

LONDON MATHEMATICAL SOCIETY STUDENT TEXTS

Managing Editor: Professor D. Benson,

Department of Mathematics, University of Aberdeen, UK

- 48 Set theory, ANDRÁS HAJNAL & PETER HAMBURGER. Translated by ATTILA MATE
- 49 An introduction to K-theory for C*-algebras, M. RØRDAM, F. LARSEN & N. J. LAUSTSEN
- 50 A brief guide to algebraic number theory, H. P. F. SWINNERTON-DYER
- 51 Steps in commutative algebra: Second edition, R. Y. SHARP
- 52 Finite Markov chains and algorithmic applications, OLLE HÄGGSTRÖM
- 53 The prime number theorem, G. J. O. JAMESON
- 54 Topics in graph automorphisms and reconstruction, JOSEF LAURI & RAFFAELE SCAPELLATO
- 55 Elementary number theory, group theory and Ramanujan graphs, GIULIANA DAVIDOFF, PETER SARNAK & ALAIN VALETTE
- 56 Logic, induction and sets, THOMAS FORSTER
- 57 Introduction to Banach algebras, operators and harmonic analysis, GARTH DALES et al
- 58 Computational algebraic geometry, HAL SCHENCK
- 59 Frobenius algebras and 2-D topological quantum field theories, JOACHIM KOCK
- 60 Linear operators and linear systems, JONATHAN R. PARTINGTON
- 61 An introduction to noncommutative Noetherian rings: Second edition, K. R. GOODEARL & R. B. WARFIELD, JR
- 62 Topics from one-dimensional dynamics, KAREN M. BRUCKS & HENK BRUIN
- 63 Singular points of plane curves, C. T. C. WALL
- 64 A short course on Banach space theory, N. L. CAROTHERS
- 65 Elements of the representation theory of associative algebras I, IBRAHIM ASSEM, DANIEL SIMSON & ANDRZEJ SKOWROÑSKI
- 66 An introduction to sieve methods and their applications, ALINA CARMEN COJOCARU & M. RAM MURTY
- 67 Elliptic functions, J. V. ARMITAGE & W. F. EBERLEIN
- 68 Hyperbolic geometry from a local viewpoint, LINDA KEEN & NIKOLA LAKIC
- 69 Lectures on Kähler geometry, ANDREI MOROIANU
- 70 Dependence logic, JOUKU VÄÄNÄNEN
- 71 Elements of the representation theory of associative algebras II, DANIEL SIMSON & ANDRZEJ SKOWROÑSKI
- 72 Elements of the representation theory of associative algebras III, DANIEL SIMSON & ANDRZEJ SKOWROÑSKI
- 73 Groups, graphs and trees, JOHN MEIER
- 74 Representation theorems in Hardy spaces, JAVAD MASHREGHI
- 75 An introduction to the theory of graph spectra, DRAGOŠ CVETKOVIĆ, PETER ROWLINSON & SLOBODAN SIMIĆ
- 76 Number theory in the spirit of Liouville, KENNETH S. WILLIAMS
- 77 Lectures on profinite topics in group theory, BENJAMIN KLOPSCH, NIKOLAY NIKOLOV & CHRISTOPHER VOLL
- 78 Clifford algebras: An introduction, D. J. H. GARLING
- 79 Introduction to compact Riemann surfaces and dessins d'enfants, ERNESTO GIRONDO & GABINO GONZÁLEZ-DIEZ

London Mathematical Society Student Texts 80

The Riemann Hypothesis for Function Fields

Frobenius Flow and Shift Operators

MACHIEL VAN FRANKENHUIJSEN Utah Valley University

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107047211

© M. van Frankenhuijsen 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-04721-1 Hardback ISBN 978-1-107-68531-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my beautiful wife Jena

Contents

	List	of illustrations	page x	
	Prefe	ace	xi	
	Intro	oduction	1	
1	Valu	Valuations		
	1.1	Trace and norm	9	
		1.1.1 The canonical pairing	11	
	1.2	Valued fields	12	
		1.2.1 Norms on a vector space	13	
		1.2.2 Discrete valuations	16	
		1.2.3 Different and ramification	18	
		1.2.4 Inseparable extensions	20	
	1.3	Valuations of $\mathbb{F}_q(T)$	21	
	1.4			
		1.4.1 Constants and nonconstant fund	etions 26	
		1.4.2 Ramification	28	
2	The	The local theory		
	2.1	Additive character and measure	31	
		2.1.1 Characters of $\mathbb{F}_q(T)$	32	
		2.1.2 Characters of K	35	
		2.1.3 Fourier transform	36	
	2.2	Multiplicative character and measure	38	
	2.3	Local zeta function	40	
	2.4	Functional equation	40	
3	The zeta function		43	
	3.1	Additive theory	43	
		3.1.1 Divisors	45	
		3.1.2 Riemann–Roch	46	

vii

viii		Conte	nts	
	3.2	Multiplicative theory		48
		3.2.1 Divisor classes		48
		3.2.2 Coarse idele class	ses	50
	3.3	The zeta function		51
		3.3.1 Constant field ex	tensions	54
		3.3.2 Shifted zeta func	tion	56
	3.4	Computation		56
	3.5	Semi-local theory		59
	3.6	Two-variable zeta function	on	63
		3.6.1 The polynomial	$L_{\mathcal{C}}(X,Y)$	65
4	Weil positivity		69	
	4.1	Functions on the coarse i	idele classes	69
	4.2	Zeros of $\Lambda_{\mathcal{C}}$		70
	4.3	Explicit formula		72
5	The Frobenius flow		75	
	5.1	Heuristics for the Rieman	nn hypothesis	75
	5.2	Orbits of Frobenius		79
		5.2.1 The projective lin	ne	79
		5.2.2 Example: elliptic	curves	84
		5.2.3 The curve \mathcal{C}		85
	5.3	Galois covers		89
	5.4	The Riemann hypothesis	f for C	91
		5.4.1 The Frobenius flo	OW	92
		5.4.2 Frobenius as sym	imetries	97
	5.5	Comparison with the Rie	emann hypothesis	100
6	Shift operators		107	
	6.1	The Hilbert spaces $\mathcal Z$ and	$d \mathcal{H}$	108
		6.1.1 The truncated sh	ift on \mathcal{Z}	110
		6.1.2 The trace using a	a kernel	111
	6.2	Shift operators		112
		6.2.1 Averaging spaces	}	115
	6.3	Local trace		117
		6.3.1 Order of the cuto	offs	119
		6.3.2 Direct computati	on	120
		6.3.3 Trace using the k	kernel	121
	6.4	How to prove the Rieman	nn hypothesis for C ?	124
	6.5	The operators M, A, C ,	\mathcal{F}^* , and E	126
		6.5.1 Restricting the su	upport	126
		6.5.2 Making the meas	sure additive	127

		Contents	ix
		6.5.3 Smoothing the oscillations	128
		6.5.4 Restricting to the coarse idele classes	130
	6.6	Semi-local and global trace	130
	6.7	The kernel on the analytic space	133
7	Epilogue		137
	7.1	Archimedean translation	138
	7.2	Global translation	140
	7.3	The space of adele classes	141
	References		143
	Index of notation		149
	Inde	x	151

Illustrations

1.1	$\mathbb{P}^1(\mathbb{F}_2)$. The point at infinity corresponds to $\frac{1}{T}$	22
1.2	$\operatorname{spec} \mathbb{Z}$ completed with the archimedean valuation	24
3.1	An irreducible family of zeros	68
4.1	Four zeros of $\Lambda_{\mathcal{C}}$	71
5.1	The curve $Y^2 = X^3$ has a cusp singularity	87
5.2	The curve $Y^2 = X^3 + X^2$ has a double point	88
5.3	The graph of Frobenius intersected with the diagonal	93
5.4	The graph of Frobenius intersected with the graph of σ	98
5.5	Nevanlinna defects	105
6.1	The dilated Gaussian	113
7.1	The shifted Gaussian	138
7.2	The shifted and dilated Gaussian	139

Preface

This book grew out of an attempt to understand the paper [Conn1], in which Alain Connes constructs a beautiful noncommutative space with a view to proving the Riemann hypothesis. That paper is supplemented by Shai Haran's papers [Har2, Har3], which give a similar construction with more details on some of the computations. Connes' proof is explored in Chapter 6, where his method is applied with an aim of proving the Riemann hypothesis for a curve over a finite field (Weil's theorem).

Chapter 5 presents Bombieri's proof [Bom1] of the Riemann hypothesis for curves over a finite field. This chapter is not necessary for Chapter 6, and can be skipped by a reader who is only interested in understanding Connes' approach.

Chapters 1, 2, and 3 provide background. Chapter 1 is an exposition of the theory of valued fields, and in Chapters 2 and 3, we present Tate's thesis [Ta] for curves over a finite field.

There are numerous exercises throughout the book where the reader is asked to work out a detail or explore related material. The exercises that are labelled as 'problems' ask questions that may not have a definite answer.

This book is not primarily about number fields, but occasionally we discuss the connection between number fields and function fields. We have included several diagrams to help the reader create a mental picture of this connection.

The author believes that Connes' approach provides the first truly convincing heuristic argument for the Riemann hypothesis. He also believes that working out this argument for the function field case is the key to getting it to work for the integers. It is therefore not surprising that we do not reach our goal in Chapter 6. This book provides the basis for further research in this direction.

xii Preface

Acknowledgements The research for this book was started at the University of California in Riverside and continued over the years at Rutgers University (New Jersey), Utah Valley State College (now Utah Valley University), the Institut des Hautes Études Scientifiques (IHÉS) in Bures-sur-Yvette, France, of which I was a member during February of 2007, and the Georg-August-Universität in Göttingen, Germany, during the author's sabbatical year at the invitation of Professor Dr. Ralf Meyer in 2011.

The material and financial support of the IHÉS and the Department of Mathematics and the School of Science and Health of Utah Valley University is gratefully acknowledged. The generous support from Professor Meyer during the author's sabbatical year is also gratefully acknowledged. I also want to acknowledge the many excellent teachers whom I had at the university of Nijmegen, Riverside, the IHÉS, Rutgers University, and Göttingen. I fondly remember Serge Lang, whose way of doing mathematics has been an example ever since we first met. I miss him. I want to thank the students and professors who gave talks in my seminar in Göttingen when I was there in 2011. That seminar greatly accelerated the evolution of this book.