

FLOW MEASUREMENT HANDBOOK

Flow Measurement Handbook is a reference for engineers on flow measurement techniques and instruments. It strikes a balance between laboratory ideas and realities of field experience and provides practical advice on design, operation and performance of flowmeters.

It begins with a review of essentials: accuracy, flow, selection and calibration methods. Each chapter is then devoted to a flowmeter class and includes information on design, application, installation, calibration and operation.

Among the flowmeters discussed are differential pressure devices such as orifice and Venturi; volumetric flowmeters such as positive displacement, turbine, vortex, electromagnetic, magnetic resonance, ultrasonic and acoustic; multiphase flowmeters; and mass meters such as thermal and Coriolis. There are also chapters on probes, verification and remote data access.

Roger C. Baker has worked for many years in industrial flow measurement. He studied at Cambridge and Harvard Universities and has held posts at Cambridge University, Imperial College and Cranfield, where he set up the Department of Fluid Engineering and Instrumentation. He has held visiting professorships at Cranfield and Warwick University.

Flow Measurement Handbook

INDUSTRIAL DESIGNS, OPERATING PRINCIPLES, PERFORMANCE, AND APPLICATIONS

Second Edition

Roger C. Baker

CAMBRIDGEUNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107045866

© Roger C. Baker 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition 2000

Second edition published 2016

Printed in the United States of America

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloguing in Publication Data

Baker, R. C., author.

Flow measurement handbook: industrial designs, operating principles,

performance, and applications / Roger C. Baker – 2nd edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-04586-6 - ISBN 1-107-04586-6

Flow meters – Handbooks, manuals, etc.
 Flow meters – Design and construction – Handbooks, manuals, etc.
 Fluid dynamic measurements –

Handbooks, manuals, etc. I. Title.

TA357.5.M43.B35 2016

681'.28-dc23 2015030767

ISBN 978-1-107-04586-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

DISCLAIMER

In preparing the second edition of this book every effort has been made to provide up-to-date and accurate data and information that is in accord with accepted standards and practice at the time of publication and has been included in good faith. Nevertheless, the author, editors, and publisher can make no warranties that the data and information contained herein is totally free from error, not least because industrial design and performance is constantly changing through research, development, and regulation. Data, discussion, and conclusions developed by the author are for information only and are not intended for use without independent substantiating investigation on the part of the potential users. The author, editors, and publisher therefore disclaim all liability or responsibility for direct or consequential damages resulting from the use of data, designs, or constructions based on any of the information supplied or materials described in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any equipment that they plan to use and should refer to the most recent standards documents relating to their application. The author, editors, and publisher wish to point out that the inclusion or omission of a particular device, design, application, or other material in no way implies anything about its performance with respect to other devices, etc.

To Liz and all the family

Contents

Preface				
Ac	knowle	edgements	s	XXV
No	mencl	ature		xxvii
1	Introduction			1
	1.1	Initial C	Considerations	1
	1.2	Do We	Need a Flowmeter?	2
	1.3	How Accurate?		
	1.4	A Brief	Review of the Evaluation of Standard Uncertainty	8
	1.5	Note on	n Monte Carlo Methods	10
	1.6	Sensitiv	rity Coefficients	10
	1.7	What Is	s a Flowmeter?	11
	1.8	Chapter	r Conclusions (for those who Plan to Skip the	
		Mathen	natics!)	14
	1.9	Mathen	natical Postscript	15
	1.A	Statistic	es of Flow Measurement	17
		1.A.1	Introduction	17
		1.A.2	The Normal Distribution	17
		1.A.3	The Student t Distribution	20
		1.A.4	Practical Application of Confidence Level	21
		1.A.5	Types of Error	22
		1.A.6	Combination of Uncertainties	23
		1.A.7	Uncertainty Range Bars, Transfer Standards and	
			Youden Analysis	24
2	Fluid	l Mechani	ics Essentials	27
	2.1	Introdu	ction	27
	2.2	Essentia	al Property Values	27
	2.3	Flow in	a Circular Cross-Section Pipe	27
	2.4	Flow St	raighteners and Conditioners	31
	2.5	Essentia	al Equations	34

vii

			Contents
2.6	Unstea	ady Flow and Pulsation	36
2.7	Comp	ressible Flow	38
2.8	Multip	phase Flow	40
2.9	Cavita	tion, Humidity, Droplets and Particles	42
2.10	Gas E	ntrapment	43
2.11	Steam		45
2.12	Chapte	er Conclusions	45
2.A	Furthe	er Aspects of Flow Behaviour, Flow Conditioning	
	and Fl	ow Modelling	46
	2.A.1	Further Flow Profile Equations	46
	2.A.2	Non-Newtonian Flows	47
	2.A.3	Flow Conditioning	47
	2.A.4	Other Installation Considerations	50
	2.A.5	Computational Fluid Dynamics (CFD)	50
Speci	ification	, Selection and Audit	52
3.1	Introd	uction	52
3.2	Specif	ying the Application	52
3.3	Notes	on the Specification Form	53
3.4	Flown	neter Selection Summary Table	56
3.5	Draft	Questionnaire for Flowmeter Audit	62
3.6	Final C	Comments	62
3.A	Specifi	ication and Audit Questionnaires	63
	3.A.1	Specification Questionnaire	63
	3.A.2	Supplementary Audit Questionnaire	65
Calib	ration		67
4.1	Introd	uction	67
	4.1.1	Calibration Considerations	67
	4.1.2	Typical Calibration Laboratory Facilities	70
	4.1.3	Calibration from the Manufacturer's Viewpoint	71
4.2	Appro	paches to Calibration	72
4.3	Liquid	l Calibration Facilities	75
	4.3.1	Flying Start and Stop	75
	4.3.2	Standing Start and Stop	77
	4.3.3	Large Pipe Provers	80
	4.3.4	Compact Provers	80
4.4	Gas C	alibration Facilities	85
	4.4.1	Volumetric Measurement	85
	4.4.2	Mass Measurement	86
	4.4.3	Gas/Liquid Displacement	86
	4.4.4	pvT Method	87
	4.4.5	Critical Nozzles	87
	4.4.6	Soap Film Burette Method	88
	2.7 2.8 2.9 2.10 2.11 2.12 2.A Speci 3.1 3.2 3.3 3.4 3.5 3.6 3.A Calib 4.1	2.7 Comp 2.8 Multip 2.9 Cavita 2.10 Gas E 2.11 Steam 2.12 Chapt 2.A Further and Fl 2.A.1 2.A.2 2.A.3 2.A.4 2.A.5 Specification 3.1 Introd 3.2 Specification 3.4 Flown 3.5 Draft 3.6 Final G 3.A Specification 4.1 Introd 4.1.1 4.1.2 4.1.3 4.2 Approd 4.3.1 4.3.2 4.3.3 4.3.4 4.4 Gas C 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5	2.7 Compressible Flow 2.8 Multiphase Flow 2.9 Cavitation, Humidity, Droplets and Particles 2.10 Gas Entrapment 2.11 Steam 2.12 Chapter Conclusions 2.A Further Aspects of Flow Behaviour, Flow Conditioning and Flow Modelling 2.A.1 Further Flow Profile Equations 2.A.2 Non-Newtonian Flows 2.A.3 Flow Conditioning 2.A.4 Other Installation Considerations 2.A.5 Computational Fluid Dynamics (CFD) Specification, Selection and Audit 3.1 Introduction 3.2 Specifying the Application 3.3 Notes on the Specification Form 3.4 Flowmeter Selection Summary Table 3.5 Draft Questionnaire for Flowmeter Audit 3.6 Final Comments 3.A Specification and Audit Questionnaires 3.A.1 Specification Questionnaire 3.A.2 Supplementary Audit Questionnaire 3.A.2 Supplementary Audit Questionnaire 4.1.1 Introduction 4.1.1 Calibration 4.1.2 Typical Calibration Laboratory Facilities 4.1.3 Calibration from the Manufacturer's Viewpoint 4.2 Approaches to Calibration 4.3 Liquid Calibration Facilities 4.3.1 Flying Start and Stop 4.3.2 Standing Start and Stop 4.3.3 Large Pipe Provers 4.3.4 Compact Provers 4.3.4 Compact Provers 4.3.4 Compact Provers 4.3.1 Volumetric Measurement 4.4.2 Mass Measurement 4.4.3 Gas/Liquid Displacement 4.4.4 pvT Method 4.4.5 Critical Nozzles

Co	ntents			1X
	4.5	Transf	er Standards and Master Meters	88
	4.6	In Situ	ı Calibration	91
		4.6.1	Provers	92
	4.7	Calibra	ation Uncertainty	98
	4.8	Tracea	ability and Accuracy of Calibration Facilities	100
	4.9	Chapte	er Conclusions	101
	4.A	Calibr	ation and Flow Measurement Facilities	101
		4.A.1	Introduction	101
		4.A.2	Flow Metrology Developments	102
		4.A.3	Multiphase Calibration Facilities	105
		4.A.4	Gas Calibration Facilities	105
		4.A.5	Gas Properties	108
		4.A.6	Case Study of a Water Flow Calibration Facility Which	
			Might Be Used in a Manufacturing Plant or a Research	
			Laboratory from the Author's Experience	108
		4.A.7	Example of a Recent Large Water	
			Calibration Facility	113
5	Orifice Plate Meters			
	5.1	Introd	uction	116
	5.2	Essent	tial Background Equations	118
	5.3	Design	n Details	121
	5.4	Install	ation Constraints	124
	5.5	Other	Orifice Plates	128
	5.6	Deflec	ction of Orifice Plate at High Pressure	129
	5.7	Effect	of Pulsation	131
	5.8	Effects	s of More than One Flow Component	136
	5.9	Accura	acy Under Normal Operation	139
	5.10	Indust	rially Constructed Designs	141
	5.11		are Connections	142
	5.12	Pressu	are Measurement	144
	5.13	-	erature and Density Measurement	147
	5.14		Computers	148
	5.15		ed Studies of Flow through the Orifice Plate, Both	
		•	imental and Computational	148
	5.16		cation, Advantages and Disadvantages	150
	5.17		er Conclusions	151
	5.A		e Discharge Coefficient Equation	152
		5.A.1	Stolz Orifice Discharge Coefficient Equation as Given	
			in ISO 5167: 1981	152
		5.A.2	Orifice Discharge Coefficient Equation as set out	
			by Gallagher (1990)	153
		5.A.3	Orifice Discharge Coefficient Equation as Given	
			in ISO 5167–2: 2003	154

X				Contents
	5.B	Review of	f Recent Published Research on Orifice Plates	156
		5.B.1 In	stallation Effects on Orifice Plates	156
		5.B.2 Pu	ulsation	157
		5.B.3 C	ontamination	157
		5.B.4 D	rain Holes	158
		5.B.5 Fl	low Conditioning for Orifice Meters	158
		5.B.6 Pl	late Thickness for Small-Diameter Orifice Plates	160
		5.B.7 Va	ariants on the Orifice Plate	160
		5.B.8 In	npulse Lines	160
		5.B.9 La	agging Pipes	160
		5.B.10 G	as Conditions	160
		5.B.11 E	missions Testing Uncertainty	161
		5.B.12 C	FD Related to Orifice Plates	161
6	Vent	uri Meter a	nd Standard Nozzles	163
	6.1	Introducti	ion	163
	6.2	Essential	Background Equations	165
	6.3	Design D	etails	167
	6.4	Commerc	ially Available Devices	168
	6.5	Installatio	on Effects	168
	6.6	Application	ons, Advantages and Disadvantages	170
	6.7	Chapter C	Conclusions	171
	6.A	Research	Update	172
		6.A.1 D	esign and Installation	172
		6.A.2 M	leters in Nuclear Core Flows	173
		6.A.3 S _I	pecial Conditions	173
7	Critic	cal Flow Ve	nturi Nozzle	177
	7.1	Introducti	ion	177
	7.2	Design D	etails of a Practical Flowmeter Installation	178
	7.3	Practical I	Equations	181
	7.4	Discharge	e Coefficient C	183
	7.5	Critical Fl	low Function C_*	185
	7.6	Design Co	onsiderations	185
	7.7	Measuren	nent Uncertainty	187
	7.8	Notes on	the Calculation Procedure	188
	7.9	Industrial	and Other Experience	189
	7.10	Advantag	es, Disadvantages and Applications	190
	7.11	Chapter C	Conclusions	190
	7.A	Critical Fl	low Venturi Nozzle – Recent Published Work	190
8	Othe	r Momentu	ım-Sensing Meters	195
	8.1	Introducti	ion	195
	8.2	Variable A	Area Meter	196

Contents

Cambridge University Press 978-1-107-04586-6 — Flow Measurement Handbook 2nd Edition Frontmatter More Information

		8.2.1	Operating Principle and Background	196
		8.2.2	Design Variations	196
		8.2.3	Remote Readout Methods	198
		8.2.4	Design Features	199
		8.2.5	Calibration and Sources of Error	200
		8.2.6	Installation	201
		8.2.7	, &	201
		8.2.8		201
		8.2.9	Manufacturing Variation	202
		8.2.10	Computational Analysis of the Variable Area Flowmeter	203
			Applications	203
	8.3	Spring	-Loaded Diaphragm (Variable Area) Meters	204
	8.4	_	(Drag Plate) Meter	208
	8.5	Integra	al Orifice Meters	209
	8.6	Dall Ti	ubes and Devices that Approximate to Venturis and Nozzles	209
	8.7	_	e Meter	212
	8.8		e Meter (Cone Meter)	213
	8.9	Differe	ential Devices with a Flow Measurement Mechanism	
			Bypass	216
	8.10		d Orifice Plate	216
	8.11	_	ork Features – Inlets and Pipe Lengths	217
	8.12	-	ork Features – Bend or Elbow used as a Meter	218
	8.13	-	ging Pitot	220
	8.14		ar or Viscous Flowmeters	223
	8.15	_	er Conclusions	227
	8.A		y, Equations and Maximum Permissible Error	
		Limits	for the VA Meter	228
		8.A.1	•	228
			Equations	229
		8.A.3	Maximum Permissible Error Limits	232
9		_	placement Flowmeters	234
	9.1	Introd		234
		9.1.1	Background	234
		9.1.2	Qualitative Description of Operation	235
	9.2		pal Designs of Liquid Meters	236
		9.2.1	Nutating Disc Meter	236
		9.2.2	Oscillating Circular Piston (Also Known as	
			Rotary Piston) Meter	237
		9.2.3	Multirotor Meters	237
		9.2.4	Oval Gear Meter	238
		9.2.5	Sliding Vane Meters	240
		9.2.6	Helical Rotor Meter	242
		9.2.7	Reciprocating Piston Meters	243

хi

xii				Contents
		9.2.8	Precision Gear (Spur Gear) Flowmeters	244
	9.3	Calibra	ation, Environmental Compensation and Other Factors	
		Relatir	ng to the Accuracy of Liquid Flowmeters	245
		9.3.1	Calibration Systems	246
		9.3.2	Clearances	249
		9.3.3	Leakage Through the Clearance Gap Between Vane	
			and Wall	249
		9.3.4	Slippage Tests	251
		9.3.5	The Effects of Temperature and Pressure Changes	252
		9.3.6	The Effects of Gas in Solution	252
	9.4		acy and Calibration	253
	9.5	-	pal Designs of Gas Meters	254
			Wet Gas Meter	255
		9.5.2	Diaphragm Meter	256
		9.5.3	Rotary Positive Displacement Gas Meter	257
	9.6		e Displacement Meters for Multiphase Flows	258
	9.7		Using Liquid Plugs to Measure Low Flows	261
	9.8		ations, Advantages and Disadvantages	261
	9.9	_	er Conclusions	262
	9.A		Analysis and Recent Research	263
		9.A.1	,	263
			9.A.1.1 Flowmeter Equation	264
			9.A.1.2 Expansion of the Flowmeter Due to Temperatur	
			9.A.1.3 Pressure Effects	266
			9.A.1.4 Meter Orientation	267
			9.A.1.5 Analysis of Calibrators	268
		0.4.2	9.A.1.6 Application of Equations to a Typical Meter	270
		9.A.2	Recent Theoretical and Experimental Research	271
10	Turbi	ne and	Related Flowmeters	279
	10.1			279
		10.1.1	Background	279
		10.1.2	Qualitative Description of Operation	279
		10.1.3	Basic Theory	280
	10.2		on Liquid Meters	287
			Principal Design Components	287
			Dual Rotor Meters	288
			Bearing Design Materials	288
			Strainers	290
			Materials	290
			Size Ranges	290
		10.2.7	e	291
			Cavitation	291
		10.2.9	Sensor Design and Performance	292

Cor	itents			xiii
		10.2.10	Characteristics	293
		10.2.11	Accuracy	294
		10.2.12	Installation	295
		10.2.13	Maintenance	297
		10.2.14	Viscosity, Temperature and Pressure	298
		10.2.15	Unsteady Flow	299
		10.2.16	Multiphase Flow	300
		10.2.17	Signal Processing	301
		10.2.18	Applications	301
		10.2.19	Advantages and Disadvantages	302
	10.3	Precisio	on Gas Meters	303
		10.3.1	Principal Design Components	303
		10.3.2	Bearing Design	303
		10.3.3	Materials	303
		10.3.4	Size Range	303
		10.3.5	Accuracy	304
		10.3.6	Installation	306
		10.3.7	Sensing and Monitoring	308
		10.3.8	Unsteady Flow	308
		10.3.9	Applications	310
		10.3.10	Advantages and Disadvantages	311
	10.4	Water l	Meters	311
		10.4.1	Principal Design Components	311
		10.4.2	Bearing Design	312
		10.4.3	Materials	312
		10.4.4	Size Range	313
			Sensing	313
		10.4.6	Characteristics and Accuracy	313
		10.4.7	Installation	313
		10.4.8	Special Designs	314
	10.5		Propeller and Turbine Meters	314
		10.5.1	Quantum Dynamics Flowmeter	314
		10.5.2	Pelton Wheel Flowmeters	314
		10.5.3	Bearingless Flowmeter	314
		10.5.4	Vane Type Flowmeters	315
	10.6	Chapte	er Conclusions	316
	10.A	Turbine	e Flowmeter Theoretical and Experimental Research	317
		10.A.1	Derivation of Turbine Flowmeter Torque Equations	317
		10.A.2	Transient Analysis of Gas Turbine Flowmeter	322
		10.A.3	Recent Developments	324
11			ling, Swirl and Fluidic Flowmeters	327
	11.1	Introdu		327
	11.2	Vortex	Shedding	327

xiv			Contents
	11.3	Industrial Developments of Vortex-Shedding Flowmeters	329
		11.3.1 Experimental Evidence of Performance	329
		11.3.2 Bluff Body Shape	331
		11.3.3 Standardisation of Bluff Body Shape	334
		11.3.4 Sensing Options	334
		11.3.5 Cross-Correlation and Signal Interrogation Method	s 339
		11.3.6 Other Aspects Relating to Design and Manufacture	339
		11.3.7 Accuracy	340
		11.3.8 Installation Effects	341
		11.3.9 Effect of Pulsation and Pipeline Vibration	344
		11.3.10 Two-Phase Flows	345
		11.3.11 Size and Performance Ranges and Materials in	
		Industrial Designs	347
		11.3.12 Computation of Flow Around Bluff Bodies	348
		11.3.13 Applications, Advantages, and Disadvantages	349
		11.3.14 Future Developments	350
	11.4	Swirl Meter – Industrial Design	351
		11.4.1 Design and Operation	351
		11.4.2 Accuracy and Ranges	351
		11.4.3 Installation Effects	352
		11.4.4 Applications, Advantages and Disadvantages	352
	11.5	Fluidic Flowmeter	352
		11.5.1 Design	353
		11.5.2 Accuracy	355
		11.5.3 Installation Effects	355
		11.5.4 Applications, Advantages and Disadvantages	355
	11.6	Other Proposed Designs	355
	11.7	Chapter Conclusions	356
	11.A	Vortex Shedding Frequency	358
		11.A.1 Vortex Shedding from Cylinders	358
		11.A.2 Order of Magnitude Calculation of	
		Shedding Frequency	358
12	Elect	tromagnetic Flowmeters	362
	12.1	Introduction	362
	12.2	Operating Principle	362
	12.3	Limitations of the Theory	364
	12.4	Design Details	366
		12.4.1 Sensor or Primary Element	366
		12.4.2 Transmitter or Secondary Element	370
	12.5	Calibration and Operation	373
	12.6	-	374
	12.7	_	377
		12.7.1 Surrounding Pipe	377
		12.7.2 Temperature and Pressure	378

Contents

Cambridge University Press 978-1-107-04586-6 — Flow Measurement Handbook 2nd Edition Frontmatter More Information

	12.0	Installation Constraints Flow Profile Coused by Unstraam	
	12.0	Installation Constraints – Flow Profile Caused by Upstream Pipework	379
		12.8.1 Introduction	379
		12.8.2 Theoretical Comparison of Meter Performance	317
		Due to Upstream Flow Distortion	379
		12.8.3 Experimental Comparison of Meter Performance	317
		Due to Upstream Flow Distortion	380
		12.8.4 Conclusions on Installation Requirements	381
	12.9	Installation Constraints – Fluid Effects	382
	12.,	12.9.1 Slurries	382
		12.9.2 Change of Fluid	383
		12.9.3 Non-Uniform Conductivity	383
	12.10	Multiphase Flow	383
		Accuracy Under Normal Operation	384
		New Industrial Developments	385
		Applications, Advantages and Disadvantages	387
		12.13.1 Applications	387
		12.13.2 Advantages	388
		12.13.3 Disadvantages	389
	12.14	Chapter Conclusions	389
	12.A	Brief Review of Theory, Other Applications and Recent Research	390
		12.A.1 Introduction	390
		12.A.2 Electric Potential Theory	392
		12.A.3 Development of the Weight Vector Theory	392
		12.A.4 Rectilinear Weight Function	393
		12.A.5 Axisymmetric Weight Function	394
		12.A.6 Performance Prediction	395
		12.A.7 Further Research	396
		12.A.8 Verification	398
		12.A.9 Application to Non-Conducting Dielectric Fluids	400
		12.A.10 Electromagnetic Flowmeters Applied to Liquid Metals	403
13	Magn	netic Resonance Flowmeters	408
	13.1	Introduction and Some Early References	408
	13.2	Developments in the Oil and Gas Industry	409
	13.3	A Brief Introduction to the Physics	409
	13.4	Outline of a Flowmeter Design	414
	13.5	Chapter Conclusions	417
14		sonic Flowmeters	419
	14.1	Introduction	419
	14.2	Essential Background to Ultrasonics	420
	14.3	Transit-Time Flowmeters	423
		14.3.1 Transit-Time Flowmeters – Flowmeter Equation and	
		the Measurement of Sound Speed	423

XV

xvi				Contents
		14.3.2	Effect of Flow Profile and Use of Multiple Paths	427
		14.3.3	Transducers	432
		14.3.4	Size Ranges and Limitations	437
		14.3.5	Clamp-on Meters	437
		14.3.6	Signal Processing and Transmission Timing	439
		14.3.7	Reported Accuracy	442
			14.3.7.1 Reported Accuracy – Spool Piece Meters	442
			14.3.7.2 A Manufacturer's Accuracy Claims	443
			14.3.7.3 Clamp-on Accuracy	444
		14.3.8	Installation Effects	447
			14.3.8.1 Effects of Distorted Profile by Upstream Fittings	s 447
			14.3.8.2 Pipe Roughness and Deposits	453
			14.3.8.3 Unsteady and Pulsating Flows	454
			14.3.8.4 Multiphase Flows	454
			14.3.8.5 Flow Straighteners and Conditioners	455
		14.3.9	Other Experience of Transit-Time Meters	456
			Experience with Liquid Meters	456
		14.3.11	Gas Meter Developments	457
		14.3.12	Applications, Advantages and Disadvantages	
			of the Transit-Time and Related Designs	463
	14.4		er Flowmeter	466
		14.4.1	Simple Explanation of Operation	466
			Operational Information for the Doppler Flowmeter	468
		14.4.3		
			the Doppler Flowmeter	468
	14.5		ation Flowmeter	469
			Operation of the Correlation Flowmeter	469
			Installation Effects for the Correlation Flowmeter	470
			Other Published Work on the Correlation Flowmeter	471
		14.5.4		450
	11.6	0.1	the Correlation Flowmeter	472
			Ultrasonic Applications	472
			sions on Ultrasonic Flowmeters	473
	14.A		matical Methods and Further Research Relating to	47.4
			onic Flowmeters	474
			Simple Path Theory Lies of Multiple Peths to Integrate Flow Profile	474
			Use of Multiple Paths to Integrate Flow Profile Weight Vector Analysis	477
			Development of Modelling of the Flowmeter	478 479
			1	482
		17.A.J	Doppler Theory and Developments	+02
15			Sonar Flowmeters	484
	15.1	Introdu		484
	15.2	SONA	Rtrac® Flowmeter	484

Con	itenis			XV11
		15.2.1	Basic Explanation of How the Passive Sonar	
			Flowmeter Works	484
		15.2.2	A Note on Turbulent Eddies and Transition to	
			Laminar Flow in the Pipe	485
		15.2.3	Flow Velocity Measurement	485
		15.2.4	Speed of Sound and Gas Void Fraction (Entrained	
			Air Bubbles) Measurement	486
		15.2.5	Localised Velocity Measurements	487
			The Convective Ridge	487
		15.2.7	Calibration	489
			Sound Speed Used to Obtain Fluid Parameters	490
		15.2.9	Additional Sensors	491
			Clamp-on System	491
			Liquid, Gas and Multicomponent Operation	492
			Size Range and Flow Range	493
			Signal Handling	493
			Accuracy Claims	494
			Installation Effects	494
			Published Information	496
			Applications	496
	15.3		SONAR™ Flowmeter	496
			Single and Multiphase Flows	497
			Brief Summary of Meter Range, Size etc.	497
	15.4		Related Methods Using Noise Emissions	498
	15.5	Chapte	er Conclusions	500
16	Mass	Flow M	easurement Using Multiple Sensors for	
	Singl	e-Phase	Flows	501
	16.1	Introdu	action	501
	16.2	Multipl	le Differential Pressure Meters	502
		16.2.1	Hydraulic Wheatstone Bridge Method	504
		16.2.2	Theory of Operation	504
		16.2.3	Industrial Experience	505
		16.2.4	Applications	505
	16.3	_	le Sensor Methods	506
	16.4	Chapte	er Conclusions	507
17	Mult	iphase F	lowmeters	508
	17.1	Introdu	action	508
	17.2	Multipl	hase and Multi-Component Flows	509
	17.3	_	nase/Component Flow Measurements	509
		17.3.1	Liquid/Liquid Flows and Water-Cut Measurement	510
		17.3.2		510
		17.3.3	Metering Wet-Gas	511

xviii	i			Contents
	17.4	Multip	hase Flowmeters	514
		17.4.1	Categorisation of Multiphase Flowmeters	514
		17.4.2	Multiphase Flowmeters (MPFMs) for Oil Production	515
		17.4.3	Developments and References Since the Late 1990s	519
	17.5	Accura	ncy	527
	17.6	Chapte	er Conclusions	528
18	Ther	mal Flov	vmeters	530
	18.1	Introdu	action	530
	18.2	Capilla	ry Thermal Mass Flowmeter – Gases	530
		18.2.1	Description of Operation	531
		18.2.2	Operating Ranges and Materials for Industrial Designs	534
		18.2.3	Accuracy	535
		18.2.4	Response Time	535
		18.2.5	Installation	535
		18.2.6	Applications	536
	18.3	Calibra	ation of Very Low Flow Rates	536
	18.4	Therma	al Mass Flowmeter – Liquids	537
			Operation	537
		18.4.2	Typical Operating Ranges and Materials for	
			Industrial Designs	538
		18.4.3	Installation	538
			Applications	538
	18.5	Insertic	on and In-Line Thermal Mass Flowmeters	538
		18.5.1	Insertion Thermal Mass Flowmeter	540
		18.5.2	In-Line Thermal Mass Flowmeter	541
			Range and Accuracy	542
		18.5.4	Materials	542
		18.5.5	Installation	542
		18.5.6	Applications	543
	18.6	_	er Conclusions	544
	18.A	Mather	matical Background to the Thermal Mass	
		Flowm		545
			Dimensional Analysis Applied to Heat Transfer	545
			Basic Theory of ITMFs	546
		18.A.3	General Vector Equation	548
		18.A.4	Hastings Flowmeter Theory	549
		18.A.5	Weight Vector Theory for Thermal Flowmeters	551
		18.A.6	Other Recently Published Work	552
19	Angular Momentum Devices			
	19.1	Introdu	uction	553
	19.2	The Fu	el Flow Transmitter	554
		19.2.1	Qualitative Description of Operation	554
		19.2.2	Simple Theory	557

Con	itents			X1X
		19.2.3	Calibration Adjustment	558
			Meter Performance and Range	558
		19.2.5	Application	559
	19.3	Chapte	er Conclusions	559
20	Corio	olis Flow	vmeters	560
	20.1	Introdu	uction	560
		20.1.1	Background	560
		20.1.2	Qualitative Description of Operation	563
		20.1.3	Experimental and Theoretical Investigations	564
		20.1.4	Shell-Type Coriolis Flowmeter	566
	20.2	Industr	rial Designs	566
		20.2.1	Principal Design Components	569
		20.2.2	Materials	572
		20.2.3	Installation Constraints	574
		20.2.4	Vibration Sensitivity	576
		20.2.5	Size and Flow Ranges	577
		20.2.6	Density Range and Accuracy	578
		20.2.7	Pressure Loss	578
		20.2.8	Response Time	579
		20.2.9	Zero Drift	580
	20.3	Accura	ncy Under Normal Operation	581
	20.4	Publish	ned Information on Performance	582
		20.4.1	Early Industrial Experience	583
			Gas-Liquid	583
		20.4.3	Sand in Water (Dominick et al. 1987)	584
			Pulverised Coal in Nitrogen (Baucom 1979)	584
			Water-in-Oil Measurement	584
		20.4.6	Two- and Three-Component Flows	585
	20.5			585
	20.6	Applica	ations, Advantages, Disadvantages, Cost Considerations	587
		20.6.1		587
		20.6.2	Advantages	589
			Disadvantages	590
			Cost Considerations	591
	20.7	Chapte	er Conclusions	591
	20.A	•	on the Theory of Coriolis Meters	593
			Simple Theory	593
			Note on Hemp's Weight Vector Theory	595
			Theoretical Developments	597
			Coriolis Flowmeter Reviews	601
21	Prob	es for Lo	ocal Velocity Measurement in Liquids and Gases	603
	21.1	Introdu	uction	603
	21.2	Differe	ential Pressure Probes – Pitot Probes	604

XX				Contents
	21.3	Differe	ential Pressure Probes – Pitot-Venturi Probes	607
	21.4	Insertic	on Target Meter	608
	21.5	Insertic	on Turbine Meter	609
		21.5.1	General Description of Industrial Design	609
		21.5.2	Flow-Induced Oscillation and Pulsating Flow	611
		21.5.3	Applications	612
	21.6	Insertic	on Vortex Probes	612
	21.7	Insertic	on Electromagnetic Probes	614
	21.8	Insertic	on Ultrasonic Probes	615
	21.9	Therma	al Probes	616
	21.10	Chapte	er Conclusions	616
22	Verifi	cation a	and In Situ Methods for Checking Calibration	617
		Introdu		617
	22.2	Verifica	ation	617
	22.3		wasive, Non-Intrusive and Clamp-On Flowmeter	
		Alterna		620
			Use of Existing Pipe Work	620
		22.3.2	Other Effects: Neural Networks, Tracers,	
			Cross-Correlation	622
			Other Flowmeter Types in Current Use	622
			and Tracers	623
		Microw		624
	22.6	Chapte	er Conclusions	624
23			Access Systems	625
	23.1	Introdu		625
	23.2		of Device – Simple and Intelligent	626
	23.3		Signal Types	627
		_	gent Signals	629
		Selection of Signal Type		630
	23.6	y .		630
	23.7		e Access	630
	23.8	Future	Implications	631
24		Conside		633
	24.1		e an Opportunity to Develop New Designs in	
			oration with the Science Base?	633
	24.2		ufacture of High Enough Quality?	633
	24.3		he Company's Business Fall within ISO 9000 and/or	_
		ISO 17		636
	24.4		are the New Flow Measurement Challenges?	637
	24.5		Developments Should We Expect in	
		Micro-	Engineering Devices?	638

Contents		xxi
24.6	Which Techniques for Existing and New Flow Metering	
	Concepts Should Aid Developments?	639
24.7	Closing Remarks	641
Reference	es	643
Main Ind	lex	735
Flowmete	er Index	739
Flowmeter Application Index		743

Preface

This is a book about flow measurement and flowmeters written for all in the industry who specify and apply, design and manufacture, research and develop, maintain and calibrate flowmeters. It provides a source of information both on the published research, design and performance of flowmeters, and also on the claims of flowmeter manufacturers. It will be of use to engineers, particularly mechanical and process engineers, and also to instrument companies' marketing, manufacturing and management personnel as they seek to identify future products.

I have concentrated on the mechanical and fluid engineering aspects and have given only as much of the electrical engineering details as is necessary for a proper understanding of how and why the meters work. I am not an electrical engineer and so have not attempted detailed explanations of modern electrical signal processing. I am also aware of the speed with which developments in signal processing would render out of date any descriptions that I might give.

I make the assumption that the flowmeter engineer will automatically turn to the appropriate standard and I have, therefore, tried to minimise reproducing information which should be obtained from those excellent documents. I recommend that those involved in new developments should keep a watching brief on the regular conferences which carry much of the latest developments in the business, and are illustrated by the papers in the reference list.

I hope, therefore, that this book will provide a signpost to the essential information required by all involved in the development and use of flowmeters, from the field engineer to the chief executive of the entrepreneurial company which is developing its product range in this technology.

In this book, following introductory chapters on accuracy, flow, selection and calibration, I have attempted a clear explanation of each type of flowmeter so that the reader can easily understand the workings of the various meters. I have, then, attempted to bring together a significant amount of the published information which enlightens us on the performance and applications of flowmeters. The two sources for this are the open literature and the manufacturers' brochures. I have also introduced, to a varying extent, the mathematics behind the meter operations, but to avoid disrupting the text, I have consigned some of this to the appendices at the end of the chapters.

xxiii

xxiv Preface

However, by interrogating the appropriate databases for flowmeter papers it rapidly becomes apparent that inclusion of references to all published material is unrealistic. I have attempted a selection of those which appeared to be more relevant and available to the typical reader of this book. However, it is likely that, owing to the very large number of relevant papers, I have omitted some which should have been included.

Topics not covered in this book, but which might be seen as within the general field of flow measurement, are: metering pumps, flow switches, flow controllers, flow measurement of solids and granular materials, open channel flow measurement, hot wire local velocity probes or laser Doppler anemometers and subsidiary instrumentation.

In this second edition, I have left in much of the original material, as I am aware of the danger of losing sight of past developments and unnecessary reinvention. I have attempted to bring up to date items which are out of date, but am conscious that I may have missed some, and I have attempted to introduce the new areas and new developments of which I have become aware. In two areas where I know myself to be lacking in first-hand knowledge, I have changed the focus of the chapters and greatly reduced their length. Modern Control Methods has gone and been replaced by Remote Data Access Systems, and the chapter on manufacturing by a brief chapter entitled Final Considerations which touches on manufacturing variation and ISO quality standards and also takes in final comments.

I have included three new chapters covering magnetic resonance flowmeters, sonar and acoustic flowmeters and verification. They are brief chapters, but represent new developments since the first edition. I have also separated multiphase flowmeters into another new chapter, but have done so recognising that my knowledge of the subject is minimal and the coverage in the chapter is very superficial.

The techniques for precise measurement of flow are increasingly important today when the fluids being measured, and the energy involved in their movement, may have a very high monetary value. If we are to avoid being prodigal in the use of our natural resources, then the fluids among them should be carefully monitored. Where there might be pressure to cut corners with respect to standards and integrity, we need to ensure that in flow measurement these features are given their proper treatment and respect.

Acknowledgements

My knowledge of this subject has benefitted from many others with whom I have worked and talked over the years. These include colleagues from industry, national laboratories and academia, visitors and students, whether on short courses or longer-term degree courses and research. I hope that this book does justice to all that they have taught me.

In writing this book, I have drawn on information from many manufacturers, and some have been particularly helpful in agreeing to the use of information and diagrams. I have acknowledged these in the captions to the figures. Some went out of their way to provide artwork, and I am particularly grateful to Katrin Faber and Ruth O'Connell.

In preparing this second edition, I have been conscious of the many changes and advances in the subject, and so I have depended on many friends and colleagues, near and far, to read sections for me and to comment, criticise and correct them. In the middle of already busy lives they kindly made time to do this for me. In particular I would like to thank:

Anders Andersson, Matthias Appel, Andy Capper, Marcus Conein, Andrew Cowan, Paul de Waal, Steve Dixon, Mark England, Chris Gimson, John Hemp, Jankees Hogendoorn, Daniel Holland, Geoff Howe, Foz Hughes, Ian Hutchings, Masahiro Ishibashi, Edward Jukes, Peter Lau, Chris Lenn, Tony Lopez, Larry Lynnworth, George Mattingly, Gary Oddie, Christian O'Keefe, Michael Reader-Harris, Masaki Takamoto, Scott Pepper, Janis Priede, Michael Sapack, Steve Seddon, Takashi Shimada, Henk Versteeg, Takeshi Wakamatsu, Tao Wang, Ben Weager, Charles Wemyss and Xiao-Zhang Zhang.

I am extremely grateful to them for taking time to do this, and for the constructive comments which they gave. Of course, I bear full responsibility for the final script, although their help and encouragement is greatly valued.

I have had the privilege of being based back at my alma mater for the past 15 years, and they have been some of the most enjoyable of my working life. I am very grateful to Mike Gregory, who was key in making this possible; to Ian Hutchings, with whom I have collaborated; and to others of the Department of Engineering, particularly librarians and technical support staff, who have facilitated my experimental

XXV

xxvi Acknowledgements

and theoretical research. I have also appreciated the friendship of the late Yousif Hussain, who provided a strong industrial link over this period.

I acknowledge with thanks the following organisations which have given permission to use their material:

American Society of Mechanical Engineers

Elsevier based on the STM agreement for the use of figures from their publications and for agreement to honour my right to use material from papers of my own for Chapters 10 and 20.

National Engineering Laboratory (NEL)

Professional Engineering Publishing for permission to draw on material from the Introductory Guide Series of which I was editor, and to the Council of the Institution of Mechanical Engineers for permission to reproduce material which is identified in the text from Proceedings Part C, *Journal of Mechanical Engineering Science*, Vol. 205, pp. 217–229, 1991.

Permission to reproduce extracts from British Standards is granted by BSI Standards Limited (BSI). No other use of this material is permitted. British Standards can be obtained in pdf or hard copy formats from the BSI online shop: www.bsigroup.com/shop.

I have also been grateful for the help and encouragement given to me by many in the preparation of this book. It would be difficult to name them, but I am grateful for each contribution.

I have found the support of my family invaluable and particularly that of Liz, my wife, whose patience with my long hours at the computer, her willingness to assist with her proofreading skills, her encouragement and help at every stage, have made the task possible and I cannot thank her enough.

Finally, I am grateful to Cambridge University Press for the opportunity of preparing this second edition.

Nomenclature

Chapter 1

$c_{ m i}$	sensitivity coefficient
f(x)	function for normal distribution
K	K factor in pulses per unit flow quantity
k	coverage factor
M	mean of a sample of n readings
m	index
$N(\mu,\sigma^2)$	normal curve
n	number of measurements, index
p	probability, index
\overline{q}	mean of n measurements q_i , index
$q_{ m j}$	test measurement
$q_{ m v}$	volumetric flow rate
r	index
S	index
$s(\overline{q})$	experimental standard deviation of mean of group q_i
$s(q_i)$	experimental standard deviation of q_j
t	Student's t
U	expanded uncertainty
$u(x_i)$	standard uncertainty for the ith quantity
$u_{\rm c}(y)$	combined standard uncertainty
X	coordinate
x_{i}	result of a meter measurement, input quantities
\overline{x}	mean of n meter measurements
y	output quantity
Z	normalised coordinate $(x-\mu)/\sigma$
μ	mean value of data for normal curve
ν	degrees of freedom
σ	standard deviation (σ^2 variance)
	•

xxvii

xxviii	Nomenclature
$\Phi(z)$	area under normal curve e.g. $\Phi(0.5)$ is the area from $z = -\infty$ to $z = 0.5$
$\phi(z)$	function for normalised normal distribution
	Chapter 2
A	cross-section of pipe
c	local speed of sound
$c_{ m p}$	specific heat at constant pressure
$c_{ m v}$	specific heat at constant volume
D	diameter of pipe
d	diameter of flow conditioner plate holes
$f_{ m D}$	Darcy friction factor: $f_D = 4f_F$
$f_{ m F}$	Fanning friction factor
g	acceleration due to gravity
H	Hodgson number Equation (2.13)
K	pressure loss coefficient
L	length of pipe (sometimes given as a multiple of D e.g. 5D)
M	Mach number
n	index as in Equation (2.4)
p	pressure
p_0	stagnation pressure
$\Delta p_{ m loss}$	pressure loss across a pipe fitting
$q_{ m v}$	volumetric flow rate
$q_{ m m} \ R$	mass flow rate
Re	radius of pipe Reynolds number
r	radial coordinate (distance from pipe axis)
T	temperature
T_0	stagnation temperature
$\stackrel{\circ}{V}$	velocity in pipe, total volume of pipework used in
	Hodgson number
V_{0}	velocity on pipe axis, maximum axial velocity at a cross-section
	fluctuating component of velocity
$rac{V}{V}_{ m rms}$	mean velocity in pipe
ν	local fluid velocity
v_{τ}	friction velocity $v_{\tau} = \sqrt{\frac{\tau_{\rm w}}{\rho}}$
x	distance from pipe axis in horizontal plane
y	distance from the pipe wall = $(R-r)$
y_1	viscous sublayer thickness
y_2	extent of buffer layer
z	elevation above datum

Nomenclature	xxix
2/	ratio of specific heats
γ	dynamic viscosity
μ	kinematic viscosity
ρ	density shear stress
τ	
$ au_{ m w}$	wall shear stress: $\tau_{\rm w} = f_{\rm F} \frac{\rho \overline{V}^2}{2}$
	Subscripts
1,2	pipe sections
	Chapter 4
$C_{ m d}$	concentration of tracer in the main stream at the downstream sampling point
$C_{ m dmean}$	mean concentration of tracer measured downstream
$C_{ m i}$	concentration of tracer in the injected stream
$C_{\rm u}$	concentration of tracer in the main stream upstream of injection
o u	point (if the tracer material happens to be present)
$c_{ m i}$	sensitivity coefficient
$K_{ m fm}$	mass flowmeter factor
$k_{ m S}$	factor for the weigh scale
$M_{\rm n}$	net mass of liquid collected in calibration
$M_{ m D}^{^{ m II}}$	weight of deadweight
$M_{\rm s}$	conventional mass of material of density 8,000 kg/m ³
$M_{ m L}$	mass of water in weigh tank
$M_{ m G}$	mass of air displaced
$\Delta M_{ m LDV}$	change in mass within the connection pipe between the
ED (flowmeter and the weir
$m_{ m CAL}$	reading of the weigh scale when loaded with deadweights
$m_{ m L}$	weigh scale reading
P	pulse count
p	pressure
$q_{ m v}$	volumetric flow rate in the line
$q_{ m vi}$	volumetric flow rate of injected tracer
R	gas constant for a particular gas
T	temperature
t	collection time during calibration
V	amount injected in the sudden injection (integration) method
ν	specific volume
ρ	liquid density
$ ho_{ ext{D}}$	actual density of deadweight

xxx Nomenclature

 $\begin{array}{ll} \rho_{\rm G} & \text{air density} \\ \rho_{\rm LW} & \text{liquid density} \end{array}$

,	
	Chapter 5
A	function of Re _D
a_1	expression in orifice plate-bending formula
a_{ε}	constant
$b_{arepsilon}$	constant
C	discharge coefficient
$C_{ m Re}$	part of discharge coefficient affected by Re
C_{Taps}	part of discharge coefficient which allows for position of taps
C_{∞}	discharge coefficient for infinite Reynolds number
$C_{ m Small\ orifice}$	correction for small orifice sizes
c_1	expression in orifice plate-bending formula
$c_{arepsilon}$	constant
D	pipe diameter (ID)
D'	orifice plate support diameter
d	orifice diameter
E	thickness of the plate, velocity of approach factor $(1 - \beta^4)^{-1/2}$
E_{T}	total error in the indicated flow rate of a flowmeter in
	pulsating flow
E^*	elastic modulus of plate material
e	thickness of the orifice (Figure 5.3), Napierian constant
F	correction factor used to obtain the mass flow of a (nearly) dry
_	steam flow
f	frequency of the pulsation
H	Hodgson number
h	thickness of orifice plate
K	loss coefficient, related to the criterion for Hodgson number
L_1	$= l_1/D$
L'_2	= l'_2/D' signifies that the measurement is from the downstream
1	face of the plate.
l_1	distance of the upstream tapping from the upstream face of
1/	the plate
l' ₂	distance of the downstream tapping from the downstream
	face of the plate.' signifies that the measurement is from the
<i>M</i> /	downstream face of the plate.
M'_2	= $2L'_2/(1-\beta)$ numerical value defined in text
M_1	
n	index
p	static pressure
p_{u}	upstream static pressure

Nomenclature	XXX
$p_{ m d}$	downstream static pressure
p_1	static pressure at upstream tapping
p_2	static pressure at downstream tapping
Δp	differential pressure, pressure drop between pulsation source
	and meter
$q_{\mathtt{m}}$	mass flow rate
$q_{ m v}$	volumetric flow rate
Re	Reynolds number
Re_{D}	Reynolds number based on the pipe ID
r	radius of upstream edge of orifice plate
$T_{ m f}$	temperature of the fluid at flowing conditions
t	time
V	volume of pipework and other vessels between the source
_	of the pulsation and the flowmeter position
$ar{V}$	mean velocity in pipe with pulsating flow
$V_{ m cl}$	centre line velocity
$V_{ m max}$	maximum velocity
$V_{ m rms}$	rms value of unsteady velocity fluctuation in pipe with
	pulsating flow
X	dryness fraction, displacement of the centre of the orifice hole
	from the pipe axis (m)
α	= CE the flow coefficient
$oldsymbol{eta}$	diameter ratio d/D
γ	ratio of specific heats
$\delta q_{\scriptscriptstyle m m}$	small changes or errors in $q_{\rm m}$ etc.
ε	expansibility (or expansion) factor
$oldsymbol{arepsilon}_1$	expansibility (or expansion) factor at upstream tapping
κ	isentropic exponent
ρ	density
$ ho_1$	density at the upstream pressure tapping
$ ho_{ m g}$	density of gas
$ ho_{ ext{l}}$	density of liquid
$\sigma_{ m y}$	yield stress for plate material
θ	angle defined in Figure 5.B.1 caused by deposition on the
. 2	leading face of the orifice plate
$\Phi_{ m fo}{}^2$	ratio of two-phase pressure drop to liquid flow pressure drop
ϕ	maximum allowable percentage error in pulsating flow
	Chapter 6
C	coefficient of discharge
	coefficient for wet-gas flow equation
$C_{ m tp} \ C_{ m dry}$	discharge coefficient for fully dry gas
- ury	

xxxii Nomenclature

discharge coefficient for fully wet gas $X \ge X_{lim}$ C_{fullywet} where $X_{\text{lim}} = 0.016$ Dpipe ID d throat diameter velocity of approach factor = $1/\sqrt{(1-\beta^4)}$ E Fr_{g} superficial gas Froude number $Fr_{\text{g,th}}$ Froude number at the throat gravitational acceleration index n upstream pressure tapping p_1 downstream pressure tapping p_2 differential pressure Δp mass flow rate of gas $q_{\mathrm{m,g}}$ mass flow rate of liquid $q_{\mathrm{m,l}}$ mass flow rate q_{m} apparent flow rate when liquid is present in the gas stream q_{tp} volume flow rate $q_{
m v}$ roughness criterion Ra Re Reynolds number $V_{
m sg}$ superficial gas velocity diameter ratio d/D β expansibility (or expansion) factor ε isentropic exponent ĸ density at upstream pressure tapping ρ_1 liquid density ρ_1 gas density at upstream tapping point $\rho_{1,g}$ pressure ratio $\frac{p_2}{}$ τ defined in Equation (6.1) φ

Chapter 7

A_*	throat cross-sectional area
a	constant
b	constant
C	discharge coefficient
C_{R}	$=C_*\sqrt{Z}$
C_*	critical flow function
$C_{*_{ m i}}$	critical flow function for a perfect gas
c	speed of sound
$c_{ m p}$	specific heat at constant pressure
$C_{ m v}$	specific heat at constant volume
C_*	speed of sound in the throat

outlet cross-sectional area

 A_2

Nomenclature	xxxiii	
d	throat diameter	
d_2	outlet diameter	
<i>I</i> .	dimension given in Figure 7.5	
M	Mach number	
M_1	Mach number at inlet when stagnation conditions cannot be	
1,11	assumed	
M	molecular weight	
n	exponent in Equation (7.10)	
p_{o}	stagnation pressure	
p_1	pressure at inlet when stagnation conditions cannot be assumed	
p_{2i}	ideal outlet pressure	
$p_{2\text{max}}$	actual maximum outlet pressure	
p_*	throat pressure in choked conditions	
$q_{ m m}$	mass flow	
R	universal gas constant	
Re_d	Reynolds number based on the throat diameter	
r	toroid radius	
$T_{ m o}$	stagnation temperature	
T_*	throat temperature in choked conditions	
Z	compressibility factor	
$Z_{ m o}$	compressibility factor at stagnation conditions	
β	=d/D	
γ	ratio of specific heats	
ε	error	
κ	isentropic exponent	
ν	kinematic viscosity	
θ	angle given in Figure 7.5	
μ_0	dynamic viscosity of gas at stagnation conditions	
$ ho_*$	density of gas in the throat	
$ ho_{ m o}$	density at stagnation conditions	
Chapter 8		
A	cross-sectional area of the pipe, constant	
A'	constant	
$A_{ m f}$	cross-sectional area of float	
$A_{\rm x}$	cross-sectional area of tapering tube at height x	
$\stackrel{\circ}{A_2}$	annular area around float, annular area around target	
a	area of target	
B	constant	
C	coefficient	
C_0 to C_4	constants in curve fit for target meter discharge coefficient	
$C_{ m c}$	contraction coefficient	
$C_{ m d}$	coefficient of discharge	