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1

All concepts are Kan extensions

Given a pair of functorsK : C → D, F : C → E , it may or may not be possible
to extend F along K . Obstructions can take several forms: two arrows in C
with distinct images in E might be identified in D, or two objects might have
empty hom-sets in C and E but not in D. In general, it is more reasonable to ask
for a best approximation to an extension taking the form of a universal natural
transformation pointing either from or to F . The resulting categorical notion,
quite simple to define, is surprisingly ubiquitous throughout mathematics, as
we shall soon discover.

1.1 Kan extensions

Definition 1.1.1 Given functors F : C → E , K : C → D, a left Kan exten-
sion of F along K is a functor LanKF : D → E together with a natu-
ral transformation η : F ⇒ LanKF ·K such that for any other such pair
(G : D → E, γ : F ⇒ GK), γ factors uniquely through η, as illustrated:1
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Dually, a right Kan extension of F along K is a functor RanKF : D → E
together with a natural transformation ε : RanKF ·K ⇒ F such that for any

1 Writing α for the natural transformation LanKF ⇒ G, the right-hand pasting diagrams express
the equality γ = αK · η, i.e., that γ factors as F

η �� LanKF ·K αK �� GK.
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4 All concepts are Kan extensions

(G : D → E, δ : GK ⇒ F ), δ factors uniquely through ε, as illustrated:

C F
��

K ���
��

��
�

⇑ε
E

D
RanKF

���
�

�

C F
��

K ���
��

��
�

⇑δ
E

=
C F

��

K ���
��

��
�

⇑ε
∃!�

E

D
G

��������
D

RanKF
��

G

��

Remark 1.1.2 This definition makes sense in any 2-category, but for sim-
plicity, this discussion is relegated to the 2-category Cat of categories, functors,
and natural transformations.

The intuition is clearest when the functor K of Definition 1.1.1 is an inclu-
sion; assuming certain (co)limits exist, whenK is fully faithful, the left and right
Kan extensions do in fact extend the functor F alongK; see 1.4.5. However in
general, this need not be the case:

Exercise 1.1.3 Construct a toy example to illustrate that if F factors through
K along some functor H , it is not necessarily the case that (H, 1F ) is the left
Kan extension of F along K .

Remark 1.1.4 In unenriched category theory, a universal property is
encoded as a representation for an appropriate Set-valued functor. A left Kan
extension of F : C → E along K : C → D is a representation for the functor

EC(F,− ◦K) : ED → Set

that sends a functor D → E to the set of natural transformations from F to its
restriction along K . By the Yoneda lemma, any pair (G, γ ) as in Definition
1.1.1 defines a natural transformation

ED(G,−)
γ

�� EC(F,− ◦K).

The universal property of the pair (LanKF, η) is equivalent to the assertion that
the corresponding map

ED(LanKF,−)
η

�� EC(F,− ◦K)

is a natural isomorphism, that is, that (LanKF, η) represents this functor.

Extending this discussion, it follows that if, for fixed K , the left and right
Kan extensions of any functor C → E exist, then these define left and right
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1.1 Kan extensions 5

adjoints to the precomposition functor K∗ : ED → EC :

ED(LanKF,G) ∼= EC(F,GK) EC

LanK

��

RanK

		

⊥

⊥
ED

K∗

 EC(GK,F ) ∼= ED(G,RanKF )

(1.1.5)

The 2-cells η are the components of the unit for LanK � K∗, and the 2-cells ε
are the components of the counit for K∗ � RanK . The universal properties of
Definition 1.1.1 are precisely those required to define the value at a particular
object F ∈ EC of a left and right adjoint to a specified functor, in this case K∗.

Conversely, by uniqueness of adjoints, the objects in the image of any left or
right adjoint to a precomposition functor are Kan extensions. This observation
leads to several immediate examples.

Example 1.1.6 A small category with a single object and only invertible
arrows is precisely a (discrete) group. The objects of the functor category
VectGk are G-representations over a fixed field k; arrows are G-equivariant
linear maps. If H is a subgroup of G, restriction VectGk → VectHk of a G-
representation to anH -representation is simply precomposition by the inclusion
functor i : H ↪→ G. This functor has a left adjoint, induction, which is left Kan
extension along i. The right adjoint, coinduction, is right Kan extension along i:

VectGk res �� VectHk

coinGH

��

indGH

��

⊥

⊥
(1.1.7)

The reader unfamiliar with the construction of induced representations need not
remain in suspense for very long; see Theorem 1.2.1 and Example 1.2.9. Similar
remarks apply for G-sets, G-spaces, based G-spaces, or indeed G-objects in
any category – although in the general case, these adjoints might not exist.

Remark 1.1.8 This example can be enriched (cf. 7.6.9): extension of scalars,
taking an R-moduleM to the S-moduleM ⊗R S, is the Ab-enriched left Kan
extension along an Ab-functorR→ S between one-object Ab-categories, more
commonly called a ring homomorphism.

Example 1.1.9 Let Δ be the category of finite non-empty ordinals [0], [1], . . .
and order-preserving maps. Set-valued presheaves on Δ are called simplicial
sets. Write Δ≤n for the full subcategory on the objects [0], . . . , [n]. Restriction
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6 All concepts are Kan extensions

along the inclusion functor in : Δ≤n ↪→ Δ is called n-truncation. This functor
has both left and right Kan extensions:

SetΔ
op

i∗n �� SetΔ
op
≤n

Ranin



Lanin

��

⊥

⊥

The composite comonad on SetΔ
op

is skn, the functor that maps a simplicial
set to its n-skeleton. The composite monad on SetΔ

op
is coskn, the functor that

maps a simplicial set to its n-coskeleton. Furthermore, skn is left adjoint to
coskn, as is the case for any comonad and monad arising in this way.

Example 1.1.10 The category Δ is a full subcategory containing all but the
initial object [−1] of the category Δ+ of finite ordinals and order-preserving
maps. Presheaves on Δ+ are called augmented simplicial sets. Left Kan exten-
sion defines a left adjoint to restriction,

SetΔ
op
+ res ��

⊥

⊥
SetΔ

op

π0

��

triv

��

that augments a simplicial set X with its set π0X of path components. Right
Kan extension assigns a simplicial set the trivial augmentation built from the
one-point set.

A final broad class of examples has a rather different flavor.

Example 1.1.11 In good situations, the composite of a functor F : C → D
between categories equipped with subcategories of “weak equivalences” and
the localization functor D → HoD admits a right or left Kan extension along
the localization functor C → HoC, called the total left derived functor or total
right derived functor, respectively. This is the subject of Chapter 2.

1.2 A formula

Importantly, if the target category E has certain limits and colimits, then right
and left Kan extensions for any pair of functors exist and furthermore can be
computed by a particular (co)limit formula. Recall that a category is small if it
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1.2 A formula 7

has a mere set of morphisms and locally small if it has a mere set of morphisms
between any fixed pair of objects.

Theorem 1.2.1 ([50, X.4.1–2]) When C is small, D is locally small, and E is
cocomplete, the left Kan extension of any functor F : C → E along any functor
K : C → D is computed at d ∈ D by the colimit

LanKF (d) =
∫ c∈C

D(Kc, d) · Fc (1.2.2)

and in particular necessarily exists.

Some explanation is in order. The “·” is called a copower or a tensor: if S is
a set and e ∈ E , then S · e is the S-indexed coproduct of copies of e. Assuming
these coproducts exist in E , the copower defines a bifunctor Set× E → E .

The integral
∫ C , called a coend, is the colimit of a particular diagram con-

structed from a functor that is both covariant and contravariant in C. Given
H : Cop × C → E , the coend

∫ C
H is an object of E equipped with arrows

H (c, c) → ∫ C
H for each c ∈ C that are collectively universal with the prop-

erty that the diagram

H (c′, c)
f∗

��

f ∗

��

H (c′, c′)

��

H (c, c) ��
∫ C
H

(1.2.3)

commutes for each f : c→ c′ in C. Equivalently,
∫ C
H is the coequalizer of

the diagram

∐
f∈arr C

H (cod f, dom f )
f ∗

��

f∗

��
∐
c∈ob C

H (c, c) �����
∫ C
H (1.2.4)

Remark 1.2.5 If H : Cop × C → E is constant in the first variable, that is,
if H is a functor C → E , then the coequalizer (1.2.4) defines the usual colimit
of H .

Remark 1.2.6 Assuming these colimits exist, the coend (1.2.2) is isomorphic

to the colimit of the compositeK/d
U−→ C F−→ E of F with a certain forgetful

functor. The domain of U is the slice category, a special kind of comma
category whose objects are pairs (c ∈ C,Kc→ d ∈ D) and whose morphisms
are arrows in C that make the obvious triangle in D commute. Both formulas
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8 All concepts are Kan extensions

encode a particular weighted colimit of F in a sense that is made precise in
Chapter 7. In particular, we prove that these formulas agree in 7.1.11.

Exercise 1.2.7 Let C be a small category, and write C� for the category
obtained by adjoining a terminal object to C. Give three proofs that a left Kan
extension of a functor F : C → E along the natural inclusion C → C� defines
a colimit cone under F : one using the defining universal property, one using
Theorem 1.2.1, and one using the formula of 1.2.6.

Dually, the power or cotensor eS of e ∈ E by a set S is the S-indexed product
of copies of e, defining a bifunctor Setop × E → E that is contravariant in the
indexing set. ForH : Cop × C → E , an end

∫
C H is an object in E together with

morphisms satisfying diagrams dual to (1.2.3) and universal with this property.

Exercise 1.2.8 Let F,G : C ⇒ E , with C small and E locally small. Show
that the end over C of the bifunctor E(F−,G−) : Cop × C → Set is the set of
natural transformations from F to G.

Example 1.2.9 Let us return to Example 1.1.6. In the category Vectk , finite
products and finite coproducts coincide: these are just direct sums of vector
spaces. If V is anH -representation andH is a finite index subgroup ofG, then
the end and coend formulas of Theorem 1.2.1 and its dual both produce the
direct sum of copies ofV indexed by left cosets ofH inG. Thus, for finite index
subgroups, the left and right adjoints of (1.1.7) are the same; that is, induction
from a finite index subgroup is both left and right adjoint to restriction.

Example 1.2.10 We can use Theorem 1.2.1 to understand the functors skn
and coskn of Example 1.1.9. If m > n and k ≤ n, each map in Δop([k], [m]) =
Δ([m], [k]) factors uniquely as a non-identity epimorphism followed by a
monomorphism.2 It follows that every simplex in sknX above dimension m
is degenerate; indeed, sknX is obtained from the n-truncation of X by freely
adding back the necessary degenerate simplices.

Now we use the adjunction skn � coskn to build some intuition for the
n-coskeleton. Suppose X ∼= cosknX. By adjunction, an (n+ 1)-simplex
corresponds to a map skn�n+1 = ∂�n+1 → X. In words, each (n+ 1)-sphere
in an n-coskeletal simplicial set has a unique filler. Indeed, any m-sphere in an
n-coskeletal simplicial set, with m > n, has a unique filler. More precisely, an
m-simplex is uniquely determined by the data of its faces of dimension n and
below.

Exercise 1.2.11 Directed graphs are functors from the category with two
objects E,V and a pair of maps s, t : E ⇒ V to Set. A natural transforma-
tion between two such functors is a graph morphism. The forgetful functor

2 This is the content of the Eilenberg–Zilber lemma [28, II.3.1, pp. 26–27]; cf. Lemma 14.3.7.
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1.3 Pointwise Kan extensions 9

DirGph → Set that maps a graph to its set of vertices is given by restricting
along the functor from the terminal category 1 that picks out the object V . Use
Theorem 1.2.1 to compute left and right adjoints to this forgetful functor.

1.3 Pointwise Kan extensions

A functor L : E → F preserves (LanKF, η) if the whiskered composite
(LLanKF,Lη) is the left Kan extension of LF along K:

C F
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K ���
��

��
��

⇓η

E L
�� F

∼=

C LF
��

K ���
��

��
��

⇓η′
F

D
LanKF

���������
D

LanKLF

����������

Example 1.3.1 The forgetful functor U : Top → Set has both left and right
adjoints and hence preserves both limits and colimits. It follows from Theorem
1.2.1 that U preserves the left and right Kan extensions of Example 1.1.6.

Example 1.3.2 The forgetful functor U : Vectk → Set preserves limits but
not colimits because the underlying set of a direct sum is not simply the coprod-
uct of the underlying sets of vectors. Hence it follows from 1.2.1 and 1.1.6 that
the underlying set of a G-representation induced from an H -representation is
not equal to the G-set induced from the underlying H -set.

Even when we cannot appeal to the formula presented in 1.2.1 adjoint func-
tors preserve compatibly handed Kan extensions:

Lemma 1.3.3 Left adjoints preserve left Kan extensions.

Proof Suppose given a left Kan extension (LanKF, η) with codomain E and
suppose further that L : E → F has a right adjoint R with unit ι and counit ν.
Then, given H : D → F , there are natural isomorphisms

FD(LLanKF,H ) ∼= ED(LanKF,RH ) ∼= EC(F,RHK) ∼= FC(LF,HK).

TakingH = LLanKF , these isomorphisms act on the identity natural transfor-
mation, as follows:

1LLanKF �→ ιLanKF �→ ιLanKF ·K · η �→ νLLanKF ·K · LιLanKF ·K · Lη = Lη.
Hence (LLanKF,Lη) is a left Kan extension of LF along K .

Unusually for a mathematical object defined by a universal property, generic
Kan extensions are rather poorly behaved. We see specific examples of this
insufficiency in Chapter 2, but for now we have to rely on expert opinion. For

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04845-4 - Categorical Homotopy Theory
Emily Riehl
Excerpt
More information

http://www.cambridge.org/9781107048454
http://www.cambridge.org
http://www.cambridge.org


10 All concepts are Kan extensions

instance, Max Kelly reserves the name “Kan extension” for pairs satisfying the
condition we presently introduce, calling those of our Definition 1.1.1 “weak”
and writing that “our present choice of nomenclature is based on our failure to
find a single instance where a weak Kan extension plays any mathematical role
whatsoever” [46, §4]. By the categorical community’s consensus, the important
Kan extensions are pointwise Kan extensions.

Definition 1.3.4 WhenE is locally small, a right Kan extension is a pointwise
right Kan extension3 if it is preserved by all representable functors E(e,−).

Because covariant representables preserve all limits, it is clear that if a right
Kan extension is given by the formula of Theorem 1.2.1, then that Kan extension
is pointwise; dually, left Kan extensions computed in this way are pointwise.
The surprise is that the converse also holds. This characterization justifies the
terminology: a pointwise Kan extension can be computed pointwise as a limit
in E .

Theorem 1.3.5 ([50, X.5.3]) A right Kan extension ofF alongK is pointwise
if and only if it can be computed by

RanKF (d) = lim
(
d/K

U−→ C F−→ E
)

in which case, in particular, this limit exists.

Proof If RanKF is pointwise, then by the Yoneda lemma and the defining
universal property of right Kan extensions,

E(e,RanKF (d)) ∼= SetD(D(d,−), E(e,RanKF ))

∼= SetC(D(d,K−), E(e, F−)).

The right-hand set is naturally isomorphic to the set of cones under e over the
functor FU ; hence this bijection exhibits RanKF (d) as the limit of FU .

Remark 1.3.6 Most commonly, pointwise Kan extensions are found when-
ever the codomain category is cocomplete (for left Kan extensions) or complete
(for right), but this is not the only case. In Chapter 2, we see that the most
common construction of the total derived functors defined in 1.1.11 produces
pointwise Kan extensions, even though homotopy categories have notoriously
few limits and colimits (see Proposition 2.2.13).

3 A functor K : C → D is equally a functor K : Cop → Dop, but the process of replacing each
category by its opposite reverses the direction of any natural transformations; succinctly, “op” is
a 2-functor (−)op : Catco → Cat. A left Kan extension is pointwise, as we are in the process of
defining, if the corresponding right Kan extension in the image of this 2-functor is pointwise.
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