	Exercises	153
	9.11	References	154
10	Guid	led Waves in Hollow Cylinders	155
		Introduction	155
	10.2	Guided Waves Propagating in an Axial Direction	155
		10.2.1 Analytic Calculation Approach	155
		10.2.2 Excitation Conditions and Angular Profiles	164
		10.2.3 Source Influence	166
	10.3	Exercises	171
	10.4	References	172
11	Circ	umferential Guided Waves	174
	11.1	Introduction	174
	11.2	Development of the Governing Wave Equations for	
		Circumferential Waves	175
		11.2.1 Circumferential Shear Horizontal Waves in a	
		Single-Layer Annulus	176

viii Contents

	11.2.2 Circumferential Lamb Type Waves in a			
	Single-Layer Annulus	180		
	11.3 Extension to Multilayer Annuli	184		
	11.4 Numerical Solution of the Governing Wave Equations for			
	Circumferential Guided Waves	187		
	11.4.1 Numerical Results for CSH-Waves	188		
	11.4.2 Numerical Results for CLT-Waves	193		
	11.4.3 Computational Limitations of the Analytical Formulation	199		
	11.5 The Effects of Protective Coating on Circumferential Wave			
	Propagation in Pipe	202		
	11.6 Exercises	205		
	11.7 References	206		
12	Guided Waves in Layered Structures			
	12.1 Introduction	209		
	12.2 Interface Waves	210		
	12.2.1 Waves at a Solid–Solid Interface: Stoneley Wave	210		
	12.2.2 Waves at a Solid–Liquid Interface: Scholte Wave	213		
	12.3 Waves in a Layer on a Half-Space	215		
	12.3.1 Rayleigh–Lamb Type Waves	215		
	12.3.2 Love Waves	219		
	12.4 Waves in Multiple Layers	221		
	12.4.1 The Global Matrix Method	222		
	12.4.2 The Transfer Matrix Method	227		
	12.4.3 Examples	230		
	12.5 Fluid-Coupled Elastic Layers	233		
	12.5.1 Ultrasonic Wave Reflection and Transmission	234		
	12.5.2 Leaky Guided Wave Modes	242		
	12.5.3 Nonspecular Reflection and Transmission	243		
	12.6 Exercises			
	12.7 References	245		
13	Source Influence on Guided Wave Excitation	246		
	13.1 Introduction	246		
	13.2 Integral Transform Method	247		
	13.2.1 A Shear Loading Example	247		
	13.3 Normal Mode Expansion Method	251		
	13.3.1 Normal Mode Expansion in Harmonic Loading	253		
	13.3.2 Transient Loading Source Influence	257 267		
	13.4 Exercises			
	13.5 References	268		
14	Horizontal Shear			
	14.1 Introduction	269		
	14.2 Dispersion Curves	269		
	14.3 Phase Velocities and Cutoff Frequencies	272		
	14.4 Group Velocity	273		
	14.5 Summary	274		

Contents ix

	14.6	Exercises	275
	14.7	References	275
15	Guid	led Waves in Anisotropic Media	. 276
	15.1	Introduction	276
	15.2	Phase Velocity Dispersion	277
	15.3	Guided Wave Directional Dependency	281
	15.4	Guided Wave Skew Angle	286
	15.5	Guided Waves in Composites with Multiple Layers	287
	15.6	Exercises	292
	15.7	References	293
16	Guid	led Wave Phased Arrays in Piping	. 294
	16.1	Introduction	294
	16.2	Guided Wave Phased Array Focus Theory	295
	16.3	Numerical Calculations	303
	16.4	Finite Element Simulation of Guided Wave Focusing	307
	16.5	Active Focusing Experiment	310
	16.6	Guided Wave Synthetic Focus	316
	16.7	Synthetic Focusing Experiment	319
	16.8	Summary	321
	16.9	Exercises	321
	16.10	References	322
17	Guided Waves in Viscoelastic Media		
	17.1	Introduction	323
	17.2	Viscoelastic Models	324
		17.2.1 Material Viscoelastic Models	324
		17.2.2 Kelvin-Voight Model	324
		17.2.3 Maxwell Model	325
		17.2.4 Further Aspects of the Hysteretic and Kelvin-Voight Models	326
	17.3	Measuring Viscoelastic Parameters	327
	17.4	Viscoelastic Isotropic Plate	328
	17.5	Viscoelastic Orthotropic Plate	329
		17.5.1 Problem Formulation and Solution	329
		17.5.2 Numerical Results	330
		17.5.3 Summary	333
	17.6	Lamb Waves in a Viscoelastic Layer	333
	17.7	Viscoelastic Composite Plate	334
	17.8	Pipes with Viscoelastic Coatings	340
	17.9	Exercises	342
	17.10	References	343
18		asonic Vibrations	. 345
	18.1	Introduction	345
	18.2	Practical Insights into the Ultrasonic Vibrations Problem	350
		Concluding Remarks	357
	18.4	Exercises	357
	18.5	References	358

x Contents

19	Guided Wave Array Transducers	359			
	19.1 Introduction				
	19.2 Analytical Development	360			
	19.2.1 Linear Comb Array Solution	361			
	19.2.2 Annular Array Solution	366			
	19.3 Phased Transducer Arrays for Mode Selection	370			
	19.3.1 Phased Array Analytical Development	370			
	19.3.2 Phased Array Analysis	371			
	19.4 Concluding Remarks	376			
	19.5 Exercises	376			
	19.6 References	377			
20	Introduction to Guided Wave Nonlinear Methods	378			
	20.1 Introduction	378			
	20.2 Bulk Waves in Weakly Nonlinear Elastic Media	379			
	20.3 Measurement of the Second Harmonic	380			
	20.4 Second Harmonic Generation Related to Microstructure	383			
	20.5 Weakly Nonlinear Wave Equation	384			
	20.6 Higher Harmonic Generation in Plates	388			
	20.6.1 Synchronism	388			
	20.6.2 Power Flux	391			
	20.6.3 Group Velocity Matching	393			
	20.6.4 Sample Laboratory Experiments	393			
	20.7 Applications of Higher Harmonic Generation by Guided Waves	399			
	20.8 Exercises	399			
	20.9 References	400			
21	Guided Wave Imaging Methods	402			
	21.1 Introduction	402			
	21.2 Guided Wave through Transmission Dual Probe Imaging	402			
	21.3 Defect Locus Map				
	21.4 Guided Wave Tomographic Imaging				
	21.5 Guided Wave Phased Array in Plates	412			
	21.6 Long-Range Ultrasonic Guided Wave Pipe Inspection Images	417			
	21.7 Exercises				
	21.8 References	419			
•	pendix A – Ultrasonic Nondestructive Testing Principles, Analysis, and				
Dis	splay Technology				
	A.1 Some Physical Principles	421			
	A.2 Wave Interference	425			
	A.3 Computational Model for a Single Point Source	425			
	A.4 Directivity Function for a Cylindrical Element	430			
	A.5 Ultrasonic Field Presentations	432			
	A.6 Near-Field Calculations	433			
	A.7 Angle-of-Divergence Calculations	434			
	A.8 Ultrasonic Beam Control	435			
	A.9 A Note on Ultrasonic Field Solution Techniques	435			

Contents xi

A.10	Time and Frequency Domain Analysis	436
A.11	Pulsed Ultrasonic Field Effects	436
A.12	Introduction to Display Technology	440
A.13	Amplitude Reduction of an Ultrasonic Waveform	441
A.14	Resolution and Penetration Principles	441
	A.14.1 Axial Resolution	441
	A.14.2 Lateral Resolution	442
A.15	Phased Arrays and Beam Focusing	443
	Exercises	443
A.17	References	444
Appendix	B – Basic Formulas and Concepts in the Theory of Elasticity	445
B.1	Introduction	445
B.2	Nomenclature	445
B.3	Stress, Strain, and Constitutive Equations	448
B.4	Elastic Constant Relationships	448
B.5	Vector and Tensor Transformation	449
B.6	Principal Stresses and Strains	449
B.7	The Strain Displacement Equations	450
B.8	Derivation of the Governing Wave Equation	452
	Anisotropic Elastic Constants	452
	Exercises	455
B.11	References	455
Appendix	C – Physically Based Signal Processing Concepts	
for Guide	d Waves	456
C.1	General Concepts	456
C.2	The Fast Fourier Transform (FFT)	457
	C.2.1 Example FFT Use: Analytic Envelope	460
	C.2.2 Example FFT Use: Feature Source for Pattern	
	Recognition	462
	C.2.3 Discrete Fourier Transform Properties	462
C.3	The Short Time Fourier Transform (STFFT)	463
	C.3.1 Example: STFFT to Dispersion Curves	466
C.4	The 2-D Fourier Transform (2DFFT)	467
C.5	The Wavelet Transform (WT)	472
	Exercises	477
C.7	References	477
Appendix	D – Guided Wave Mode and Frequency Selection Tips	478
D.1	Introduction	478
D.2	Mode and Frequency Selection Considerations	480
	D.2.1 A Surface-Breaking Defect	481
	D.2.2 Mild Corrosion and Wall Thinning	482
	D.2.3 Transverse Crack Detection in the Head of a Rail	485
	D.2.4 Repair Patch Bonded to an Aluminum Layer	487
	D.2.5 Water-Loaded Structures	487
	D.2.6 Frequency and Other Tuning Possibilities	489

xii	Contents
	D.2.7 Ice Detection with Ultrasonic Guided Waves

D.2.7 Ice Detection with Ultrasonic Guided Waves	491
D.2.8 Deicing	492
D.2.9 Real-Time Phased Array Focusing in Pipe	493
D.2.10 Aircraft, Lap Splice, Tear Strap, and Skin-to-Core	
Delamination Inspection Potential	495
D.2.11 Coating Delamination and Axial Crack Detection	498
D.2.12 Multilayer Structures	502
D.2.13 Concluding Remarks	502
D.3 Exercises	503
D.4 References	505
Index	507

Plate section follows page 266

Nomenclature

Latin script

1,2	Indicates material 1 or 2
A, B	Matrices in a first-order eigensystem (Ch 9)
A, A_1, A_2, \dots	Amplitude constants
A_+^{mn}	Mode weighting functions for finite size loading of a hollow
	cylinder
$A0, A1, A2, \dots$	Antisymmetric plate modes
$A(heta_i)$	Discrete weighting function for element i (Ch 16)
a	Acceleration (Ch 2); Coefficient vector for incident wave
	amplitude (Ch 5); Dimensionless length variable (Ch 17)
В	Amplitude constant; Ratio of acoustic impedances, $B = \frac{W_2}{W_1}$
D	(Ch.4) W_1
[6]	(Ch 4)
[C]	Global damping matrix (Ch 8)
C	Amplitude constant; Elastic constant (material stiffness)
C C	matrix; Viscous damping coefficient (Ch 2)
C_{iklm}, C_{nm}	Single entry in the elastic constant matrix (Ch 3)
c , c_0	Velocity of wave propagation
c_E	Velocity of energy transport
c_f	Fluid bulk wave velocity
c_g	Group velocity
c_L	Bulk longitudinal wave velocity
c_p	Phase velocity
c_{plate}	Plate mode wave velocity
c_R	Rayleigh wave velocity
c_T, c_S	Bulk transverse (shear) wave velocity
$D(p,\omega)$	Coefficient matrix (Ch 11)
D	Amplitude constant; Cross-sectional area of a
	hollow cylinder (Ch 10)
$D_{\scriptscriptstyle B}^{\scriptscriptstyle (m)}$	Coefficient matrix relating to the inner boundary of
	layer <i>m</i> (Ch 11)
$D_T^{(m)}$	Coefficient matrix relating to the outer boundary of
-	1 (Cl. 11)

xiii

layer *m* (Ch 11)

xiv Nomenclature

$\{\mathbf{d}\}^{(e)}$	Nodal displacement vector (Ch 8)
$\{\dot{d}\}$	Velocity vector (Ch 8)
$\{\ddot{a}\}$	Acceleration vector (Ch 8)
d	Plate or layer thickness; Piston diameter (App A)
dP_i	Change in phase of wave component i (Ch 2)
ds	Arc length (Ch 2)
\boldsymbol{E}	Green-Lagrange strain (Ch 20)
E	Young's modulus; Mode excitability function (Ch 19)
\hat{E}	Energy density (Ch 2)
e	Mathematical constant, $e \approx 2.71828$
\mathbf{F}	External force (load) vector (Ch 8, 9); Deformation
-	gradient (Ch 20)
F	Tension force (Ch 2); Excitation spectrum of transducer
	(Ch 19)
f	Frequency; Body force; Unknown coefficients that are part of
J	the potentials equation (Ch 10)
f(1,1)	Nonlinear forcing function associated with nonlinear terms
v	from the primary wave field (Ch 20)
$f^{2D \text{ comb}}$	Two-dimensional comb transducer loading geometry (Ch 19)
f^{ann}	Annular array transducer loading geometry (Ch 19)
f^{comb}	Comb transducer loading geometry (Ch 19)
f_n^{surf}	Nonlinear surface force (Ch 20)
f_n^{vol}	Nonlinear volume force (Ch 20)
fd	Frequency-thickness product
G	Amplitude factor relative to transducer loading amplitude
	(Ch 19)
$\mathbf{G}(\omega)$	Fourier transform of $G(\theta)$ (Ch 16)
$G(\theta)$	Total angular profile of the phased array on a hollow cylinder
	(Ch 16)
H	Displacement gradient (Ch 20)
Н	Layer thickness; Hankel function (Ch 19)
$\mathbf{H}(\omega)$	Fourier transform of $H(\theta)$ (Ch 16)
\overrightarrow{H}	Equivoluminal vector potential (Ch 10)
$H(\theta)$	Angular profile at a certain distance in the cylinder for
	element 0 in the phased array (Ch 16)
h	Half plate thickness; Layer thickness (Ch 12, 15); Unknown
	coefficients that are part of the potentials equation (Ch 10)
I	Unit matrix (Ch 9)
I	Incident waveform amplitude (Ch 4); Wave intensity (Ch 4)
I, i, J, j	Index values
i	Imaginary number, $i = \sqrt{-1}$; Mode number
J	Bessel function of the first kind
[K]	Global stiffness matrix (Ch 8)
$\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3$	Stiffness matrices (Ch 9)
K	Elastic spring constant (Ch 2)
k	Wave number; Circular wave number (Ch 11); Index for
\overline{k}	transmitter-receiver pair (Ch 21)
K	Complex wave number (Ch 2); Wave number vector (Ch 3)

> Nomenclature χV

k, l, m, n	Index values
$k_{ m Im}$	Imaginary component of wave number
k_r, k_{Re}	Real component of wave number
$\mathbf{L}_{\mathrm{x}},\mathbf{L}_{\mathrm{y}},\mathbf{L}_{\mathrm{z}}$	Matrices in the strain-displacement equation (Ch 9)
L	Half length of loading in the axial direction on a hollow
	cylinder (Ch 10, 16); Length of plate (Ch 18); Element
	transverse length (Ch 19)
L(m,n)	Longitudinal mode of order (m,n) in a hollow cylinder (Ch 10)
l_z	Ratio of z-direction and x-direction wavenumbers, $l_z = \frac{k_z}{k_x}$ (Ch 6)
[M], M	Global mass matrix (Ch 8, 9)
M	Coefficient matrix for wave amplitudes (Ch 5); Mode number (Ch 6)
M, m	Mass (Ch 2); Circumferential order of a wave mode (Ch 10, 16)
N	Normal vector of the loading surface; Shape function matrix (Ch 9)
N	Number array elements; Shape functions (Ch 8, 9); Number
	of nodes through plate thickness in SAFE analysis (Ch 18);
	Number of data points (Ch 21)
n	Outward normal to a surface (Ch 20)
n	Mode number; Unit normal (Ch 6); Mode group index (Ch 16);
	Element number in an array (Ch 21)
n_k, n_l	Direction cosines of the normal to the wave front
11/6/11	$(e.g., k_k = kn_k)$
{ P }	Body force in volume V (Ch 8)
\mathbf{P}, P	Acoustic Poynting vector, also called power flow or flux
p	Variable comparing the phase and bulk longitudinal
	wavenumbers, $p = \sqrt{\frac{\omega^2}{c_L^2} - k^2}$ (Ch 6); Angular wave number,
	p = kR (Ch 11); Loading distribution (Ch 19); Pressure field
	amplitude (App A)
$p_1(\theta)$	Circumferential loading distribution function (Ch 10, 16)
$p_2(z)$	Axial loading distribution function (Ch 10, 16)
Q	Nodal displacement vector (Ch 9)
q	Variable comparing the phase and bulk torsional (shear) $ \frac{\omega^2}{\omega^2} = \frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1}{2}} $
	wavenumbers, $q = \sqrt{\frac{\omega^2}{c_T^2} - k^2}$ (Ch 6); Body force or external
70	loading per unit length (Ch 2)
R	Oblique incidence reflection factor (Ch 6); Array radius
-M ()	(Ch 21)
$R_{n\alpha}^{M}(r)$	Distribution of the particle displacement produced by mode
	(M, n) in the α direction (Ch 16)
r	Radial coordinate direction (cylindrical coordinate system);
	Variable comparing the phase and bulk longitudinal
	wavenumbers, $r = \sqrt{k^2 - k_L^2}$ (Ch 6)
r_m	Inner radius of the <i>m</i> th layer of a hollow cylinder (Ch 11)

xvi Nomenclature

S	Symmetric Lamb mode term in oblique incidence reflection
	factor equation; Surface over which calculation is to take
	place (Ch 8)
<i>S0</i> , <i>S1</i> , <i>S2</i> ,	Symmetric plate modes
S	Variable comparing the bulk longitudinal and torsional (shear)
	wavenumbers, $s = \sqrt{k_L^2 - k_T^2}$; Array element spacing (pitch)
T	(Ch 18, 19); Data set (Ch 21)
T	Superscript indicating transpose (Ch 8) Unitary transformation matrix (Ch 9); Particle stress
1	tensor (Ch 16)
$\mathbf{T}^{(e)}$	Nodal external tractions (Ch 9)
$ ilde{T}$	Second Piola-Kirchhoff stress (Ch 20)
T	Stress transmission coefficient (Ch 4)
$T_{ m o} \ \widehat{T}$	First Piola-Kirchhoff stress (Ch 20)
-	Stress field (Ch 10)
T(m,n)	Torsional mode of order (m,n) in a hollow cylinder (Ch 10)
T_m	Modal stress (Ch 20)
$\frac{t}{t, \overline{t}}$	Time Surface traction (Ch 6 10)
*	Surface traction (Ch 6, 19) Physical time delay applied to element <i>i</i> (Ch 16)
$\overset{t_i}{\overrightarrow{U}}, \overline{u}\;, oldsymbol{u}$	Displacement vector
$U_{\alpha\beta}$ ($\alpha = x, y, z$;	Nodal displacement of the node β in the α direction (Ch 9)
$\beta = 1, 2, 3$	(· · · ·)
и	Displacement
ü	Velocity, the first derivative of displacement with respect
-	to time
ü	Acceleration, the second derivative of displacement with
u'	respect to time First derivative of displacement with respect to coordinate
и	direction x (Ch 2)
$u_{,xx}$	Second derivative of displacement with respect to coordinate
, , , ,	direction x (Ch 2)
$u_{\rm R}(\theta_{\rm i},t)$	Signal received from the <i>i</i> th transducer segment (Ch 16)
$u_{\rm s}(\theta,z)$	Synthesized pipe image (Ch 16)
V	Particle velocity vector (Ch 5)
$V \rightarrow$	Volume of an element (Ch 9)
$\overrightarrow{\overline{v}}_{v}$	Particle velocity field (Ch 10) Normalized surface velocity of guided wave mode v (Ch 19)
v_{ν}	Displacement along coordinate direction 2
$\overset{\iota}{W}$	Acoustic impedance, $W = \rho c$ (Ch 4)
W_m	Bessel function of mth order (Ch 10)
w	Displacement along coordinate direction 3; Array element
	width (Ch 18, 19)
X	Cartesian coordinate direction 1; Distance; An unknown
Y	Fluid influence term in oblique incidence reflection factor
	equation (Ch 6); Bessel function
у	Cartesian coordinate direction 2

Nomenclature xvii

 Z_m Bessel function of *m*th order (Ch 10) z Cartesian coordinate direction 3; Axial coordinate direction (cylindrical coordinate system)

Greek script

 α_{g}

Γ

Wedge angle (Ch 1); Imaginary component of wavenumber
 (Ch 2, 6); Reflected wave angle (Ch 5); Half length of loading in the angular direction on a hollow cylinder (Ch 10); Variable comparing the phase and bulk longitudinal wavenumbers,

 $\alpha = \sqrt{\frac{\omega^2}{c_L^2} - k^2}$ (Ch 10); Ratio of wavenumber in the x₃ direction

to the wavenumber in x_1 direction (Ch 12, 15); Attenuation factor (Ch 17); Complex amplitude coefficient (Ch 18)

Angular group velocity (Ch 11)

 $\alpha_g(\phi)$ Angular dependence of the guided wave amplitude (Ch 21) α_i Component of the eigenvector from the solution to the

Christoffel equation

 α_n Complex wavenumbers which are poles to the integrands in

Equation (17.24b) (Ch 17)

 α_p Angular phase velocity (Ch 11)

β Refracted wave angle (Ch 5); Stiffness matrix coefficient for

Rayleigh damping (Ch 8); Variable comparing the phase and

bulk torsional (shear) wavenumbers, $\beta = \sqrt{\frac{\omega^2}{c_T^2} - k^2}$ (Ch 10);

Transformation matrix (Ch 15); Nonlinearity parameter (Ch 20);

Scaling parameter for RAPID (Ch 21)

> Equation (17.24b) (Ch 17) Surface of an element (Ch 9)

 Γ_{im} Christoffel acoustic tensor Reflection coefficient (Ch 21)

Δ Length of a 1-D element (Ch 8); Area of a 2-D element (Ch 8);

Dilatation, $\Delta = \nabla \cdot u$ (Ch 11)

 δ Signal magnification coefficient (Ch 21)

 δ_{im} Kronecker delta, which is 0 for $i \neq m$ and 1 for i = m

δ**u** Virtual displacement (Ch 9)

δε Virtual strain (Ch 9) ε, ${ε}$ Strain; Strain vector (Ch 8)

Dimensionless length variable (Ch 17)

η Coefficient of viscosity (Ch 17); Surface domain for applied

traction (Ch 19)

 $\Theta_{\varepsilon}^{M}(M\theta)$ Angular distribution function $(\cos(n\theta) \text{ or } \sin(n\theta))$ of the particle

displacement produced by mode (n, M) in the α direction

(Ch 16)

xviii

Cambridge University Press 978-1-107-04895-9 - Ultrasonic Guided Waves in Solid Media Joseph L. Rose Frontmatter More information

	Homonolataro
θ	Wave angle; Angular coordinate direction (cylindrical coordinate
	system) (Ch 10)
$ heta_{ m cr}$	Critical angle
Λ	Wavelength (Ch 12); Coefficient matrix (Ch 18)
λ	Lamé constant; Wavelength; Eigenvalue (Ch 18)
λ_{im}	Christoffel acoustic tensor
$\lambda_{ m R}$	Rayleigh surface wave wavelength
μ	Shear modulus; Guided wave mode number (Ch 18)
ν	Poisson's ratio
ξ, ξ	Finite element shape function variable (Ch 9); Dimensionless
	length variable(Ch 17)
\prod_{a}	Rectangle function (Ch 19)
ρ	Density; Mass density per length (Ch 2); Transducer traction
	density (Ch 19); Correlation coefficient (Ch 21)
$ ho_f$	Fluid density (Ch 6)
$\{\sigma\}, \overline{\sigma}$	Stress vector (Ch 8); Transverse stress field (Ch 18)
σ	Stress; Cauchy stress (Ch 20); Standard deviation (Ch 21)
au	Surface traction (Ch 14); Time delay (Ch 19)
{Φ}	Surface traction (Ch 8)
Φ	Dilatational scalar potential for Helmholtz decomposition,
	associated with longitudinal waves; Skew angle (Ch 15)
$\Phi_g(\phi)$	Angular dependence of phase variations (Ch 21)
φ	Skew angle (Ch 3); Phase angle for sinusoidal wave (Ch 2)
$oldsymbol{\phi}_0$	Beam steering angle (Ch 21)
$oldsymbol{\phi}_i$	Phase of function $A(\theta_i)$ (Ch 16)
ϕ_n	Phase delay applied to element n (Ch 19)
ψ	Eigenvectors from the SAFEM eigenvalue problem (Ch 9)
ψ_n	Angular locations of array elements (Ch 21)
$\Psi, \overline{\Psi}$	Vector potential for Helmholtz decomposition, associated with
	torsional (shear) waves
ω	Rotation vector, $\omega = \frac{1}{2} \nabla \cdot u$ (Ch 11)
ω	Circular (angular) frequency

Nomenclature

Other symbols and notations

ጥ	Complex conjugate
<>	Time average of variable inside bracket
\otimes	Convolution operator (Ch 16)
\otimes^{-1}	Deconvolution operator (Ch 16)

Preface

This book builds on my 1999 book, Ultrasonic Waves in Solid Media. Like its predecessor, this book is intended to bring people up to speed with the latest developments in the field, especially new work in ultrasonic guided waves. It is designed for students and for researchers and managers familiar with the field in order to serve as a baseline for further work already under way. I hope to journey with you to provide more breakthroughs in the understanding and application of ultrasonic guided waves. The goal is to improve the health of individuals, industries, and national infrastructures through improved methods of Non-destructive Evaluation (NDE). The purpose of this book is to expand on many of the topics that were introduced in my first book. Several chapters are almost the same, but there are many new fundamental topic chapters with a total emphasis in this book being directed toward the basic principles of ultrasonic guided waves. The field of ultrasonic guided waves itself is treated as a new and separate field compared to ultrasonics and other inspection disciplines as indicated in some of the efforts put forward in inspection certification by the American Society for Non-destructive Testing (ASNT) and also in code requirements in such groups as the American Society for Mechanical Engineers (ASME) and the Department of Transportation (DOT).

The book begins with an overview and background materials in Chapters 1 through 7 and then continues on to more advanced topics in Chapters 8 through 21.

I have had the good fortune to witness the growth of ultrasonic guided waves in Non-destructive Testing (NDT) and Structural Health Monitoring (SHM) since 1985. I have been deeply interested in safety and improved diagnostics utilizing wave propagation concepts. Wave phenomena can be used to evaluate material properties nondestructively as well as to locate and measure defects in critical structures. This work has led to devices that have become valuable quality control tools and/or inservice inspection procedures for structures such as critical aircraft, pipeline, bridge, and nuclear power components whose integrity is vital to public safety.

My first exposure (1970 to 1985) to ultrasonic NDE – beyond basic pulse-echo and through-transmission testing – focused on signal processing and pattern recognition. New tomographic ultrasonic imaging procedures were developed that employed special features to assist in defect classification; these procedures supplemented or replaced the standard more localized ultrasonic test methods. In

xix

xx Preface

the late 1970s, ultrasonic research was extended to medical applications. I explored linear phased array transducer systems used in real-time medical imaging. Of special interest to me at the time was tissue classification, in which we worked on differentiating malignant from benign tissue growth.

Around 1985, a newer version of ultrasonics in waveguides was conceived for faster and more sensitive ultrasonic examination. Some pioneering work on oblique incidence of the more localized ultrasonic method onto a bonded structure was carried out that could easily place longitudinal and shear energy into the bondline. The process was tedious and difficult to carry out. It was found that ultrasonic guided waves, however, could easily impinge both longitudinal and shear energy into the structure. Hence, guided wave activity was further developed for such adhesively bonded structures. Further research also revealed that guided waves – waves that travel along a surface or along a rod, tube, or platelike structure – could not only produce the same kind of two-dimensional particle velocity as that in oblique incidence but could also be much more efficient than the traditional technique of point-by-point examination. These guided wave research and application efforts continue today.

Guided wave concepts have been applied to examine the tubing in power plants and pipelines in chemical processing facilities and, importantly, to ensure the safety of large petroleum and gas pipelines. Because of their unique capabilities, guided wave techniques can be used to find tiny defects – over large distances, under adverse conditions, in structures with insulation and coatings, and in harsh environments.

Engineers, technicians, and students involved in ultrasonic NDE will appreciate the usefulness of this textbook. Even though the mathematics is sometimes detailed and sophisticated, the treatment can also be read by managers without detailed understanding of the concepts. They may find this book useful as it is designed to be read from a "black box" point of view so they can develop an understanding of what engineers, technicians, and students are talking about.

Overall, the material presented here in wave mechanics – and, in particular, guided wave mechanics – establishes a framework for the creative data collection and signal processing needed to solve many problems using ultrasonic NDE and SHM. I therefore hope that this book will be used as a reference in ultrasonic NDE by individuals at any level and as a textbook for seniors and graduate students. It is also hoped that this book will expand and promote the use of guided wave technology on both national and international levels.

Acknowledgments

Thanks are given to many individuals for their work efforts, discussions, and contributions in wave mechanics over the past twenty years. A special tribute is made to Dr. Aleksander Pilarski, who passed away on January 6, 1994. "Olek" worked with me as a visiting professor at Drexel University and at The Pennsylvania State University from 1986 to 1988 and from 1992 to 1994. His energetic and enthusiastic style, as well as his technological contributions, had a strong influence on many of us. He was a dear friend whose memory will remain forever.

Thanks are given to all of my PhD students and many MS students for their work efforts and valuable discussions. In particular, special thanks for assistance in the preparation of this text are given to the following very talented individuals, with a brief description of their backgrounds.

Dr. Michael Avioli has worked with me for more than twenty-five years providing signal processing and pattern recognition support in guided wave analysis. He made special contributions in transform methods.

Cody Borigo is currently an engineer at FBS, Inc., and is conducting his PhD thesis research with me at The Pennsylvania State University. His research experience includes guided wave NDE in composites, guided wave tomography, ultrasonic vibrations, phased annular array transducers, and ultrasonic ice sensing and deicing for helicopters and fixed-wing aircraft.

Dr. Jason Philtron received his PhD in Acoustics with me from The Pennsylvania State University in 2013. He is currently a postdoc in my ultrasonic research group. Dr. Philtron's research has focused on ultrasonic guided wave bond evaluation in thick structures, the use of phased arrays for optimal guided wave mode and frequency selection, guided wave tomography, and ultrasonic ice sensing.

Huidong Gao was born in Nantong, China, in 1978. He received his BS and MS degrees from Nanjing University, China, and his PhD degree with me from The Pennsylvania State University in 2007. Dr. Gao is now a principal research engineer at Innerspec Technologies, Inc. His primary research interest is advanced ultrasonic NDT techniques including guided waves, electromagnetic acoustic transducers (EMATs), and high-power UT applications. Dr. Gao is the 2011 Young NDT Professional Award recipient and the author of *Ultrasonic Testing*, a two-volume series book for NDT personnel training published by the ASNT.

xxii

Acknowledgments

Cliff Lissenden is a professor of engineering science and mechanics at The Pennsylvania State University. He came to The Pennsylvania State University in 1995 with expertise in mechanical behavior of materials. Dr. Lissenden now specializes in the use of ultrasonic guided waves for SHM and NDE. His current research investigates monitoring adhesively bonded or mechanically fastened joints in platelike structures and the generation of wave modes at higher harmonics to characterize precursors to macroscale damage.

Yang Liu is currently a research assistant on nonlinear methods in the Guided Wave NDE Lab, The Pennsylvania State University with Dr. Lissenden and myself.

Vamshi Chillara is a PhD candidate in the Engineering Science and Mechanics Department at The Pennsylvania State University.

Dr. Jing Mu, a scientist at FBS, Inc., obtained her PhD degree with me from The Pennsylvania State University in August 2008. Her research experience includes guided wave mechanics analysis and Finite Element Method (FEM) simulations. Dr. Mu specializes in ultrasonic guided wave inspection techniques of pipe structures including active phased array focusing, synthetic focusing, and advanced signal processing for pipe imaging.

Dr. Jason K. Van Velsor received his PhD in engineering science and mechanics with me from The Pennsylvania State University in 2009. He is currently an employee of Structural Integrity Associates. Dr. Van Velsor is an authority in the field application of guided wave technology for the long-range inspection of piping and holds multiple domestic and international certifications in this area. His practical experience includes the application of guided wave methods in nuclear and fossil power generation, oil and gas (on-shore and off-shore), gas transmission, water and wastewater, and pulp and paper industries.

Dr. Fei Yan is a scientist at FBS, Inc. He obtained his PhD degree with me in engineering mechanics from The Pennsylvania State University in 2008. Dr. Yan's research focuses on ultrasonic guided wave NDE and SHM applications including a variety of structures and composite materials. In particular, he has been involved in the development of guided wave phased arrays for isotropic and anisotropic composite plate structures, phased comb and annular array transducers, guided wave tomography SHM systems, and an ultrasonic vibration method.

Dr. Li Zhang is a scientist for FBS, Inc., and has focused on theoretical calculations and numerical simulations of guided wave behavior in various structures, phased array focusing and synthetic focusing in pipelines, and numerical simulations of ultrasonic sensor characteristics. She also obtained a PhD with me at The Pennsylvania State University.

Thanks also to The Pennsylvania State University and to all who have funded my research over the years. Finally, of course I thank my wife Carole and my entire family for their patience, love, and support in all of my activities.