

RELATIVISTIC KINETIC THEORY

With Applications in Astrophysics and Cosmology

Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years, as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible.

This ambitious monograph is divided into three parts. Part I presents the basic ideas and concepts of this theory; equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy; and discussion of the relation between kinetic and hydrodynamic levels of description. Part II introduces elements of computational physics, with special emphasis on numerical integration of Boltzmann equations and related approaches as well as multicomponent hydrodynamics. Part III presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, and comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation, and neutrino emission during the gravitational collapse.

GREGORY V. VERESHCHAGIN is Professor at the International Center for Relativistic Astrophysics Network (ICRANet), Pescara, Italy. He graduated from Belarusian State University and received a Candidate of Science degree (PhD) in theoretical physics from the National Academy of Sciences of Belarus. He also holds a PhD in relativistic astrophysics from Sapienza University of Rome and was awarded the NATO-CNR fellowship. Author of more than 30 refereed papers, his research interests include cosmological singularity and inflation, loop quantum cosmology, the role of neutrinos in cosmology, thermalization of relativistic plasma, and photospheric emission from relativistic outflows.

ALEXEY G. AKSENOV is Senior Researcher at the Institute for Computer-Aided Design, Russian Academy of Sciences (ICAD RAS) in Moscow. He graduated from the Moscow State Engineering Physics Institute (Technical University) and holds a PhD in astrophysics from the Space Research Institute of the Russian Academy of Sciences. He is author of more than 30 refereed publications in different topics in astrophysics and plasma physics, gravitational collapse, neutrino transport, inertial confinement fusion, numerical solution of kinetic Boltzmann equations, and hydrodynamic simulations.

RELATIVISTIC KINETIC THEORY

With Applications in Astrophysics and Cosmology

GREGORY V. VERESHCHAGIN

International Center for Relativistic Astrophysics Network, Pescara, Italy

ALEXEY G. AKSENOV

Institute for Computer-Aided Design, Russian Academy of Sciences, Moscow, Russia

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107048225

© Gregory V. Vereshchagin and Alexey G. Aksenov 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-04822-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface		page ix	
	Acki	nowledgments	x xi	
	Acre	onyms and Definitions		
	Intro	1		
Par	t I	Theoretical Foundations		
1	Basi	ic Concepts	9	
	1.1	Nonrelativistic Kinetic Theory	9	
	1.2	Special Relativistic Kinetic Theory	10	
	1.3	General Relativistic Kinetic Theory	11	
	1.4	One-Particle Distribution Function	12	
	1.5	Invariance of One-Particle Distribution Function	13	
	1.6	Macroscopic Quantities	14	
2	Kinetic Equation		16	
	2.1	Formulation of Kinetic Equation	16	
	2.2	Collision Integral for Particle Scattering	18	
	2.3	Boltzmann Equation in General Relativity	19	
	2.4	Quantum Corrections to the Collision Integral	21	
	2.5	Radiative Transfer	21	
	2.6	Cross Section	24	
	2.7	Relaxation Time	25	
3	Averaging		26	
	3.1	Covariant Statistical Averaging	26	
	3.2	Spacetime Averaging	28	
	3.3	The Role of Averaging in Kinetic Theory	28	

V

vi	Contents	
4	Conservation Laws and Equilibrium 4.1 Conservation Laws and Relativistic Hydrodynamics	30 30
	4.2 \mathcal{H} -theorem	32
	4.3 Equilibrium	33
	4.4 Relativistic Maxwellian Distribution	36
	4.5 Generalized Continuity Equation	37
5	Relativistic BBGKY Hierarchy	40
	5.1 The Hierarchy of Kinetic Equations	40
	5.2 The First and Second Approximations in Relativistic	
	Transport Equations	44
	5.3 The Vlasov-Maxwell System	45
	5.4 The Vlasov-Einstein System	48
6	Basic Parameters in Gases and Plasmas	50
	6.1 Plasma Frequency	50
	6.2 Correlations in Plasma	51
	6.3 Coulomb Collisions	52
	6.4 Characteristic Distances	53
	6.5 Microscopic Scales in Kinetic Theory and Hydrodynamics	55
	6.6 Relativistic Degeneracy	56
Par	t II Numerical Methods	
7	The Basics of Computational Physics	61
	7.1 Finite Differences and Computational Grids	61
	7.2 Stability and Accuracy of Numerical Schemes	63
	7.3 Numerical Methods for Partial Differential Equations	66
	7.4 The Method of Lines	83
	7.5 ODE Systems and Methods of Their Solution	83
	7.6 Stiff Systems and Gear's Method	85
	7.7 Numerical Methods for Linear Algebra	89
8	Direct Integration of Boltzmann Equations	95

Finite Differences and the Method of Lines

9.2 Multidimensional Multitemperature High-Order

9.3 Riemann Problem Solver in Special Relativity

8.1

8.2 Monte Carlo Method

Godunov Code

9.4 Particle-Based Methods

Multidimensional Hydrodynamics

9.1 High-Order Godunov Methods

95

99

106

107

109

123

126

More Information

		Contents	vii
Part	Ш	Applications	
10	Wav	e Dispersion in Relativistic Plasma	135
	10.1	Collisionless Plasma	137
	10.2	Response in an Isotropic Case	138
		Dispersion in Relativistic Thermal Plasma	139
		Landau Damping	141
	10.5	Plasma Instabilities	143
	10.6	Weibel Instability	144
		Two-Stream Instability	147
	10.8	Collisionless Shock Waves	148
11		malization in Relativistic Plasma	151
		Pair Plasma in Astrophysics and Cosmology	151
		Qualitative Description of the Pair Plasma	153
		Collision Integrals	154
		Relativistic Boltzmann Equation on the Grid	166
		Thermalization Process	167
		Thermalization Timescales	173
		Dynamics and Emission of Mildly Relativistic Plasma	177
	11.8	Kinetic Equilibrium and Chemical Potential of Photons	181
12	Kine	tics of Particles in Strong Fields	182
	12.1	Avalanches in Strong Crossing Laser Fields	183
	12.2	Creation and Thermalization of Pairs in Strong Electric Fields	186
	12.3	Emission from Hot Bare Quark Stars	198
13	Com	pton Scattering in Astrophysics and Cosmology	203
	13.1	The Boltzmann Equation for Compton Scattering	203
	13.2	Mean Number of Scatterings	204
	13.3	Kompaneets Equation	206
	13.4	Sunyaev-Zeldovich Effect	210
	13.5	Comptonization in Static Media	214
	13.6	Comptonization in Relativistic Outflows	216
	13.7	Monte Carlo Simulations of the Photospheric Emission from	
		Relativistic Outflows	220
14	Self-	Gravitating Systems	226
	14.1	Kinetic Theory of Self-Gravitating Systems	228
	14.2	Gravitational Instability	236
	14.3	Collisionless (Violent) Relaxation	250
	14.4	Quasi-stationary States	253

viii	Contents	
	14.5 Self-Gravitating Systems in Equilibrium	255
	14.6 Cosmic Structure Formation	260
15	Neutrinos, Gravitational Collapse, and Supernovae	
	15.1 Supernova Models and Neutrinos	262
	15.2 Spherically Symmetric Collapse of a Stellar Iron Core with	
	Neutrino Transport	265
	15.3 Supernova Explosion Mechanism with Large-Scale	
	Convection and Neutrino Transport	274
Apr	pendix A Hydrodynamic Equations in Orthogonal Curvilinear	
11	Coordinates	278
Apr	pendix B Collision Integrals in Electron-Positron Plasma	281
•	B.1 Collision Integrals for Binary Interactions	281
	B.2 Collision Integrals for Binary Reactions with Protons	287
	B.3 Collision Integrals for Triple Interactions	289
	B.4 Mass Scaling for the Proton-Electron/Positron Reaction	291
App	pendix C Collision Integrals for Weak Interactions	293
•	C.1 Scattering of Neutrinos on Electrons	293
	C.2 Absorption of Neutrinos by Neutrons	295
	C.3 Creation of Neutrinos	297
	Bibliography	299
	Index	326

Preface

The endeavor of writing this book started from a series of lectures given by the first author for students of the International Relativistic Astrophysics PhD program (IRAP PhD) supported by the Erasmus Mundus program of the European Commission. For this book the material has been expanded and more topics incorporated. It soon became clear that an updated and systematic presentation of relativistic kinetic theory and its numerous applications in astrophysics and cosmology is lacking in the literature. Some existing monographs, presenting fundamental aspects of kinetic theory, are focused on selected applications. Others, which contain applications of kinetic theory in relativistic astrophysics and cosmology, lack the presentation of fundamental concepts of relativistic kinetic theory. Moreover, none of the existing monographs discussed in depth various numerical methods developed and successfully applied in kinetic theory in the recent decades. This last observation urged us to bridge this gap in the literature. This effort eventually resulted in the current monograph, divided in three parts. Parts I and III, with the sole exception of the last chapter, were written by the first author. Part II and the last chapter of Part III were written by the second author.

> Gregory V. Vereshchagin Pescara, Italy Alexey G. Aksenov Moscow, Russia

June 2016

Acknowledgments

This book is a joint effort of the two authors. Their collaboration was initiated and supported throughout by Professor Remo Ruffini, to whom they are deeply indebted. This multiyear collaboration was made possible by constant support from ICRANet. The authors are grateful to ICRANet faculty, V. A. Belinski, C. L. Bianco, J. A. Rueda, and S.-S. Xue, for numerous discussions on different topics related to the book.

ICRANet provides an extraordinary environment where constant interaction with experts in theoretical physics, astrophysics, and cosmology from all over the world is made possible. Both authors acknowledge the discussions at different stages of writing this book with F. Aharonian, G. S. Bisnovatyi-Kogan, S. I. Blinnikov, S. K. Chakrabarti, J. Chluba, J. Ehlers, I. D. Feranchuk, V. G. Gurzadyan, I. M. Khalatnikov, H. Kleinert, M. V. Medvedev, J. Reinhardt, L. G. Titarchuk, E. Waxman, and R. M. Zalaletdinov. We are also thankful to our coauthors: M. M. Basko, D. Bégué, A. Benedetti, M. D. Churazov, V. M. Chechetkin, M. Lattanzi, M. Milgrom, D. K. Nadyozhin, I. A. Siutsou, and V. V. Usov. Some results obtained in joint publications are included in the book.

The first author dedicates this work to his father, Victor Vereshchagin, who attracted his attention to the brilliant stars in the marvelous night sky of Petrunino when he was five years old. The encouragement, patience, and devotion of his wife, Alina, are invaluable. Without her support the book would not have been written.

The second author acknowledges V. Ya. Arsenin, K. V. Brushlinskii, B. L. Rozhdestvenskii, and I. M. Sobol. Their lectures in MEPhI with original approaches were used in Part II of the book. He also acknowledges the support of the Russian Science Foundation Grant No. 16-11-10339, used for preparation of Chapter 15.

Last, but not least, we thank Cambridge University Press and, in particular, Content Manager Lucy Edwards for guidance and advice during the writing of this book. Our special gratitude goes to Editorial Director Dr. Simon Capelin for his great patience and constant support.

X

Acronyms and Definitions

AGN active galactic nuclei

BBGKY Bogoliubov-Born-Green-Kirkwood-Yvon (hierarchy)

CM center of momentum

CMB cosmic microwave background

DF distribution function
GRB gamma-ray burst
KT kinetic theory
LHS left-hand side
LP large particle

MC Monte Carlo (method)

ODE ordinary differential equation PDE partial differential equation

PIC particle-in-cell

QED quantum electrodynamics qSS quasi-stationary state RHS right-hand side

RHS right-hand side SN supernova

SPH smoothed-particle hydrodynamics

SW shock wave

SZ Sunyaev-Zeldovich (effect)

 $x^{\mu} = (ct, \mathbf{x})$ coordinate four-vector

 $j^{\mu} = (cn, \mathbf{j})$ four-current

 $p^{\mu} = (p^0, \mathbf{p})$ momentum four-vector

 $p^0 = \sqrt{\mathbf{p}^2 + m^2 c^2}$ relativistic energy-momentum relation

 $\epsilon = cp^0 = \gamma mc^2 = \varepsilon mc^2$ particle energy $p^2 \equiv p^\mu p_\mu = m^2 c^2$ on shell condition

 $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$ Minkowski metric tensor

хi

xii

Acronyms and Definitions

$$ds = \left(g_{\mu\nu}dx^{\mu}dx^{\nu}\right)^{1/2} = cd\tau \qquad \text{interval}$$

$$d\tau = mc/\left[p^{0}(t)\right]dt = dt/\gamma \qquad \text{proper time}$$

$$\gamma \equiv \left[1 - (\mathbf{v}/c)^{2}\right]^{-1/2} = p^{0}\left(p^{\mu}p_{\mu}\right)^{-1/2} \qquad \text{Lorentz factor}$$

$$u^{\mu} \equiv dx^{\mu}/d\tau = \text{diag}(\gamma c, \gamma \mathbf{v}) = p^{\mu}/m \qquad \text{particle four-velocity}$$

$$U^{\mu}U_{\mu} = c^{2} \qquad \text{velocity normalization condition}$$

$$\mathbf{v} = c\mathbf{p}/p^{0} = \mathbf{p}/(\gamma m) \qquad \text{three-velocity vector}$$

$$\partial_{\mu} = \left(c^{-1}\partial/\partial t, \nabla\right) \qquad \text{four-gradient}$$

$$\rho = c^{-2}T^{\mu\nu}U_{\mu}U_{\nu} \qquad \text{energy density}$$

$$P = -\frac{1}{3}T^{\mu\nu}\Delta_{\mu\nu} \qquad \text{pressure}$$

$$\Delta^{\mu\nu} = g^{\mu\nu} - c^{-2}U^{\mu}U^{\nu} \qquad \text{projection operator}$$

$$k^{\mu} = (\omega/c, \mathbf{k}) \qquad \text{four-wave vector}$$

$$d\eta = dt/a \qquad \text{conformal time}$$

$$H \equiv d \ln a/dt = a^{-2}da/d\eta \qquad \text{Hubble parameter}$$