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Introduction

This book presents the subject of relativistic kinetic theory (KT). It starts from fun-

damental concepts and ideas and arrives at a vast spectrum of applications through

the bridge of various numerical methods. It is not by chance that we adopted such

an approach. KT of gases is perhaps the most fundamental theory in the classical

(nonquantum) domain. It has been developed with the goal to derive the properties

of matter at the macroscopic level, which is accessible to direct experiments and

observations, based on the study of properties of microscopic particles and their

mutual interactions, to which one has no direct access. The atomic picture of the

world has emerged in this way. Indeed, KT was born in the nineteenth century, the

golden age of classical physics. Based on the atomic picture [1], such properties

as heat and electrical conductivity as well as viscosity and diffusion found natural

explanations. The term originates from the Greek, where κινησις means “motion.”

In fact, all the properties of the medium may be understood from the analysis of its

microscopical structure and motions.

Nowadays KT has to be considered in a wider context of statistical mechan-

ics, which appeared at the end of the nineteenth century, essentially in the works

of Maxwell, Boltzmann, and Gibbs. It should be emphasized that the ideas and

principles of KT inluenced the development of many other branches of science,

including mathematics (probability theory, ergodic theory), biology (evolutionary

biology, population genetics), and economics (inancial markets, econophysics).

Within physics, KT is closely related to statistical physics, thermodynamics, and

hydro- and gasdynamics. Today one can say that the main task of kinetic the-

ory is the explanation of various macroscopic properties of a medium based on

known microscopic properties and interactions. In a general context, KT is a the-

ory of nonequilibrium systems. Indeed, all the above-mentioned ields of physics

assume that the medium is in its most probable microphysical state, called equi-

librium. Clearly, any macroscopic manifestation of deviations from this micro-

scopic equilibrium should be considered within KT. Because basic phenomena in
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2 Introduction

the microworld are described in a quantum language, KT uses extensively quan-

tum theory. In fact, the basic principles and equations of KT may be derived from

quantum ield theory [2].

The irst classical applications of KT concerned gases. A successful description

of ideal and nonideal gases has been reached within the framework of Newtonian

mechanics. At the same time, the progress in stellar dynamics [3] led to the formula-

tion of the collisionless Boltzmann equation with the mean gravitational potential,

satisfying the Poisson equation. The latter was later rediscovered in the context of

plasma physics.

With the appearance of special relativity, KT had to be reconciled with the exis-

tence of the limiting speed, the speed of light. In particular, equilibrium distribu-

tions, i.e., Maxwell-Boltzmann distribution of velocities, had to be modiied. These

developments resulted in the work of Jüttner on relativistic equilibrium distribution

function already in 1911 [4].

It soon became clear that there is another natural arena for the application of KT,

which is plasma physics [5, 6]. The major difference between plasma and gas is the

long-range nature of electromagnetic interaction, which has been accommodated

by introduction of the mean ield description [7]. While classical KT theory of

plasmas developed rapidly in the 1930s, it was essentially nonrelativistic. Even the

Landau damping phenomenon was discussed within the nonrelativistic framework,

despite the fact that its analysis requires the use of the Vlasov equation, which is

Lorentz invariant.

The formulation of KT within special relativity was completed in the 1960s, and

it is presented in several monographs (see, e.g., [2, 8, 9]). Relativistic astrophysics

emerged in the same period. The main triggers were the discoveries of the cos-

mic background radiation (CMB), pulsars, and quasars. Observation of the CMB

conirmed the hot model of the universe. It urged the development of models for

matter at extreme densities and temperatures, characteristic of the early universe.

In this way the kinetics of thermonuclear reactions was analyzed, leading to the big

bang nucleosynthesis (BBN) theory. Similarly, the discovery of pulsars and their

interpretation as rapidly rotating magnetized neutron stars urged the formulation

of models of matter under extreme densities and in strong gravitational and elec-

tromagnetic ields.

Hence, it is natural that most applications of relativistic KT are in the ields of

astrophysics and cosmology. Both ields are somewhat special in physics. They lack

the very essential feature of traditional physics: the possibility to set up and con-

trol physical experiments. In both ields the available experimental data originate

essentially from observations, and the observer has no power whatsoever to inlu-

ence or change the conditions under which the observed phenomenon takes place.

For this reason, numerical simulations appear to be the unique tool for development
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Introduction 3

of theoretical models in astrophysics and cosmology, which are eventually tested

against observations.

Nevertheless, relativistic KT is becoming more accessible to direct tests due to

the recent progress in two ields: inertial fusion and ultra-intense lasers. Operation

of ultra-intense lasers is approaching such intensities that the creation of electron-

positron plasma in the laboratory is becoming technologically feasible [10]. Hence,

the application of relativistic KT to electron-positron plasmas, discussed in the

book, becomes of great importance.

The focus of the book is mainly on KT within special relativity. A general rela-

tivistic kinetic equation is formulated in Part I, while general relativistic effects are

discussed only in Part III in relation to the gravitational instability phenomenon as

well as gravitational collapse.

The formulation of KT is presented in Part I in Lorentz-invariant fashion. In

Chapter 1 the evolution of basic concepts of KT, such as phase space and dis-

tribution functions, from nonrelativistic to special and general relativistic frame-

works is outlined. The relation between mechanical and kinetic pictures is pre-

sented. The physical meaning of the one-particle distribution function is given and

its Lorentz invariance is demonstrated. Then the most useful macroscopic quanti-

ties, such as four-current, entropy four-lux, energy-momentum tensor, and hydro-

dynamic velocity, are obtained. These concepts are essential to proceed with the

formulation of kinetic equations and to understand the relation between KT and

hydrodynamics, discussed in the following chapters. In Chapter 2, an axiomatic

approach to derive kinetic equations for the one-particle distribution function is

adopted, and special attention is given to the advection part. First, the kinetic equa-

tion in special relativity is presented by considering particle world lines. Then the

Boltzmann equation in general relativity is derived using the Klimontovich random

function. The particularly important case of scattering of two particles is consid-

ered, for which a collision integral is derived. Quantum corrections to the collision

integral are also considered. The relation between KT and the radiative transfer

theory is outlined. The connection between collision integrals and cross section is

presented. Finally, the notion of relaxation time is introduced.

The role of averaging as one of the fundamental instruments of KT is discussed

in Chapter 3. While in nonrelativistic physics, averaging appears to be straightfor-

ward, it does not prove to be so in relativistic generalization, where time and space

averaging, considered separately, are not Lorentz invariant, because space and time

are no longer absolute. Within general relativity, averaging is an even more com-

plicated issue, with a fully covariant formulation of KT still missing.

In Chapter 4, equations of relativistic hydrodynamics are derived from the Boltz-

mann equation. It is shown that microscopic conservation of energy andmomentum

at each interaction between particles implies the existence of conservation laws for
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4 Introduction

macroscopic quantities such as four-current and energy-momentum tensor. Then

H-theorem is proved and conditions for local thermodynamic equilibrium are for-

mulated. The one-particle distribution function as well as some useful macroscopic

quantities in equilibrium, such as density, pressure, and entropy, are obtained. The

generalized continuity equation for nonequilibrium systems is also derived.

In Chapter 5 the derivation of the Bogolyubov-Born-Green-Kirkwood-Yvon

hierarchy for relativistic plasma is presented. The basic idea in this approach is

that any many-body system can be characterized by the set of equations of motion

under the given interaction. Applying averaging to Klimontovich distribution func-

tions, one can derive the chain of equations for many particle distribution functions.

In order to obtain tractable kinetic equations, this hierarchy can then be truncated

at a certain level, using expansion in small parameters or other physical consid-

erations. In this way Maxwell-Vlasov and Belyaev-Budker equations are derived.

In the last chapter of Part I, kinetic properties of dilute gas and plasma are con-

sidered. In the relativistic domain, many qualitatively new phenomena, such as

particle-antiparticle production, occur in plasma. To understand these phenomena,

as well as to provide the physical foundations for the derivation of the Boltzmann

and Vlasov equations, it is very useful to discuss the characteristic quantities in

both gases and plasmas. In particular, the plasma parameter, Coulomb logarithm,

Debye length, degeneracy parameter, and Knudsen number are introduced.

Physics is an empirical science, and all its concepts are veriied in experiments.

By analogy, computer simulation of a physical process can be considered as numer-

ical experimentation with all the necessary methodology, setup, and data analysis.

Owing to physical limitations for both the computer memory and CPU or GPU

speed, such simulations have limited space and time resolution for the simulated

problems, very much like traditional physical instruments in experiments. In com-

parison with the physical setup the computer and the numerical method can be con-

sidered as a universal tools. During the last several decades the power of computers

increased exponentially with the doubling of computing power every 18 months,

following Moore’s law. This provides conditions for the unprecedented develop-

ment of numerical techniques and their application to various physical problems.

Numerical methods applied in relativistic KT and in hydrodynamics are dis-

cussed in Part II. In Chapter 7 an informal introduction to computational physics

is presented. Although an analytic solution completely describes the problem, it

is not available for most nonlinear problems. New results in modern physics are

often obtained in numerical simulations. The chapter describes standard types of

equations of classical mathematical physics and existing methods of their solu-

tion, focusing mainly on inite difference techniques. Systems of ordinary differ-

ential equations and problems of linear algebra are considered as well. Stability

and accuracy of numerical schemes are addressed, providing the convergence of

the numerical solution to the exact solution of the underlying differential equation.
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Introduction 5

In Chapter 8, numerical integration of Boltzmann equations is discussed. The

approach is illustrated by the inite difference scheme on a ixed grid in the 4D

phase space, and it is based on the method of lines. This method reduces the inte-

gration of partial differential equations to the solution of the system of ordinary

differential equations. The latter are solved by the implicit Gear’s method. The

method is suitable for both optically thick and optically thin regions and is espe-

cially useful for describing neutrino transport in gravitational collapse. The Monte

Carlo approach for solution of the Boltzmann equation is discussed as well. This

approach is universally applied when the optical depth is small, especially in mul-

tidimensional problems.

Finally, Chapter 9 describes classical shock-capturing hydrodynamic transport

in multidimensional space. The modern high-order Godunov-type methods are

described. For multicomponent systems, kinetic Boltzmann equations in 7D phase

space are replaced by hydrodynamics with diffusion and lux limiters in 5D phase

space. The interpolation of luxes of spectral energy density in the intermediate

case between the transparent (free low) and the nontransparent (diffusion or heat

conduction) cases is introduced. A special relativistic Riemann solver is also dis-

cussed. The last section of the chapter briely describes smooth particle hydrody-

namics (SPH) and particle-in-cell (PIC) methods. Such particle-based simulations

are especially useful in describing advection of a smooth low. The common idea

in this chapter is the multidimensional hydrodynamics and explicit methods for

advection.

In Part III, applications of relativistic KT in astrophysics and cosmology are

considered. In Chapter 10, one of the most important domains of application of

relativistic KT, the theory of waves in relativistic plasma, formulated in a gauge-

invariant fashion, is presented. After a brief introduction to this theory, several

important applications, such as Landau damping and relativistic plasma instabil-

ities, are considered. Collisionless shocks and their relevance to astrophysics are

discussed. In Chapter 11, relaxation of nonequilibrium optically thick relativistic

plasma is discussed. Collision integrals are represented as integrals over matrix

elements, provided by quantum electrodynamics, describing various two-particle

interactions between photons, electrons, positrons, and protons. Collision integrals

for three-particle interactions are also introduced. Then a theory of thermalization,

including the concepts of kinetic and thermal equilibria, is presented. Time scales

for relaxation toward thermal equilibrium as functions of the total energy density

and baryonic loading are reported. At the end of the chapter, a dynamical kinetic

description for a mildly relativistic plasma ball is presented, including its radiation

properties.

Chapter 12 is dedicated to discussion of kinetic effects related to pair cre-

ation out of a vacuum in strong electromagnetic ields. Nonlinear effects relevant

for ultra-intense lasers are briely discussed. Then the entire dynamics of energy
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6 Introduction

conversion from an initial strong electric ield, ending upwith thermalized optically

thick electron-positron-photon plasma, is studied. It is crucial that pair creation

involves back reaction of pairs onto an external ield. Accounting for such back

reaction is imperative in this problem. As an application, emission of an electron-

positron pair wind from a hot bare quark star is considered.

In Chapter 13, some essential aspects of Compton scattering are discussed and

various processes in which this scattering plays an important role are illustrated.

In particular, one of the most important astrophysical implications, the Sunyaev-

Zeldovich effect, is addressed. The Kompaneets equation is derived. The theories

of comptonization in static and relativistically moving media are reviewed. Photo-

spheric emission from relativistic outlows is also considered.

In Chapter 14, kinetic properties of self-gravitating systems are discussed and

contrasted with kinetic properties of gases and plasmas discussed in previous

chapters. Here the Lorentz-invariant formulation is abandoned in favor of clar-

ity and simplicity of presentation. First, Boltzmann equations are derived out of

the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy under different approxi-

mations. Then relativistic theory of gravitational instability on the kinetic level

is briely reviewed. Collisionless relaxation and quasi-stationary states are also

discussed. Finally, self-gravitating systems in equilibrium and their instability are

addressed. In the last chapter, Chapter 15, an example of accurate neutrino treat-

ment in a spherically symmetric collapse is given. The role of multidimensional

effects is discussed. These results are of interest for the multidimensional mod-

els with large-scale convection as well as for the ongoing experimental search for

neutrinos from supernovae.

In the Landau and Lifshitz course of theoretical physics, volume 10, “Physi-

cal Kinetics,” is the last. Students are indeed expected to master all branches of

physics before proceeding to this subject. Similarly, it is expected that graduate

students in physics and astrophysics who wish to get acquainted with relativistic

KT have already learned both special and general relativity and cosmology as well

as quantum electrodynamics. Only with this broad and solid background will it

be possible for students to make their way, employing numerous techniques and

methods, to the applications of relativistic KT and ind novel speciic problems to

be addressed and, eventually, solved.We offer in this book our vision of the founda-

tions, numerical methods, and vast series of applications of the modern relativistic

kinetic theory.
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1

Basic Concepts

In this chapter the evolution of basic concepts of KT, such as phase space and distri-

bution functions, from nonrelativistic to special and general relativistic frameworks

is outlined. The relation between mechanical and kinetic pictures is presented. The

physical meaning of the one-particle distribution function is given, and its Lorentz

invariance is demonstrated. Then the most useful macroscopic quantities, such

as four-current, entropy four-lux, energy-momentum tensor, and hydrodynamic

velocity, are obtained. These concepts are essential to proceed with the formula-

tion of kinetic equations as well as to understand the relation between kinetic theory

and hydrodynamics discussed in following chapters.

1.1 Nonrelativistic Kinetic Theory

In classical (nonrelativistic) mechanics a complete description of a system com-

posed of N interacting particles is given by their N equations of motion. In non-

relativistic KT one deals with a space of positions and velocities of these parti-

cles, called coniguration space or the space of canonical variables: positions and

momenta of particles, called the phase spaceM. Often this mechanical description

can be formulated in the language of Hamilton equations, and then an equivalent

description of the system is given by a function F (Ŵ, t ) of time and 6N independent

variables, deined on M. An equation can be formulated for this function, called

the Liouville equation, that can be written in an apparently very simple form:

dF (Ŵ)

dt
= 0, (1.1)

where the derivative is over time. Its complexity, however, is equivalent to the com-

plexity of the original N-body problem, and in the majority of cases, it cannot be

addressed directly.
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10 Basic Concepts

A tremendous simpliication occurs for such systems, whereN is very large. One

may deine the s-particle distribution function (DF) of states depending on 6s vari-

ables with 1 ≤ s ≤ N and time by integrating out the remaining 6(N − s) degrees

of freedom in F (Ŵ, t ). The hierarchy of integro-differential equations, which con-

nects the s-particle DFs with the s+ 1-particle ones, called the Bogolyubov-Born-

Green-Kirkwood-Yvon (BBGKY) hierarchy, is obtained in this way. Among these

s-particle DFs, the one-particle DF plays a central role in KT, as it describes

the probability of inding the particle in a state with momentum in the range

(p,p + d3p) and position in the range (x, x + d3x) at the moment t. The s-particle

DFs describe joint probabilities, i.e., particle correlations.

Formally, this hierarchy can be truncated at a given level (usually at s = 1, 2)

by specifying the functional form of the s+ 1-particle DF. This is the way kinetic

equations for such systems as gases or plasmas were derived out of this hierar-

chy, and it is called the Bogolyubov method, after his monograph [11]. The power

of Bogolyubov’s method is in its observation that the truncation of the hierarchy

may be justiied considering the expansion of the DF either in powers of density

(for short-range interactions) or in powers of interaction energy (particularly for

Coulomb interactions). Remarkably, these kinetic equations coincided with the

ones derived previously on a phenomenological basis by Boltzmann and Landau,

respectively. Hence the BBGKY hierarchy allows establishing kinetic equations

out of the irst principles.

1.2 Special Relativistic Kinetic Theory

At irst glance, special relativity brings few modiications to kinetic theory.

Indeed, the usual distribution function appears to be Lorentz invariant, as does the

Boltzmann equation. Deep analysis shows, however, that conceptual changes are

required.

First, the theory must be consistent with the existence of the limiting speed, the

speed of light c. The irst attempt to adopt special relativistic treatment within KT

is due to Jüttner back in 1911 [4], who established the equilibrium DF in the form

consistent with special relativity.

Second, the whole theory must be proven Lorentz invariant. It took some time

to formulate the problem and to prove the Lorentz invariance of the one-particle

DF. For the inal settlement of the question, see the monograph [2] and more recent

paper [12].

Third, themeaning of initial data and dynamics has to be reconsidered, following

the revision of the concepts of space and time in special relativity. As one of the

consequences of the modiications mentioned earlier, the Liouville equation (1.1)

must be reformulated [13].
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